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Superconducting electronics (SCE) is uniquely suited to implement neuromorphic

systems. As a result, SCE has the potential to enable a new generation of neuromorphic

architectures that can simultaneously provide scalability, programmability, biological

fidelity, on-line learning support, efficiency and speed. Supporting all of these capabilities

simultaneously has thus far proven to be difficult using existing semiconductor

technologies. However, as the fields of computational neuroscience and artificial

intelligence (AI) continue to advance, the need for architectures that can provide

combinations of these capabilities will grow. In this paper, we will explain how

superconducting electronics could be used to address this need by combining analog

and digital SCE circuits to build large scale neuromorphic systems. In particular, we

will show through detailed analysis that the available SCE technology is suitable for

near term neuromorphic demonstrations. Furthermore, this analysis will establish that

neuromorphic architectures built using SCE will have the potential to be significantly

faster and more efficient than current approaches, all while supporting capabilities

such as biologically suggestive neuron models and on-line learning. In the future,

SCE-based neuromorphic systems could serve as experimental platforms supporting

investigations that are not feasible with current approaches. Ultimately, these systems

and the experiments that they support would enable the advancement of neuroscience

and the development of more sophisticated AI.

Keywords: neuromorphic, architecture, superconducting, mixed-signal, spiking

1. INTRODUCTION

Superconducting electronics (SCE) has many characteristics that make it a natural fit for
implementing neuromorphic systems. This work will explore how such a system might be
constructed using a combination of digital and analog SCE. The unique collection of capabilities
enabled by SCE neuromorphic systems has the potential to provide solutions to some of the most
difficult problems facing AI research in the future. In particular, the efficiency and speed of SCE
architectures could help to address the compute challenges facing AI development. Similarly, the
biological fidelity that is possible in SCE-based neural circuits may also prove to be a valuable
source of future capabilities as researchers seek to incorporate novel functionality into their
neural networks.
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The amount of computation required to train more
sophisticated AI applications is one of the most significant
problems facing the development of these applications. As
machine learning applications have advanced in terms of
capabilities, their training requirements have also greatly
increased. In Figure 1 we can see that over the last decade, the
amount of compute required to train new machine learning
applications has grown much faster than the performance
improvement in computing hardware. If this trend continues,
then training times for future machine learning applications will
become prohibitively long and eventually untenable.

As more advanced machine learning applications are
developed, understanding and incorporating more complex
system dynamics will likely be required to provide novel
functionality. Inspiration for the form and function of these
dynamics could potentially come from biological brains as was
the case with the very concept of neural networks (Sompolinsky,
2014). However, efforts to understand the purpose of biological
neural dynamics are limited by the significant computational
requirements of accurate models of biological neurons. Current
approaches generally struggle to simultaneously support the
complexity, scale, and length of the experiments that would
ideally explore these dynamics.

These trends suggest that a paradigm shift is needed in
the area of neuromorphic computing in order to address both
the need for novel functionality and the need for improved

FIGURE 1 | This graph shows that compute requirements for training novel AI applications is growing at a much faster rate than improvements in compute

performance. This figure expands on the analysis presented in Amodei et al. (2018). The AI application data is from Hinton et al. (2012), Mnih et al. (2013), Simonyan

and Zisserman (2014), Sutskever et al. (2014), Zeiler and Fergus (2014), Szegedy et al. (2015), Amodei et al. (2016), He et al. (2016), Wu et al. (2016), Zoph and Le

(2016), Chollet (2017), Krizhevsky et al. (2017), Silver et al. (2017b), Silver et al. (2017a), and Vinyals et al. (2019). The GPU data is the maximum theoretical single

precision floating point operations per second for the NVIDIA Titan, TitanX, TitanV, and TitanRTX GPUs. The HPC data is the maximum theoretical double precision

floating point operations per second for the Sequoia, Tianhe-2, TaihuLight, and Summit supercomputers.

support for training. Existing neuromorphic approaches provide
a set of capabilities that include scalability, programmability,
on-line learning support, complex soma models, efficiency,
and accelerated simulation timescales. However, to the best of
our knowledge, no architecture has been able to provide all
of these capabilities simultaneously. Instead, each design has
been optimized for one or more of the capabilities at the
cost of others (Furber, 2016). Enabling all of these capabilities
simultaneously would be a significant step in the development
of neuromorphic systems that will meet the future needs of
machine learning applications and computational neuroscience
experiments. Superconducting electronics has the potential to
support all of these capabilities simultaneously but serious
challenges need to be overcome with either architecture or device
solutions in order to realize that potential.

A successful superconducting architecture needs to be scalable
and programmable. To satisfy these requirements, we propose
a mixed-signal approach that combines superconducting digital
logic with superconducting analog neuron circuits. To investigate
the suitability of possible SCE mixed-signal architectures, this
work presents a series of trade-off studies using numerical
analysis based on measurements and designs from previously
demonstrated circuits. It is important to note that this work
represents an early feasibility study and that additional research
is required to fully develop the architecture and ideas discussed
here. This work will hopefully motivate future work in this area
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that will result in the development of efficient, fast, and scalable
neuromorphic systems that are also programmable, biologically
suggestive, and capable of supporting on-line learning. Such
systems could provide a critical platform that is needed for future
AI development as well as computational neuroscience research.

The main contributions of this paper are:

• A description of a novel mixed-signal superconducting
neuromorphic architecture

• A detailed analysis of the design trade-offs and feasibility of
mixed-signal superconducting neuromorphic architectures

• A comparison of the proposed system with other state-of-the-
art neuromorphic architectures

• A discussion of the potential of superconducting
neuromorphic systems in terms of on-line learning support
and large system scaling.

2. BACKGROUND

2.1. Neuromorphic State-of-the-Art
Neuromorphic computers are designed to replicate the structures
and behaviors of the biological brain using analog or digital
hardware or a mixture of both. By mimicking biology,
neuromorphic computers are able to incorporate characteristics
that support novel applications and research. There have been
many different approaches to building these sorts of systems
each with its own priorities and innovations. Five large-scale
neuromorphic systems that we considered to be representative
of the current state-of-the-art are compared in Table 1. This
comparison is intended to be a brief sample of the current state
of the field rather than a comprehensive review. As a result,
there are other compelling approaches that are not included in
this comparison.

It is worth noting that it is possible make use of
novel technologies, such as phase change memory (PCM) or
Memristors to efficiently implement the functionality of different
portions of the neuron (Ebong and Mazumder, 2012; Soudry
et al., 2015; Sebastian et al., 2018). However, a review of the
literature failed to locate an example large scale implementation
of these approaches that provided the relevant details andmetrics
that would be needed evaluate it relative to the other approaches
considered here. As a result, these sorts of approaches are not
considered in the comparison in Table 1 which is focused on
large scale implementations of spiking neuromorphic systems.

The primary characteristic that the approaches inTable 1 have
in common is that they are designed to enable scaling to millions
of neurons and billions of synapses. To achieve that scale several
critical design decisions must be made regarding the complexity
of the neuron model, the number and resolution of synapses to
allow per neuron in the design, and the interconnect scheme
used to communicate between the neurons. These decisions,
in turn, affect how many neurons the system can reasonably
accommodate, the power that is consumed, and the speed with
which the system can update the neuron models. In some cases
these decisions also limit or preclude functionality such as on-line
learning (Benjamin et al., 2014).

Perhaps the most fundamental design decision of
neuromorphic architectures is how much detail to support
in the neuron model. It is possible to implement biologically
relevant models using semiconductor electronics but this
approach typically requires prohibitively complex circuit designs
that have reduced yield probabilities and scaling limitations
(Arthur and Boahen, 2011). An example of this trade off can be
seen by comparing IBM’s TrueNorth which used a completely
digital design to implement a million LIF neurons on a single
chip (Merolla et al., 2014) and BrainScales which used a mixed
signal approach to implement a more detailed neuron model
in a wafer scale system (Schemmel et al., 2010; Meier, 2015).
In the case of TrueNorth, the neuron model is power and area
efficient but does not capture many biological details in a single
instance (Cassidy et al., 2013b). BrainScales, on the other hand,
uses a more complex model but the power used by the system
is significant with 1.3 W required for just 512 neurons (Furber,
2016). This is roughly 1000–10,000x more power per neuron
than is needed by large neuromorphic systems that use simplified
neuron models (Furber, 2016).

