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There were approximately 1.93 million new cases and 940 000 deaths from col-
orectal cancer in 2020. The first-line chemotherapeutic drugs for colorectal can-
cer are mainly based on 5-fluorouracil, although the use of these drugs is limited
by the development of drug resistance. Consequently, there is a need for novel
chemotherapeutic drugs for the efficient treatment of colorectal cancer patients.
In the present study, we screened 160 drugs approved by the Food and Drug
Administration and identified that cabazitaxel (CBT), a microtube inhibitor,
can suppress colony formation and cell migration of colorectal cancer cells
in vitro. CBT also induces G2/M phase arrest and apoptosis of colorectal cancer
cells. Most importantly, it inhibits the growth of colorectal cancer cell xenograft
tumors in vivo. Transcriptome analysis by RNA-sequencing revealed that Tub
family genes are abnormally expressed in CBT-treated colorectal cancer cells.
The expression of several p53 downstream genes that are associated with cell
cycle arrest, apoptosis, and inhibition of angiogenesis and metastasis is induced
by CBT in colorectal cancer cells. Overall, our results suggests that CBT sup-
presses colorectal cancer by upregulating the p53 pathway, and thus CBT may
have potential as an alternative chemotherapeutic drug for colorectal cancer.

Abbreviations

5-FU, 5-fluorouracil; CBT, cabazitaxel; Cl, confidence interval; CRC, colorectal cancer cell; GFP, green fluorescent protein; GO, Gene
Ontology; GSEA, geneset enrichment analysis; 1Cgq, half-maximal inhibitory concentration; KEGG, Kyoto Encyclopedia of Genes and
Genomes; KO, knockout; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide; RNA-seq, RNA-sequencing.
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Colorectal cancer is the third most diagnosed cancer and
leads to the second greatest mortality among cancers
worldwide. There were approximately 1.93 million new
cases and 940 000 deaths of colorectal cancer in 2020
according to the World Health Organization 1. Multiform
therapeutic strategies, such as surgery, chemotherapy,
radiotherapy and recent immunotherapy, have been devel-
oped and applied to colorectal cancer patients. Surgical
resection plus chemotherapy is the most common treat-
ment for early stage of primary colorectal cancer [2]. The
first-line chemotherapeutic drugs of colorectal cancer are
mainly based on 5-fluorouracil (5-FU). However, these
drugs exhibit compromised efficacy as a result of signifi-
cant toxicity, drug resistance or patient inconvenience [3].
The high mortality of colorectal cancer indicates that the
current therapy is far from ideal. Novel chemotherapeutic
drugs for the efficient treatment of colorectal cancer
patients are urgently needed.

As the safety of Food and Drug Administration
(FDA)-approved drugs is demonstrated, the explo-
ration of their therapeutic application to colorectal
cancer can greatly reduce the cost and time for drug
application. Cabazitaxel (CAS183133-96-2; RPR
116258; XRP6258; TXD258; Jevtana; CBT) is an
FDA-approved drug for the treatment of patients who
are diagnosed with metastatic castration-resistant pros-
tate cancer that is resistant to paclitaxel and docetaxel
treatment [4]. CBT is a semi-synthetic taxane deriva-
tive. It promotes the polymerization of tubulin and
stabilizes microtubules. It inhibits prostate cancer cells
by inhibiting androgen receptor and heat shock pro-
tein [5] and shows antitumor activity in docetaxel-
refractory metastatic prostate cancer and breast cancer
[6,7]. Tt is also reported to induce autophagy via the
phosphoinositide 3-kinase/Akt/mechanistic target of
rapamycin pathway in lung adenocarcinoma cancer
cell line A549 [8]. However, it is not clear whether
CBT is effective in inhibiting colorectal cancer, nor
what the underlying mechanism comprises.

HCT116 cell is a commonly used colorectal cancer cell
line. It can be cultured without growth factors in vitro [9-
12]. HCT116 cells are highly motile and invasive and
showed high efficiency with respect to forming tumors in a
subcutaneous xenograft experiment [13]. Using this cell
line, we screened 160 FDA-approved drugs and found that
CBT can efficiently inhibit HCT116 cells. Employing a ser-
ies of in vitro assays, we found that CBT can suppress
HCT116 cell proliferation and migration. CBT induces
G2/M phase cell cycle arrest and apoptosis of HCT116
cells. Most interestingly, CBT can efficiently inhibit tumor
growth in the HCT116 cell xenograft mouse model. By
comparing the transcriptome of CBT-treated and control
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HCT116 cells, we found that CBT treatment leads to
upregulation of genes involved in the p53 signaling path-
way. Further knockout (KO) of p53 in HCT116 cells con-
firms the key role of p53 signaling for the CBT inhibitory
effect in colorectal cancer cells.