Another interesting design decision concerns the interconnect
scheme used to enable communication between the neurons.
Aspects of these schemes, such as whether the messaging is
unicast or multicast and what network topology is employed,
ultimately determine the bandwidth and latency characteristics
of the network. These decisions also affect the complexity of the
routers required to implement the network. SpiNNaker is an
approach that devotes a lot of effort to solving the networking
problems posed by the need for thousands of synapses per
neuron (Rast et al., 2008; Furber et al., 2013, 2014). Instead
of implementing the neuron model directly in hardware like
the other approaches that are featured in Table 1, SpiNNaker
uses a software neuron model implementation running on ARM
cores that enables flexibility in terms of model choice. As a
result, SpiNNaker does not directly improve the time it takes to
update individual neurons relative to a software only approach.
However, the innovations in the SpiNNaker network enable it
to achieve impressive scales and performance despite lacking a
hardware-based neuron model. Additional details regarding the
design of communication networks can be found in Young et al.
(2019).

Modern neuromorphic systems can achieve impressive scales
and performance while using relatively little power. However, all
of the current approaches have drawbacks that can ultimately
be traced to technology limitations. It is possible that pursuing
a neuromorphic system in a different technology, such as SCE,
could open up new possibilities in terms of system capabilities.

2.2. Superconducting Digital Electronics
Development
Recently, the field of superconducting digital electronics
has been reinvigorated by the IARPA C3 and SuperTools
programs. As a result, the capabilities of superconducting
digital electronics have been significantly improved and are
ready for use in novel architectures. In particular, the C3
program has significantly helped to drive progress in this area
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TABLE 1 | A comparison of representative large scale spiking neuromorphic architectures.

BrainScaleS Neurogrid TrueNorth SpiNNaker Loihi

Feature size 180 nm 180nm 28nm 130 nm 14nm

Neurons per core 8–512 65 k 256 1 k 1 k

Synapses per core 130 k 100 M 65 k 1 M 16 k

Technology Analog Analog Digital Digital Digital

Soma model AEIF AQIF LIF Variable Variable

Soma equiv FLOPS 15 12 ∼5 Variable (∼13) Variable (∼5)

Synapse resolution 4 bits 13 bits shared 1 bit Variable 1–64 bits

Run-time plasticity STDP No No Variable Variable

Interconnect
Hierarchical Tree 2D Mesh 2D Toroidal Mesh 2D Mesh

Multicast Unicast Multicast Unicast

Watts/Neuron 2.54mW 2.31µW 0.72 nW 62.5µW < 5µW

Joules/Spike 198pJ 119pJ 26pJ 11 nJ 23.6 pJ

The overall comparison expands on analysis from Furber (2016).

Sources for architecture details are Rast et al. (2008), Schemmel et al. (2010), Benjamin et al. (2014), Furber et al. (2013, 2014), Merolla et al. (2014), Meier (2015), Davies et al. (2018),

Lin et al. (2018), and Yang and Kim (2020).

Soma Equivalent FLOPS refers to the number of floating point operations required to advance the soma model by a 1 ms time step when the model is implemented in software. This

provides a very rough comparison of the complexity of the models that each architecture implements. TrueNorth, SpiNNaker, and Loihi all use soma models that incorporate varying

degrees of programmability that allow for a range of model complexities. For the purposes of this comparison we assume an LIF model as the baseline configuration for TrueNorth and

Loihi because that is what is reported in the literature (Cassidy et al., 2013b; Furber, 2016; Davies et al., 2018). Both approaches use a modified LIF model that would likely require

more computation to simulate than a standard LIF model however it is unclear how much. SpiNNaker is assumed to use an Izhikevich model. FLOPS values are from Izhikevich (2004)

and Makhlooghpour et al. (2016).

(Manheimer, 2015). C3 sought to address the unsustainable
power demands of future CMOS-based supercomputers by
developing energy efficient superconducting processors. To
accomplish this goal, the program was divided into two thrusts
with one focusing on developing digital logic and the other
focusing on memory.

The digital logic portion of the program focused on the
development of a processor with one of two competing families
of superconducting digital logic: eRSFQ (Kirichenko et al.,
2012) and RQL (Herr et al., 2011). The initial work of
both the eRSFQ and RQL teams involved developing and
demonstrating designs for basic processor components such as
adders, shifters, and control logic. The eRSFQ team adopted
a bit-sliced architecture for their processor while the RQL
team used a more traditional bit-parallel architecture. Over
the course of the program, 8-bit and 16-bit adders were
successfully designed and demonstrated by the RQL team. In
addition, other complex control circuits were also designed and
demonstrated in RQL. These results established the feasibility
of utilizing superconducting electronics to build complex,
large scale processors. Designs for 8-bit and 16-bit Turing
complete processors with integratedmemory were developed and
fabricated as part of the C3 program but are still being evaluated.
Importantly, the process of developing the various digital logic
designs has led to the development of design methodologies
and a better understanding of how to utilize the technology to
efficiently perform computations.

The memory portion of the program focused primarily on
the development of magnetic memories that could provide the
dense arrays needed to support larger scale computation. In
general, superconducting electronics is not currently a dense
technology from a fabrication standpoint. This is most obvious

in the area of memory where the lack of density translates into
a lack of capacity. Magnetic memories provide a solution to
this because their bit cells can be potentially small and packed
tightly together. Several versions of superconducting magnetic
memory were investigated as part of the C3 program including
JMRAM and CSHE (Ye et al., 2014; Aradhya et al., 2016; Dayton
I. M. et al., 2018). In addition, to meet the immediate memory
needs of the processor designs, a non-magnetic memory was also
demonstrated during the program. This memory, NDRO, only
utilizes JJs and so is significantly less dense than the magnetic
memory alternatives. However, its characteristics made it a good
fit for implementing register files and other small memory
arrays that support the operation of a processor (Burnett et al.,
2018).

In addition to the C3 program, other researchers have also
been working to develop superconducting digital logic. One such
effort that should be mentioned is using another family of logic,
AQFP, to develop adders with the goal of eventually building a
processor. This work has also shown promise and has had some
successful demonstrations (Inoue et al., 2013; Inoue et al., 2015;
Narama et al., 2015).

These developments have laid the groundwork for the
development of larger, more complex digital and mixed-signal
systems using superconducting electronics. Many aspects of
the system architecture that is explored in this work build
upon the successful demonstrations of these programs. For
instance, thememory technologies developed onC3 are critical to
enabling the local storage of synapse weights that are required by
neuromorphic processors. Similarly, the complex control circuits
that have been demonstrated are representative of the control
circuits that will be needed to organize and coordinate the
activities of the neurons across a neuromorphic processor.
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2.3. Superconducting Neuromorphic
Development
Many features of Josephson junctions and superconducting
electronics are advantageous to neuromorphic computing.
Josephson junctions have a well-defined threshold for moving
into the voltage state, similar to the threshold for neurons to emit
action potentials. Low-loss transmission lines can carry pulses
without distortion over long distances, effectively acting as axons
and dendrites. Mutually-coupled superconducting loops can
weight and store circulating currents, helping to perform synaptic
and summing operations. These advantages were noticed by
groups in Japan in the 1990s, who proposed and measured
(Hidaka and Akers, 1991; Mizugaki et al., 1993, 1994; Qian
et al., 1995; Rippert and Lomatch, 1997) the first Josephson-based
circuits to make simple perceptron neural networks. Work has
continued since then, especially over the last 10 years or so. In
this section we review recent developments, focusing specifically
on the biological realism of the soma, analog synaptic weighting,
and extension to larger networks.

The Hodgkin-Huxley model (Hodgkin and Huxley, 1990) is
the standard for the dynamics of the action potential generated
at the soma. It describes the opening and closing of sodium and
potassium ion channels which allow the bi-lipid membrane of the
axon to charge up (polarize) and discharge (depolarize), causing
the rise and fall of the neural spike. The Josephson junction
soma, or JJ soma, is a circuit of two Josephson junctions in
a superconducting loop which displays very similar dynamics
(Crotty et al., 2010). The two junctions act like the sodium and
potassium channels, one allowing magnetic flux to charge up
the loop and the other allowing flux to discharge from the loop.
The result is a soma with biologically realistic dynamics that are
similar to those of the Hodgkin-Huxley model.

The degree of biological realism present in a mathematical
neuronmodel was addressed by Izhikevich (2004), who identified
20 dynamical behaviors possible for neurons. Not all behaviors
are present in all neurons, but the more behaviors that a model
is capable of generating, the more biologically realistic it is.
The Hodgkin-Huxley model, for example, obtains 19 of the
20 behaviors. Recent work in benchmarking the JJ soma has
obtained 18 of the 20 behaviors (Crotty et al., in preparation),
making it more biologically realistic than alternative neuron
models like the Nagumo et al. (1962) or Rose and Hindmarsh
(1989). This high level of biological realism is very impressive
considering it is obtained with only two Josephson junctions
and the circuit is capable of running at very high clock rates
(∼20 GHz).

Biological synapses are responsible for coupling neurons
together. They receive the action potential as their input and
feed forward a small current to the downstream neuron,
an action which is mediated through a chemical system of
neurotransmitters. The amount of the feed-forward current is
dependent on the strength or “weight” of the synapse which
can, in principle, take on many values. Excitatory synapses
have a positive weight and bring the downstream neuron closer
to threshold; inhibitory synapses have a negative weight and
push the downstream neuron away from threshold. Over time

synapses can change their weight due to the coincident firing
of their connecting neurons, a feature called plasticity. Plasticity
allows for unsupervised training in artificial neural networks.

In order to mimic this behavior in an electrical circuit, a

memory element is necessary to hold the weight of the synapse. It
is possible to use a superconducting loop as this memory, holding
a value of flux proportional to the synaptic strength; however,

memory circuits based on loops tend have a large footprint.
Following the variety of magnetic memories in the computer

industry, a new kind of native synapse has recently been
developed (Schneider et al., 2018a,b) using a magnetic doped
Josephson junction. By putting small magnetic nanoparticles
inside the insulating barrier between the two superconductors,
the critical current of the junction can be changed. Since one can
put many of these particles in a single barrier and they can all
be in different orientations, the resulting critical current can take
on essentially a continuum of values, making it an ideal memory
element for the synaptic strength.

In addition to changing the critical current, these magnetic

nanoparticles can alter their orientation in response to a current

pulse across the junction, provided there is an external magnetic

field applied parallel to the junction. This allows for the

possibility of inherent plasticity: the pulsing of action potentials
applied to the magnetic junction changes the orientation of the
nanoparticles and hence the critical current. If this junction
is embedded in a synapse circuit in which the critical current
encodes the value of synaptic strength, then action potentials
which arrive at this circuit will “train” the junction and alter its
weight, similar to plasticity in a biological neuron.

In the analog domain, the maximum fan-in and fan-out of
single neurons will be about 100 or so, limited by parasitic
inductances and fabrication tolerances (Schneider and Segall,
2020). Meanwhile, in the human brain each neuron is connected
to about 10,000 synapses, on average. Although it is not clear
that this level of connectivity is necessary to do interesting and
novel computations, increasing it above the all-electronic level of
100 is certainly worth pursuing. Toward that end, optoelectronic
neurons have been recently been proposed (Shainline et al., 2016;
Buckley S. M. et al., 2017; Buckley et al., 2018; Shainline et al.,
2019). These neurons, operating at low temperatures, receive
single photons and produce faint photonic signals. In between,
photonic communication can be used to route synaptic signals
over long distances through the network. Several aspects of such
an integrated system have been demonstrated, including light
sources, detectors and full optical links at 4K (Buckley S. et al.,
2017) and passive photonic routing networks utilizing multiple
planes of waveguides (Chiles et al., 2018). The superconducting
neurons which interface with these photonic networks are similar
kinds of Josephson neuron circuits (Shainline et al., 2019;
Shainline, 2020).

In short, there is a growing “toolbox” of superconducting
neuromorphic circuits which can be incorporated into spiking
neural networks. One can, in fact, use these circuits on their
own to design a fully-dedicated, analog neuromorphic processor.
Our approach has been instead to combine some of these analog
neuromorphic circuits with superconducting digital logic in a
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mixed-signal configuration, which we believe will ultimately
result in more flexibility, scalability and programmability.

3. SUPERCONDUCTING MIXED-SIGNAL
NEUROMORPHIC ARCHITECTURE

This work builds upon recent developments in SCE and
superconducting neuromorphic systems by proposing a
novel mixed-signal SCE neuromorphic design: BrainFreeze.
The proposed architecture combines previously explored
bio-inspired analog neuron circuits with established digital
technology to enable scalability and programmability that
is not possible in other superconducting approaches. This
is because the digital SCE components of the architecture
facilitate time-multiplexing, programmable synapse weights,
and programmable neuron connections. The time-multiplexing
supported by the architecture allows multiple neurons in
the simulated network to take turns using some of the same
physical components, such as the pipelined digital accumulator.
This helps to improve the effective density of the hardware.
Communication between neurons in BrainFreeze is performed
by a digital network like the one used by other large scale
neuromorphic approaches. The digital network allows the
architecture to share the wires that are used to connect the
neuron cores between multiple simulated neurons. This avoids
the need to provide a dedicated physical wire to connect each
pair of neurons and thereby greatly improves scalability. The
arbitrary connectivity provided by the digital network also
allows BrainFreeze to implement a wide variety of neural
network organizations by reprogramming the routing tables
in the network. In this way, BrainFreeze leverages both recent
developments in SCE digital logic and innovations from large
scale semiconductor neuromorphic architectures to overcome
the primary challenges facing SCE neuromorphic systems.

The BrainFreeze architecture is comprised of 7 major
components in its most basic form: control circuitry, a
network interface, a spike buffer, a synapse weight memory, an
accumulator, a DAC, and at least one analog soma circuit. A
block diagram of the overall architecture can be seen in Figure 2.
We refer to one instance of this architecture as a Neuron
Core. The control circuitry ensures that the correct spike buffer
entries, synapse weights and other states are used on each time
step. The network interface handles address event representation
(AER) (Mahowald, 1992; Boahen, 2000; Park et al., 2017)
packet formation and interpretation as well as interactions
with the network router. The spike buffer temporarily stores
incoming spike messages until it is time to apply them to the
neuron circuits. These buffers are implemented with Josephson
transmission lines and should be very compact compared to
other components. Multiple buffers may be needed in the case
of multiplexing so that the spikes for each multiplexed neuron
can be kept separate. The synapse weight memory stores the
synapse weights for all of synapses implemented using the core.
The accumulator is used to sum up the total incoming weight that
should be applied to the neuron circuit during each time step.
In order to provide a single answer as quickly as possible a tree

of adders is used in the accumulator. The superconducting DAC
is responsible for turning the digital output of the accumulator
into the signal needed by the analog soma circuits. Finally, one
or more analog soma circuits are included that can implement a
biologically suggestive neuron model, such as the JJ soma (Crotty
et al., 2010). These components provide the critical functionality
that is required to implement a neuron. This architecture allows
for the inclusion of bio-inspired analog neuron circuits in a large
scale, programmable neuromorphic system.

One of the challenges that must be overcome to enable
competitive large scale SCE neuromorphic systems is the
limited density of SCE digital logic. SCE fabrication nodes
are currently many times larger than those of CMOS. As a
result, fewer SCE components can fit on a chip than is the
case with CMOS. In the case of large scale neuromorphic
systems this density disadvantage can result in a prohibitively
small number of implementable neurons. To overcome this
situation, multiplexing is used to improve the effective density
of BrainFreeze’s neuron core. In addition, SCE supports clock
rates that are significantly faster than CMOS, so components can
be multiplexed to a high degree without significantly slowing
down the system relative to current neuromorphic approaches.
However, multiplexing introduces latency and memory capacity
requirements that must be addressed by the architecture.

Memory capacity has also been a major challenge for
SCE systems in the past. This is especially concerning for
neuromorphic approaches where large amounts of memory are
typically needed to store synapse weights and information about
the connections between neurons. To overcome this challenge,
BrainFreeze leverages recently developed superconducting
memory technologies and multi-temperature memory system
organizations in order to ensure that sufficient memory is
available to the system. In addition, BrainFreeze implements
prefetching to hide some of the longer latencies associated with
accessing information at different levels of its memory hierarchy.