Overall, the present study reports a novel anti-
colorectal cancer role for CBT, which may be used as
an alternative chemotherapeutic drug for the efficient
treatment of colorectal cancer patients.

Materials and methods

Cell culture

HCT116 cells were cultured in Dulbecco’s modified Eagle’s
medium basic media supplemented with 10% fetal bovine
serum at 37 °C in an incubator with 5% CO,. The cells
were passaged by 0.25% trypsin at a ratio of 1:3 after con-
fluency.

Drug screening by the 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyl-tetrazolium bromide (MTT)
cytotoxicity assay

5 x 10> HCT116 colorectal cancer cells were seeded per
well in a 96-well plate for overnight culture to allow the
cells to adhere to the plate. Dimethylsulfoxide or dimethyl-
sulfoxide diluted FDA drugs were added to the culture
medium separately on the next day. After 48 h, cell viabil-
ity was assessed by the MTT colorimetric assay. Ten micro-
liters of MTT solution (5 mg-mL™" in PBS) were added to
each well. After 3 h of incubation, absorbance at 570 nm
with a reference wavelength of 690 nm was assessed to cal-
culate the cell viability with respect to the untreated cells.
Three independent biological experiments were performed
for each assay.

Cabazitaxel solution preparation

Cabazitaxel was purchased from Topscience (Shanghai,
China). For the in vitro experiment, 5 mg of CBT was dissolved
in 0.598 mL of dimethylsulfoxide (10 mm) and further diluted
with PBS to different concentrations. For the in vivo experi-
ment, based on the formulation of Jevtana (Sanofi-Aventis
Groupe, Paris, France), 10 mg of CBT was dissolved in 0.26 g
of polysorbate 80 (Tween 80) and mixed with 0.95 mL of 13%
ethanol (w/w) in ddH,O before injection, wiith 0.9% sodium
chloride solution being used in the final dilution.

Half-maximal inhibitory concentration (ICs()
measurement

The indicated colorectal cancer cells and prostate cancer
cells were treated with a series of diluted CBT for 48 h.
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The cell viability was measured by the MTT colorimetric
assay. The values of CBT-treated samples were normalized
with untreated samples in ExCEL (Microsoft Corp., Red-
mond, WA, USA) and then input in a nonlinear sigmoidal
curve of prisM, version 7 (GraphPad Software Inc., San
Diego, CA, USA) to calculate the ICsy. Three independent
biological experiments were performed for each assay.

RNA extraction and RT cDNA synthesis

Total RNA was extracted from the control or CBT-treated
cells using TRIzol Reagent (Invitrogen, Waltham, MA,
USA). The concentration and purity of RNA was mea-
sured by spectrophotometry (Nanodrop Technologies, Inc.,
Wilmington, DE, USA). cDNA was synthesized from 2 pg
of RNA using 5 x PrimeScript RT Master Mix (Takara,
Shiga, Japan) in accordance with the manufacturer’s
instructions.

Western blotting

Total proteins of the cells were harvested with RIPA buffer
and separated via SDS/PAGE. Subsequently, the proteins
were transferred to a poly(vinylidene difluoride) membrane
and blocked by 5% slim milk in TBS plus 0.1% Tween 20.
The membrane was then blot with B-actin antibody (dilu-
tion 1:1000; SC47778; Santa Cruz Biotechnology, Santa
Cruz, CA, USA), Phospho-Histone H2A.X antibody (dilu-
tion 1:1000; catalogue no. 2577; Cell Signaling Technology,
Danvers, MA, USA) or p21/Wafl/Cipl antibody (dilution
1:1000; catalogue no. 2947; Cell Signaling Technology),
respectively, overnight at 4 °C. The membrane was washed
with TBS plus 0.1% Tween-20 solution and then blotted
with proper horseradish peroxidase-conjugated secondary
antibodies. After washing, cHEmpoc (Bio-Rad, Hercules,
CA, USA) was used to detect the signals.