The overall goal of the BrainFreeze architecture is to enable
a combination of speed, efficiency, scalability, programmability,
and biological suggestivity that is not possible in other state-of-
the-art approaches. In addition, in order to help address the need
for reduced training times, BrainFreeze endeavors to achieve
these goals while allowing for the possibility of on-line learning
support. To accomplish these goals a mixed-signal approach has
been adopted but this introduces additional challenges that must
be addressed by the architecture. Detailed trade-off analysis is
needed to determine the best way to overcome each challenge and
to establish the feasibility of the overall approach.

4. METHODOLOGY

The data presented in this paper is the result of detailed numerical
analysis based on results from digital logic experimental
demonstrations. In particular, the results are used to inform the
area and latency estimates of various components of the proposed
neuromorphic system. For instance, the sizes of demonstrated
NDRO and JMRAMmemories are used when estimating the area
required for synapse storage. To estimate the area and latency of a
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FIGURE 2 | A high-level block diagram of the proposed mixed-signal SCE neuromorphic architecture that includes all of the major components. We refer to this

collection of components as a Neuron Core. This architecture combines the scalability and programmability enabled by superconducting digital logic with biological

suggestivity enabled by superconducting analog circuits.

neuromorphic core, the appropriate quantities of the component
values are added together. Comparing these estimates for
different configurations of the BrainFreeze architecture allows us
to explore the potential trade-offs of this design. The estimates
also help to establish the feasibility of the proposed architecture
and provide motivation for future research.

4.1. Analysis Parameters
Table 2 presents the various parameters that are used throughout
the analysis in this work. The memory and ALU parameters in
this table come from circuits and designs that were developed
for experimental demonstrations. For the purposes of this work,
the memory parameters are used to estimate the area and

delay required to store synapse weights and network routing
information. Similarly, the ALU parameters are used to estimate
the area and delay of the accumulators and control required
in the BrainFreeze core. The area of an ALU is actually more
than twice the area of a single adder because the ALUs included
logical operations, an adder, a shifter, and control. However, this
additional area is included to account for the tree of adders
needed by the architecture. In other words a design with 8 parallel
adders actually needs 15 adders organized as a tree to quickly
produce a single result. The total area required by this tree is
estimated as roughly the area of 8 ALUs or 1 ALU for each
parallel adder in a design. This rough estimate is used because
it is an overestimation and because the ALUs were the most
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TABLE 2 | The latency and size parameters that were used to generate the

analysis.

X Size Y Size Latency

NDRO (1 bit) 55µm 55µm 3.125ps

JMRAM (1 bit)
5µm 5µm 0.25ps (read)

100 ps (peripheral)

8-bit ALU 844µm 1,166µm 550ps

16-bit ALU 1,771µm 2,860µm 650ps

Spike buffer (1 bit) 12µm 24µm

MCM 200mm 240mm

Cabinet (1,869mm Tall) 600mm 912mm

The NDRO, JMRAM, and ALU parameters were taken from designs that were used for

experimental demonstrations (Dayton I. et al., 2018; Hearne et al., 2018; Vesely et al.,

2018).

suitable demonstrated designs available. The parameters for both
8-bit and 16-bit ALUs are included to show the area and latency
impacts of both design choices. For this study only 8-bit adders
are considered. For the purposes of this study the latencies and
sizes of the DAC and soma are negligible compared to the other
components of the architecture. This is possible because there
are orders of magnitude fewer DACs and somas in the system
than other components such as memory cells and logic gates.
As a result, the impact of these components on the overall area
and latency of the architecture is minimal. The MCM parameters
were selected so that they could theoretically be made using a 300
mm wafer and so that 3 MCMs could fit side by side in a cabinet.
The parameters for a cabinet are the dimensions of a standard
server rack.

4.2. Energy Efficiency Estimation
One of the main figures of merit (FOM) for energy efficiency
in neuromorphic computing is Synaptic Operations per Second
per Watt (SOPS/Watt), first introduced by IBM with their
True North system. The main argument for this FOM is
that it combines power and speed; a SNN which spikes twice
as fast will dissipate (at least) twice as much power. For
complete, working systems, this number is easily calculated by
the following equation:

FOM =
fs′

P
(1)

Here f is the average spiking frequency of the SNN, s′ is the
average number of active synapses and P is the total measured
power dissipated by the network. The number of active synapses
s′ is a fraction of the total number of synapses s, typically
in the 30–50% range but theoretically as high as 100%. The
most efficient semiconductor SNNs achieve on the order of 1010

SOPS/Watt.
For systems which have yet to be fully built, we can estimate

this FOM by summing up the power dissipated by the different
components of the system. Figure 3 shows a schematic of a SNN
showing the placement of somas, axons, synapses and dendrites.
Here we assume there are N total somas and s total synapses;

FIGURE 3 | A diagram of neurons connected by a synapse that shows the

placement of the components of the neurons and the corresponding energy

that is associated with action performed by each component.

since there is one axon for each soma and one dendrite for
each synapse, then there are also N axons and s dendrites. Let
us assume that the energy dissipated per spiking event is Esoma,
Eaxon, Eden and Esyn for each soma, axon, dendrite and synapse,
respectively. Then we can write the total power dissipation P:

P = fNEsoma + fNEaxon + fs′Esyn + fs′Eden (2)

The upper limit of P occurs when s′ = s; this is the worst-
case scenario. If we assume that the energy dissipation in the
axon is small compared to the soma (Esoma >> Eaxon) and the
dissipation of the dendrite is small compared with the synapse
(Esyn >> Eden), then the second and the fourth term in Equation
(2) can be ignored. Plugging into Equation (1), we then obtain
(for the worst-case scenario where s = s′):

FOM =
1

(Esyn + (Ns )Esoma)
(3)

Finally, in large networks it is often true that Esyn >> (N/s)Esoma,
since the number of synapses s are of O(N2). In that case FOM is
simply 1/Esyn. Of course, the above all assumes that any control
circuitry or other extraneous energy dissipation in the network
is either small or accounted for in one of the four energy terms;
otherwise additional contributions must be added to the power
in Equation (2). For BrainFreeze, we use 1/Esyn for our FOM; we
are in the limit where Esyn >> (N/s)Esoma and where our axons
and dendrites, being composed of superconducting transmission
lines, have negligible power dissipation. To calculate Esyn, we
count the number of Josephson junctions per synapse and assume
that each junction dissipates 10−19 Joules per pulse (true for a
junction with Ic = 300 µA). In addition, we multiply by a factor
of 500 to account for the cooling. For example, the 8-bit design
of BrainFreeze has about 6,000 junctions per synapse, giving a
FOMof 3.3×1012 SOPS/Watt, about 70x higher than True North
(4.6× 1010 SOPS/Watt).
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5. TIME-MULTIPLEXING

One of the primary motivators behind adopting a mixed-
signal approach is to enable the sharing of axon wires and
core components between different simulated neurons. This
time-multiplexing capability can improve scalability by allowing
the system to support a larger number of virtual simulated
neurons than the physical hardware would natively support.
However, the improved scalability comes at the cost of increased
overall simulation run-time, increased area to store the state
of the additional virtual neurons, and increased complexity in
terms of the organization of events in the simulated neural
network. The increased control and organization complexity
includes design decisions such as determining when to switch
to a different virtual neuron and how to handle out of
order or delayed AER packets as well as other considerations.
The design and evaluation of this control logic is not
relevant to the current study so we leave those tasks for
future work.

The impact of time-multiplexing on simulation runtime is
determined by the time it takes to update the model of each
virtual neuron and the degree of multiplexing. Neuron update
latency can be greatly affected by the number of inbound spikes
that can be processed in parallel and the memory access delays
required to access synapse weights. The number of parallel adders
included in the accumulator determines how many spikes can
be processed at a time. In some designs, spikes that arrive
on one time step could be processed on a later time step if
there is not sufficient parallel capacity to accommodate them.
It is more likely, however, that such excess spikes will need to
be discarded. Therefore, selecting the appropriate amount of
parallelism to include affects the functionality of the system in
addition to its latency. However, it is unlikely that very many
of the presynaptic neurons will fire during the same time step,
provided that each time step is sufficiently short. Therefore, a
modest number of adders, such as 4 or 8, will likely be sufficient
in many implementations of BrainFreeze. It is important to note
that the latency of superconducting logic is low enough that
considerable multiplexing can be employed before the simulation
time step approaches that of most semiconductor architectures.

The degree of multiplexing that can be supported by the
architecture is limited by the area that is available to implement
the synapse memory component of the neuron core. The physical
neuron hardware could potentially perform calculations related
to a different virtual neuron on each time step of the system.
This means that signals and states need to be preserved until
the hardware is again performing calculations related to the
appropriate virtual neuron. As a result, the memory system needs
to have enough capacity to store all of the required information
for each virtual neuron. The capacity of the memory component
is directly related to its area so once the available area has been
used, no additional capacity can be added to support more virtual
neurons. The memory system also needs to be configured to
support the number of parallel accesses required by the number
of adders used by the architecture. This could be achieved by
assigning particular sub-arrays of memory to each adder. In this
study we assume one memory bank is provided for each adder

and that the bank is sized to accommodate the number of virtual
neurons present in the system.

Figure 4 illustrates the trade-off that exists between the degree
of multiplexing, area and latency in the design space of the
neuron core. The trade-off shown in Figure 4 captures the worst
case scenario for a neuron core where a spike is received on all
1,000 synapses in the same time step. The actual number of spikes
that may be seen per time step is a function of design decisions
that are beyond the scope of this study. As a result, selecting the
optimal number of adders for BrainFreeze is a subject for future
work. For the purposes of this study the highly unlikely worst case
is used as a stress test to evaluate the impact of neuron update
latency. We use 8-bit adders for this trade-off analysis because
the synapses in our proposed system have 8 bits of resolution.
In this figure we can see that the area impact of increasing the
number of adders is minimal until 32 or more adders are used.
Prior to that point, the area is primarily affected by the degree
of multiplexing due to the memory that is required to store the
synapse weights of the additional virtual neurons. The impact
of memory technology choice is emphasized by these results
as just 2 virtual neurons worth of synapses require more area
in NDRO than 32 virtual neurons required in JMRAM. These
results suggest that 16 adders may represent a reasonable upper
bound design point for a 1,000 synapse BrainFreeze system. A
design with 16 adders provides coverage for many simultaneous
spike events but does not require too much area or introduce too
much delay. A smaller number of adders may be more reasonable
if smaller numbers of spikes per time step is typical in a system or
if update speed is not the most important design aspect.

6. SYNAPSE DENSITY

A primary metric of feasibility for SCE mixed-signal
neuromorphic designs is the number of synapses that can
be implemented per neuron using this approach. The quantity
and resolution of the synapses that a neuromorphic architecture
can implement can greatly affect the types of networks that can be
implemented on that architecture and the performance of those
networks. Efficiently ensuring the largest number of synapses,
each with an acceptable resolution, is a major consideration
of all neuromorphic architectures. This is particularly true in
superconducting neuromorphic systems where the memory
capacity required to store synapse weights is at a premium. The
sizing and organization of the synapse memories need to be
balanced to provide the maximum number of synapses possible
without negatively affecting other aspects of the neuron core
design. For this early study of the potential of BrainFreeze,
we have settled on an 8-bit synapse resolution. 8-bits is
more resolution than is used by many other neuromorphic
architectures and provides a wider range of synapse weights.

Synapse latency can be a major contributor to overall core
latency. If the memory arrays are too large they can incur
very long latencies which will negatively affect performance. In
order to minimize synapse weight access latency while providing
adequate storage capacity, the memory will likely need to be
organized into many banks. Each bank will then hold a subset
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FIGURE 4 | The effect of increasing the degree of multiplexing and parallelism on the area and latency of the BrainFreeze neuron core. Increasing the multiplexing

improves the effective neuron density of the architecture but requires additional memory. Adding more adders enables the neuron core to process incoming spikes

faster but also adds area. The latency presented here is for handling the worst case situation where all 1,000 inbound synapses receive a spike. The adders used in

this analysis are 8-bits wide.

of the total synapse population for each virtual neuron. This
organization introduces the issue of bank collisions where several
synapse weights that all map to the same bank are needed at the
same time. Improperly handling this situation could lead to a
degradation in performance or functionality as spikes will either
be delayed or discarded as a result of the collision. One possible
solution to this issue is aggressively banking the memory array
such that each array is so small that very few synapses for a
particular virtual neuron will map to the same bank. This would
greatly reduce the odds of a collision but would introduce area
and delay overheads due to the additional hardware required to
interface with and manage so many banks. For the purposes of
this study we consider only the area required for the memory to
support some number of neurons.

In order to determine how many synapses could be
accommodated on typical die sizes, we calculated the area
required for a neuron core as the number of virtual neurons per
core was increased. The area needed for other components of the
neuron core was also included in this calculation. For this study a
16 adder configuration was used based on the result presented
in Section 5. The results of these calculations can be seen in
Figure 5. Here we can see that both NDRO and JMRAM can
support more than one virtual neuron using typical die sizes. In
fact, hundreds of thousands of synapse weights can fit on a single
die when a relatively dense superconductingmemory technology,
like JMRAM, is used to store them. Nevertheless, even less dense
technologies, such as NDRO, still enable synapse counts that are
appropriate for near term demonstrations. Importantly, these

memories provide sufficient capacity to act as local buffers for
systems that use a backing store to enable even larger numbers of
virtual neurons. The implications of this capability are discussed
later in Sections 8 and 9.

7. NETWORK CONFIGURATION

Programmability is another important aspect of a neuromorphic
architecture because it allows the system to implement different
neural networks using the same hardware. A key aspect of
programmability is that the connections between neurons need
to be configurable so that a wide variety of neural network
topologies can be implemented. This can accomplished by
implementing the connections between neurons as a computer
network using routers and shared wires. Each neuron is given
a network address and spike messages are routed through the
network based on those addresses. AER representation could be
used such that each spike message contains all the information
needed by the post synaptic neuron core to apply the spike to its
current state. This information could be as simple as indicating
the presence of a spike on that synapse during this time step
or could include finer grained temporal information or other
spike characteristics.

The architecture of the digital network between the neurons
greatly affects the functionality and speed of the overall network.
In general, there are three primary decisions regarding the
network architecture of neuromorphic systems: the network
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FIGURE 5 | The die area required to support BrainFreeze neuron cores as the number of synapses per neuron and the degree of multiplexing is increased. These

results show that (A) NDRO and (B) JMRAM based designs have sufficient capacity to act as local buffers for neuron information. Both NDRO and JMRAM also

provide enough capacity to directly support small scale and larger demonstrations, respectively.

topology, the packet type, and the routing style (Young et al.,
2019). The topologies that are often employed by state-of-the-
art neuromorphic architectures are the 2-D mesh and the tree.
Of these two topologies, the 2-D mesh topology provides better
bisection bandwidth due to the larger number of links in the
topology compared to a tree topology (Benjamin et al., 2014).
However, the tree topology generally has fewer hops between
destinations than the 2-D mesh and so it provides better latency.
An important aspect of both of these topologies is that they can
be implemented using routers with a relatively small number of
ports (radix). The radix of the router (number of ports) greatly
affects its complexity and increasing the number of ports rapidly
grows the size of the router.

A tree topology seems to be a good design choice for
SCE neuromorphic systems. The limited density of SCE
means that topologies that require higher radix routers are
probably not a reasonable design choice at this time. Therefore,
the ability to implement a tree topolgy using low radix
routers satisfies an important requirement of BrainFreeze. In
addition, the superconducting wires used to communicate
in BrainFreeze provide a potentially useful advantage over
room temperature wires in terms of their efficiency over long
distance. A comparison of the energy required for long distance
communication using both traditional semiconductor as well as
superconductor wires can be seen in Figure 6. This difference in
communication energy means that topologies that feature longer
connections may be better suited to implementation in SCE-
based systems. So, the longer connections that can exist in a
tree provide additional motivation to use this topology in an
SCE-based system like BrainFreeze.