Real-time PCR

The relative expression of mRNA was examined by real-
time PCR using SYBR Green Master Mix (Takara) on an
ABI QuantStudio™ 7 real-time PCR system (Thermo
Fisher Scientific, Wlathm, MA, USA). The thermal cycling
conditions included an initial hold period at 95 °C for 30 s
followed by a two-step PCR program, comprising 95 °C
for 5 s and 60 °C for 30 s with 40 cycle repeats. To evalu-
ate the relative expression, the Ct value of the examined
sample gene was first normalized with the Ct value of
endogenous Gapdh and then with the Ct values of the
respective control sample gene. All experiments were per-
formed with three biological repeats and three technique
repeats. Student’s 7-test was used for statistical analysis.
The primer sequences for real-time PCR are provided in
Table 1.
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Apoptosis assay

The apoptosis assay was performed using an Annexin
V-FITC/PI Apoptosis Kit (MultiSciences Biotech, Hang-
zhou, China). Cancer cells were seeded at 1 x 10> cells per
well in a six-well plate for overnight culture. Then, the cells
were treated with PBS and cabazitaxel at the ICsy of the
respective cells for 48 h. Next, cells were collected for the
apoptosis assay in accordance with the manufacturer’s
instructions. Flow cytometry analysis was performed using
a FACSCanto II (BD Biosciences, Franklin Lakes, NI,
USA) flow cytometer. The percentage of cells at different
cell cycle phases was analyzed using FLowJo (https://www.
flowjo.com). Three biological repeats were employed for
each experiment. Student’s z-test was used for the statistical
analysis.

Cell cycle assay

Cancer cells were seeded at 1 x 10° cells per well in a six-
well plate. After overnight culture, the cells were treated
with cabazitaxel at the ICsy of the respective cell line for
48 h. The cells were gently lifted with 0.25% Trypsin
(Gibco, Waltham, MA, USA) at 37 °C for 1 min. Next,
the cells were washed once with PBS and fixed with 75%
alcohol at —20 °C overnight. Subsequently, the cells were
centrifuged at 395 g for 5 min and suspended in propidium
iodide  solution (50 pg-mL™" propidium  iodide,
0.1 mgmL~' RNase A and 0.05% Triton X-100 in PBS)
and incubated at 37 °C for 40 min. After centrifugation,
the supernatant was removed and the cells were resus-
pended in 500 pL of PBS for flow cytometry analysis using
a FACSCanto II (BD Biosciences) flow cytometer. The per-
centage of cells at different cell cycle phases was analyzed
using rFLowJo. Three biological repeats were tested for each
experiment. Student’s #-test was used for statistical analysis.

Colony formation assay

Agarose mixture containing 0.5 mL of growth media plus
20% fetal bovine serum and 0.5 mL of 0.8% agararose gel
was used to coat each well of a six-well plate. The plates
were subsequently cooled at 4 °C for 5 min to solidify the
agarose and then transferred to the tissue culture hood and
warmed to 37 °C. 5 x 10° HCT116 cells thoroughly mixed
with low density agarose mixture containing 0.5 mL of
growth media plus 20% fetal bovine serum and 0.5 mL of
0.4% agararose gel were added to each well of the agarose-
coated plates. After solidification for another 20 min, com-
plete media (1 mL) plus cabazitaxel at different concentra-
tions was added to the wells. After 72 h, the media
containing cabazitaxel was removed and 1 mL of fresh
media was used for replenishment. The medium was chan-
ged every 3 days up to day 14. Colonies were stained with
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Table 1. Sequences of quantitative RT-PCR primers and TP53 gRNA oligos.

RT-PCR primer

Gene Species Forward Reverse

Tp53i3 Human AATGCTTTCACGGAGCAAATTC TTCGGTCACTGGGTAGATTCT
Gadd45a Human CCCTGATCCAGGCGTTTTG GATCCATGTAGCGACTTTCCC
Pmaip1 Human ACCAAGCCGGATTTGCGATT ACTTGCACTTGTTCCTCGTGG
Cdknla Human TGTCCGTCAGAACCCATGC AAAGTCGAAGTTCCATCGCTC
Fas Human AGATTGTGTGATGAAGGACATGG TGTTGCTGGTGAGTGTGCATT

TP53 gRNA oligo

Name Species Sequence
gRNA1 Human CCATTGTTCAATATCGTCCG
gRNA2 Human CCATTGCTTGGGACGGCAAG

0.05% crystal violet for 1 h and then washed with PBS.
The images of the colonies were captured using a micro-
scope (Olympus, Tokyo, Japan) with a 4x objective lens.
The number of colonies was counted manually. The area of
colonies was quantified using iMAGEJ (NIH, Bethesda, MD,
USA). The experiments were performed with three biologi-
cal repeats and three technical repeats.