In addition to the topology of the network, designers must also
determine what style of packets to use and how to route them.
Packets can be either unicast or multicast, meaning that one
packet can either have one destination or many. Neural spikes

tend to have multiple destinations so a multicast network seems
to make the most sense. Networks that support multicast packets
can maximize bandwidth efficiency by only generating additional
packets at the routers that have destinations on more than one
port. Source address routing can help to minimize the logic
required in the router to provide this functionality. However,
in order to support source address routing a large memory is
required in the router to store all of routing information for each
source address. Destination address routed packets, on the other
hand, include the connectivity information in the packet itself.
So they can be implemented without the need for a large memory
in the router. These additional requirements in terms of memory
and router complexity mean that the multicast and source routed
approaches would require routers that would be prohibitively
large and slow in an SCE neuromorphic system. As a result, a
unicast, destination routed network is likely the best choice when
only on-die memory is available to the router.

Even in a unicast, destination routed network, the memory
requirements of the destination neuron address storage quickly
dominate the overall memory requirements of the architecture as
the size of the network grows. In other words, as the network size
grows to millions of neurons or more, we need more memory to
store the addresses for the post synaptic neurons than we need to
store the synapse weights. This can be seen in Figure 7 where the
area required to store neuron addresses increases rapidly as the
size of the overall simulated neural network grows. Therefore,
JJ-based memories, such as NDRO, are likely only sufficient
to provide storage for both synapse weights and post-synaptic
addresses in networks that contain a few thousand neurons or
less. JMRAM can support larger numbers of neurons but would
require a prohibitive number of chips to support the hundreds
of millions of neurons that some state-of-the-art approaches
can support. The addition of a backing store to the system
could alleviate this situation by providing additional capacity for
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FIGURE 6 | The energy cost of communicating across different distances in both CMOS and SCE. The efficiency of SCE wires provide a distinct advantage that can

be leveraged by networks of BrainFreeze neuron cores. The CMOS data in this figure is from Borkar (2011).

FIGURE 7 | The area required to store the post-synaptic addresses for neural networks with increasing numbers of neurons. As the network grows the area required

to store this information can become prohibitive. The incorporation of a backing store may be an effective way of addressing this need for additional memory capacity.

(A) NDRO and (B) JMRAM.

address storage for very large systems. Furthermore, a backing
store might also enable support for multicast, source routed
networks by providing sufficient capacity for the larger routing
tables that that communication scheme requires.

8. MEMORY HIERARCHY

Providing enough memory to meet the requirements of each
component in the BrainFreeze architecture is particularly
challenging due to the relatively limitedmemory density available
in SCE memory technologies. One solution is to include chips

in the architecture that serve as off-die memories for the neuron
cores. Theoretically, these off-die memories would free up space
on the neuron chips so that more neuron cores could be
implemented on those chips. Similarly, the dedicated memory
chips should provide additional memory capacity because the
memory arrays should fit more tightly together. This approach
also has the benefit of easing any integration issues that might
arise from incorporating magnetic memories and SCE logic
circuits on the same die. However, as Figure 8 shows, placing
neuron cores and synapse memories on separate chips does not
actually result in improved neuron core density. This is because
removing the memories from the neuron chip does not free up
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FIGURE 8 | The relationship between effective neuron density and the location and type of memory. Using separate dies for JMRAM does not improve the number of

neurons that can be implemented per die in BrainFreeze.

enough space for additional neuron cores to offset the cost of
adding the memory chips to the system. Clever floorplanning of
neuron cores could potentially address this though that is beyond
the scope of this study.

The available on-die memory is sufficient for storing the
synapse weights for a reasonable number of virtual neurons.
However, the limited capacity of superconducting memories
will ultimately limit the number of neurons and synapses that
can be implemented using only superconducting electronics. To
achieve continued scaling, denser memories are needed. One
solution to this problem may be a multi-temperature memory
hierarchy that uses semiconductor memory technologies as a
backing store for the superconducting memories. An example
of such a hierarchy can be found in Figure 9. The much
denser semiconductor memories enable an overall memory
capacity for the superconducting architecture that is comparable
to the memory capacities of semiconductor approaches. To
alleviate some of the power and heat considerations that would
be introduced by adding a large amount of semiconductor
memory to the SCE system, the semiconductor memory could be
implemented at an intermediate temperature. Cryogenic-DRAM
is a technology that could potentially be used to fill this role in the
system (Tannu et al., 2017; Ware et al., 2017; Wang et al., 2018;
Kelly et al., 2019).

Local superconducting memories will still needed to buffer
the data because there is a considerable latency involved with
accessing data stored in the semiconductor memories. These
local buffers could be much smaller because they would only
need to contain a subset of the total system data. This could

improve neuron core density, increase the number of synapses
that could be implemented per virtual neuron, and result in
much better area utilization in off-die memory organizations. In
practice, the amount of data that needs to be buffered locally
will depend on the type of data. For instance, only the post-
synaptic neuron addresses for the current virtual neuron would
need to be buffered. However, if the system is supporting spike
time dependent plasticity (STDP), then the buffer would need
to be large enough to store the synapse weights for multiple
virtual neurons. This is because STDP may result in synapse
weight changes after a virtual neuron has completed its update.
In both cases the buffer needs to have room to store the incoming
data that will be used by the next virtual neuron to be handled
by the neuron core. So in the address case, the buffer would
need to hold two virtual neurons worth of data and in the
weight case it would need to hold three or more virtual neurons
worth of data. This is still considerably less than the amount
of memory that would be needed to store all of addresses and
weights for all of the virtual neurons that are assigned to a neuron
core. However, the latencies involved with requesting data from
the intermediate temperature backing store are prohibitive. A
technique is needed to improve or hide these latencies in order for
the multi-temperature memory hierarchy to be a viable solution.

9. PREFETCHING

One way to hide the latency involved with retrieving data from a
memory is to request it in advance of when it is actually needed.
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FIGURE 9 | A block diagram of the proposed multi-temperature memory system that would enable the use of cryo-DRAM with the BrainFreeze architecture. This

could greatly increase the memory capacity available to BrainFreeze.

That way the data can arrive just when it is needed and the latency
involved will not affect the performance of the system. This
technique is called prefetching. The problem with prefetching
is that it’s not always easy to know what should be requested
from memory. As a result, prefetching can sometimes result in
performance degradation as it can tie up memory resources with
requests for data that will not be needed anytime soon. Therefore,
the key to effectively utilizing prefetching is correctly anticipating
which data will be needed in the near future.

Neuromorphic systems like BrainFreeze are particularly
well suited to prefetching because their data accesses follow
predictable patterns. This makes determining which data will be
needed in the near future relatively straightforward. For instance,
the addresses and weights that are needed for the next virtual
neuron can be fetched while the current virtual neuron is being
updated. This deterministic behavior ensures that the data that
is prefetched, is data that is likely to be needed. As a result,
prefetching can provide an effective way to hide the latencies
incurred by using a multi-temperature memory hierarchy. This
allows BrainFreeze to preserve its performance advantage even
when using a longer latency backing store.

Of course, not all of the relevant addresses or weights are
always used during the update of each virtual neuron in the
network. As a result, some data will be fetched that is not used
and therefore it is possible that some energy will be wasted with
this approach. One way to avoid this problem is to use more

information from the system to determine exactly what data
should be prefetched. For example, the spike buffer holds a record
for each inbound spike that will be applied to a virtual neuron
when it is next updated. These records can be utilized to specify
a subset of the synapse weights to read from the backing store
rather than requesting all of the synapse weights that might be
needed by a virtual neuron. In this way, unnecessary data accesses
due to prefetching can be greatly reduced and degradation to
memory efficiency and performance can be avoided. A block
diagram of a potential implementation of this scheme is provided
in Figure 10.

10. COMPARISON TO STATE-OF-THE-ART

Now that we have established some feasible design choices
for the BrainFreeze architecture, it’s important to evaluate
how that architecture might compare against other state-of-
the-art approaches. For the purposes of this evaluation we
compare against the neuromorphic architectures that were
described in Section 2.1. These architectures represent some
of the most successful and studied neuromorphic designs
that have been proposed. Details regarding the methodology
used to produce these comparisons can be found in Section
4.2 of this paper. This analysis attempts to compare only
the neuron implementations of each approach. As a result,
only the components of the BrainFreeze neuron core are
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FIGURE 10 | A block diagram of the proposed prefetching system that would use information in the neuron core, such as which synapses received a spike, to better

avoid fetching data that will not be needed.

included in these calculations. Other potential supporting
hardware, such as a cryo-DRAM backing store, are not
considered. To the best of our knowledge, the values used
for other neuromorphic approaches also do not include
supporting hardware.

One of the most compelling capabilities of SCE is its ability
to support very high clock rates. To determine how this might
benefit a neuromorphic system we consider the peak rate at
which neuron updates might occur in each of the different
architectures. For the purposes of this study we consider such
a neuron update to be roughly equivalent to the process it
takes to produce a spike in response to incoming signals. The
peak spike rate is one of several factors that can affect how
quickly a simulation can be performed by the hardware. The
values in Figure 11A for peak spike rate where determined by
consulting the literature to determine the rate at which each
established architecture can produce a spike (Benjamin et al.,
2014; Stromatias et al., 2015; Amir et al., 2017; Davies et al.,
2018). For TrueNorth the system clock frequency is used to
estimate the maximum spike rate and for Loihi the mesh-wide
barrier synchronization time is used. This peak spike rate is
calculated on a per-neuron basis, rather than per-chip, to provide
a direct comparison between the designs. The peak spike rate
for BrainFreeze was calculated for the ideal situation where
only a single action potential arrives and only a single adder
is needed for its integration. The spike rate for BrainFreeze
includes the latency for each of the major components of
the SCE neuron core including memory lookup and digital
accumulation. The results of this comparison show that, like
BrainScaleS, BrainFreeze is capable of running significantly faster

than biological real time. This is an important result as it
indicates that the high clock rates enabled by SCE will support
the accelerated simulation time scales that will likely be necessary
for future AI research.

However, speed alone cannot meet all of the anticipated
requirements of future AI research. Efficiency is another
important aspect of neuromorphic systems as it can ultimately
be a limiting factor on the size of the system that can be
reasonably implemented. As a result, very large simulations
require efficient neuromorphic systems to effectively host them
over acceptable time scales. From the comparison in Figure 11B.
we can see that some approaches, such as TrueNorth, use
extremely efficient hardware to achieve impressive overall energy
efficiency despite the relatively slow spiking rate of the hardware.
Other approaches, such as BrainScales, are capable of achieving
extremely fast spike rates and accelerated simulation times
but pay a heavy price for this speed in terms of power
so their overall energy efficiency is not as good as other
designs. Balancing between speed and efficiency often results
in designs that deliver impressive overall energy efficiency but
that cannot simulate faster than biological real-time. For most
of the past neuromorphic approaches this was acceptable since
simulating faster than biological real time was not a primary
design goal. BrainFreeze is capable of simultaneously delivering
both speed and energy efficiency that is nearly two orders
of magnitude better than current state-of-the-art approaches.
This is possible because of the low power characteristics
of SCE.

A discussion of the computational efficiency of the SCE
approach should also take into account the complexity of
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FIGURE 11 | A comparison of state-of-the-art neuromorphic architectures to BrainFreeze in order to demonstrate the potential of the proposed architecture. (A) The

first comparison looks at how quickly each design can update its neuron model and emit a spike. (B) The second comparison looks at how efficient each architecture

is at performing its computations in terms of time and power. (C) The third comparison looks at the computational complexity of the neuron models implemented by

each architecture. Overall, BrainFreeze have the potential to enable significant improvements over current neuromorphic approaches.

neuron model that the approach enables. This is an important
point of comparison against existing neuromorphic designs
because all of them implement less complex models such as
LIF, AdEx or the Izhikevich model. If these designs instead
implemented the Hodgkin-Huxley model then it is reasonable
to assume that their energy efficiency would greatly decrease
either due to the extended neuron update times or due to the
power needed to support additional hardware. The ability of
BrainFreeze to support a biologically suggestive model similar
to Hodgkin-Huxley means that each neuron update is not
only happening in less time, it is also more computationally
complex. To illustrate this difference in complexity between the
neuromorphic approaches we compare the effective FLOPs/Sec.
These values are based on the FLOPS per 1 ms simulation time
step values that are provided by Izhikevich in Izhikevich (2004).
Here we take the 1 ms simulation time step to be roughly
equivalent to a neuron update in each of the neuromorphic
designs. So, to estimate the equivalent simulation work that
is being accomplished by each architecture per second, the
FLOPS value is multiplied by the spike rate for each approach.
This comparison can be seen in Figure 11C. The ability of
BrainFreeze to support a model similar to Hodgkin-Huxley
means that each neuron update is roughly equivalent to 1,200
FLOPs in a software implementation of the model. This
effect combined with the speed of BrainFreeze results in an
improvement of nearly three orders of magnitude compared to
the other designs.

Overall these results show that a mixed-signal SCE
neuromorphic approach could provide significant improvements
over the current state of the art in terms of speed, energy
efficiency, and model complexity. These improvements are
important because they will enable future neural network
simulations to run in less time while simultaneously
incorporating more biologically inspired functions.

11. ON-LINE LEARNING SUPPORT

Improving the computational efficiency of neuromorphic
systems will help to address some of the needs of future
neural network simulations but training times also need to be

accelerated. Figure 1 in Section 1 illustrated the immediate need
for enhanced training methodologies as training requirements

are growing much faster than the capabilities of computer
hardware. One way to approach the problem of computationally
intensive training is to use on-line learning to perform at least
some of the training. On-line learning provides three potentially

useful capabilities to a neuromorphic system like BrainFreeze.
First, the improved speed and efficiency of BrainFreeze could

possibly result in on-line learning reaching an acceptable solution
in less time and using less power than other approaches.
Second, utilizing on-line learning could allow the implemented
neural network to adapt to changes in the input data thereby

avoiding the need to completely retrain the network. And
third, on-line learning is more biologically relevant and may
help to support computational neuroscience experiments. For
these reasons incorporating on-line learning into neuromorphic
systems could prove to be a valuable capability for future
applications and experiments.

On-line learning techniques train the neural network using a
stream of input data rather than training the network with an
entire set of data prior to run-time. In spiking neuromorphic
systems like BrainFreeze, on-line learning techniques can take
the form of run-time synaptic plasticity where synapse weights
are adjusted as neurons in the system react to inputs. One on-
line learning technique that may be particularly well suited to
SCE neuromorphic systems is Spike-Time Dependent Plasticity
(STDP). STDP is a Hebbian reinforcement learning rule that
updates the synaptic weights based on the timing relationship
between the input and output spikes of neurons. Hebbian
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FIGURE 12 | A block diagram of an example hardware implementation of Spike-Time Dependent Plasticity (STDP) that was inspired by Cassidy et al. (2013a). This

hardware could allow BrainFreeze to support on-line learning.

learning seeks to increase the synaptic weight of a synapse if
the pre-synaptic neuron tends to influence the firing of the
post-synaptic neuron. In STDP this influence is determined by
considering the timing of the firing of pre and post synaptic
neurons. If the pre-synaptic neuron tends to fire before the post-
synaptic neuron then the weight of the synapse between them
is increased. Conversely, if an action potential from the pre-
synaptic neuron does not typically result in an output from the
post-synaptic neuron then the weight of the synapse between
them should be decreased.

In order to incorporate on-line learning into a large scale
neuromorphic architecture it is critical that the hardware
required to support the learning functionality is itself scalable.
This can be achieved by keeping the hardware simple and
by utilizing time multiplexing to share the hardware between
neurons in the simulated neural network. It is possible to
efficiently integrate STDP into BrainFreeze without disrupting
the functionality of the system because BrainFreeze already
makes use of time-multiplexing and the required hardware

additions are not individually complex. In particular, the
functionality of the control component of the neuron core
will need to be expanded to make decisions regarding the
synapse weight updates. The control will need to determine
if an update should occur as well as the degree and type
of update. Some small memories will also likely be needed
to store information about the learning rules that should be
applied. Figure 12 depicts a potential implementation of on-
line learning support hardware that is compatible with the
BrainFreeze architecture. In this implementation, a shift register
is used to establish the timing relationship between the pre and
post synaptic spikes. If the pre-synaptic spike occurred before the
post-synaptic spike then the weight of the corresponding synapse
is increased. Alternatively, if the pre-synaptic spike occurs after
the post-synaptic spike then the weight of the corresponding
synapse is decreased. This particular implementation is included
to provide a straightforward example of STDP hardware,
other implementations are possible and should be explored by
future work.
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Beyond the changes to the control hardware on the neuron
core, supporting STDP also requires additional local memory
resources if a multi-temperature memory system is used. This is
because the STDP hardware will need to update the weights for
previous neurons before those weights can be written back to the
backing store. As a result, the local buffers will need to be large
enough to store the synapse weights for three or more virtual
neurons. In systems that do not include STDP, the local buffers
would only need to store the synapse weights for the current
neuron and the weights for the next neuron that are being loaded
from the backing store. In systems that do not include a multi-
temperature memory system, no additional local memory is
needed because all of the synapse weights for all of the simulated
neurons already need to be present in the memory of the neuron
core. Also, in systems that include STDP, the local buffers will
need additional ports or additional banks so that a weight update
can occur while other synapses are being accessed. However,
these buffers will be reused by different simulated neurons due
to the time-multiplexed nature of the BrainFreeze architecture
so they will not greatly impact the scalability of the system.
Synapse weights will require some time to be updated due to
communication and access delays. In a time-multiplexed system,
this update latency should be hidden since the synapses being
updated will not be needed again for many clock cycles. Overall,
supporting on-line learning will require additional hardware in
the system but the additions should not significantly impact the
scalability of the architecture.

12. LARGE SYSTEM SCALING

Building upon the capabilities and configurations of BrainFreeze
that have been explored so far, we can roughly estimate how well
the architecture would scale for very large simulations. One of
the ultimate tests of scalability for neuromorphic architectures is
supporting a simulation that involves roughly 80 billion neurons.
This is the approximate number of neurons contained in the
human brain (Furber, 2016). In order to evaluate the scalability
of BrainFreeze, we compare it to other approaches in terms
of the number of standard server cabinets of equipment that
would be needed to support a simulation of this size. For the
purposes of this comparison we ignore the cabinets of peripheral
equipment needed by the various approaches and focus only on
the cabinets that contain the neuromorphic chips themselves.
Many neuromorphic approaches require additional hardware
to operate. Additional hardware will also likely be required
to support the superconducting approach but the quantity is
currently unknown. The neuromorphic chips for the BrainFreeze
system studied here include the neuron core, the synapse weight
memories, the post-synaptic address memories, and the routers.
In addition, we include 25 cabinets that we estimate will be
needed to host the roughly 1 petabyte of Cryo-DRAM that will
be needed if a backing store is included in the architecture.

The scalability of superconducting neuromorphic systems like
BrainFreeze is supported by several important characteristics of
SCE. First, the low heat dissipation of SCE means that chips
and boards can be packed much closer together than is possible

in CMOS. This results in better density per unit volume even
though SCE is typically less dense than CMOS in terms of area.
Second, the efficiency of long distance communications in SCE
means that the long wires needed to build very large systems
require much less energy to operate. Third, the overall energy
efficiency of SCE means that the neuron cores themselves require
much less energy to operate than many CMOS alternatives.
As a result of these two characteristics, much larger SCE
neuromorphic systems can be built before power requirements
become an obstacle. Finally, the speed of SCE means that a much
higher degree of multiplexing can be employed before the run-
time of the neural network simulation becomes prohibitive. This
means that SCE can support more simulated neurons with less
hardware. These factors combined mean that approaches like
BrainFreeze are uniquely suited to scale to very large systems due
to their efficient use of space, energy, and hardware.

For the superconducting system, the anticipated chip size
greatly affects the amount of hardware that is required. We
assume a chip size roughly equivalent to an NVidia V100 (28.5
x 28.5 mm). Chips of this size can support roughly 3 MB of
a JMRAM like memory or 1,000–2,000 neurons per die. We
anticipate arranging the chips on a 200 x 240 mm interposer
that can accommodate 49 chips. Alternatively smaller interposers
could possibly be used and connected together to build the
systemwith a slightly higher volume overhead. Due to the limited
heat generated by superconducting electronics, the boards can
be placed into the racks with only 7.3 mm of space between
each board.

In Figure 13 we compare BrainFreeze to SpiNNaker.
SpiNNaker was chosen for this comparison because it is the
state-of-the-art neuromorphic approach that has been scaled to
the largest number of neurons (Furber, 2016; Yang and Kim,
2020). It is worth noting that the 866 cabinets that are projected
for SpiNNaker are an extrapolation of the available data. From
the results in Figure 13, we can see that the number of standard
server cabinets needed to house 80 billion neurons is roughly
700–2,500 if no backing store is used and 200–1,600 if the
backing store is included. This illustrates the difficulty of scaling
the architecture to extremely large numbers of neurons using
only superconducting memories. However, with the support of
a backing store it is possible to implement 80 billion neurons
using roughly a quarter of the cabinets that would be required
by the SpiNNaker approach. More importantly, 200 cabinets
is roughly the size of a modern supercomputer. Therefore,
BrainFreeze has the potential to enable extremely large neural
network simulations that involve biologically relevant dynamics
while requiring a volume that is suitable for a typical datacenter.

13. DISCUSSION

The analysis presented in this paper shows that feasible
configurations exist for the BrainFreeze architecture that would
enable it to be competitive with other state-of-the-art large scale
neuromorphic designs. Local superconducting memory capacity
is shown to be sufficient for small scale demonstrations and for
acting as a local buffer for large systems. A multi-temperature

Frontiers in Neuroscience | www.frontiersin.org 18 December 2021 | Volume 15 | Article 750748

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Tschirhart and Segall BrainFreeze

FIGURE 13 | The number of standard rack sized cabinets that would be required to house an 80 billion neuron BrainFreeze system for different degrees of

multiplexing. Provided that sufficient multiplexing is employed, BrainFreeze could potentially implement such a system in considerably less volume than other

state-of-the-art neuromorphic approaches.

memory hierarchy combined with prefetching and the local
buffers is shown to be capable of providing enough memory
capacity for even large scale systems. This memory capacity and
the high clock rates enabled by SCE can then be utilized to enable
multiplexing to improve neuron densities per chip. Finally, the
low power dissipation and subsequent low heat generation of
SCE allows for more tightly packed systems ultimately resulting
in a density per volume that is shown to be potentially superior
to existing approaches. Taken together these results describe a
system that can simultaneously provide improved performance,
energy efficiency, and scalability while supporting biologically
suggestive neuron models and on-line learning.

The analysis and results presented in this paper also
provide motivation for future work in this area. Research is
needed to continue the development of the various digital
and analog components that are required to build a mixed-
signal SCE neuromorphic system like BrainFreeze. For example,
enabling greater configurability in the analog soma circuits
could introduce new functionality to the system and expand
the research that it could support. In addition, while the
parameters used in this work are based on experimental
demonstrations, they are still just approximations of the
latency and area needed for an actual implementation of
BrainFreeze. In order to validate and refine the findings
of this analysis, a complete BrainFreeze core should be
built in hardware. In particular, the control scheme of the
BrainFreeze system needs to be carefully designed in order to
preserve the important aspects of the biologically suggestive
soma model despite the discretized digital communication of
action potentials.

Developing large scale SCE neuromorphic systems could
provide a pivotal experimental apparatus to both the machine
learning and computational neuroscience communities.
Enabling high performance biologically suggestive simulations

could support the development of new applications andmay help
in the development of general AI. A large scale SCE system could
be deployed as a cloud appliance thereby allowing researchers
from various fields access to it. This would help to distribute the
costs of developing and maintaining the system while ensuring
the broadest impact of its unique collection of capabilities.

14. CONCLUSIONS

This work has endeavored to explain how a programmable,
large scale SCE neuromorphic system could be built using
a mixed-signal architecture. The feasibility of the proposed
BrainFreeze architecture was supported by numerical analysis
and trade studies based on measurements from experimental
demonstrations. The results showed that it should be possible
to build a BrainFreeze system that simultaneously provides
programmability, scalability, speed, energy efficiency, biological
suggestivity, and on-line learning support. Such a system could
prove to be a critical resource supporting the development of
novel machine learning applications, supporting computational
neuroscience experiments, and perhaps one day supporting the
drive to artificial general intelligence.
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