Wound healing assay

3 x 10* HCT116 cells were seeded in each well in 12-well
plates with Culture-Insert 4 Well silicone inserts (Ibidi,
Grafelfing, Germany). The cells were incubated at 37 °C
and 5% CO, for 24 h for attachment. The Culture-Insert 4
Well was then removed with sterile tweezers. Growth med-
ium with or without 0.03 pm cabazitaxel was added to the
culture. All experiments included three biological repeats.
The culture images were captured at different time points
using a microscope (Leica, Wetzlar, Germany). The gap of
the culture was measured using IMAGEJ.

In vivo antitumor assay

All animal experiments were approved by the Institutional
Animal Care and Use Committee of the Sixth Affiliated
Hospital of Sun Yat-sen University (Guangzhou, China).
Five-week-old female BALB/c nude mice were purchased
from Charles River Laboratories (Beijing, China) and
maintained under specific pathogen-free condition under a
12:12-h dark/light photocycle. A maximum of five mice
were kept in one microisolator cage with ad /libitum feeding
of autoclaved food and water. One hundred microliters of
green fluorescent protein (GFP)-labeled HCT116 cells in
PBS at a concentration of 5 x 10* cells-uL~! were subcuta-
neously injected into the left flank of 6-week female mice
anesthetized using inhaled isoflurane. Seven days later, the

xenografted tumors grew to approximately 30-200 mm”® in
size. The mice were randomly assigned to five groups
(n=3 per group) for the administration of different
reagents. Intraperitoneal injections with 8 and 16 mg-kg™"
CBT, 8 and 16 mg-kg™' 5-FU and PBS were performed,
respectively, at days 0, 5 and 10 after group assignment.
The growth of tumor was monitored with an in vivo imag-
ing system (IVIS Spectrum; Xenogen, Alameda, CA, USA)
after the mice were anesthetized using inhaled isoflurane.
Tumor volume was measured every 3 days and calculated
as V= (length x width x height)/2. The mice were
weighed every 3 days and their general physical status was
recorded daily. The experiment was terminated before the
tumor size reached 2000 mm>. The mice were killed with
CO, and the tumors were dissected out for the subsequent
experiments.

Gene expression analysis

RNA was extracted from the indicated cells. The RNA-
sequencing (RNA-seq) libraries were constructed and
sequenced with NovaSeq 6000 sequencer by Berry Geno-
mics Co Ltd (Beijing, China). Raw sequencing reads were
subjected to quality filtering and adapter removal. The
remain reads were then aligned to the reference human gen-
ome (hgl9) using sTAR2 (v2.7.3a) [14]. The gene expression
was quantified as FPKM (i.e. fragments per kilobase of
gene per million mapped read) using CUFFLINKS, version
2.2.1 [15]. Differential expression genes were determined
using |log2(fold change)| > 0.58 in CBT-treated HCTI116
cells versus control HCT116 cells. The [log2(fold change)|
prerank gene list was used for the subsequent enrichment
analyses. Geneset enrichment analysis (GSEA) was used to
assess the enrichment from the Hallmark geneset collection
provided by the v4.0 MsigDB [16] and Kyoto Encyclopedia
of Genes and Genomes (KEGG) [17-19].
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Establishment of TP53 KO HCT116 cells by
CRISPR/Cas9

TP53 KO HCTI116 cells were generated by CRISPR/Cas9
using gRNAs as described previously [20]. Two hTP53
gRNA KO plasmids (YKO-RP003-hTP53, YKO-RP003-
hTP53, Ubigene) were obtained from Ubigene Company
(Guangzhou, China). gRNA oligos are listed in Table 1.
The hTP53 gRNA KO plasmids were transfected into
HCT116 cells using Lipofectamine 3000 (Invitrogen). The
cells were selected using a concentration of 0.8 pg-mL™"' of
purimycin at 24 h after transfection to eliminate the non-
transfected cells. The survived cells were subcultured and
checked for expression of GFP. Knockout of TP53 was
confirmed by western blotting.

Results

Cabazitaxel can efficiently inhibit the
proliferation and migration of colorectal cancer
cells

To identify drugs that have potential to treat colorectal
cancer, we utilized HCT116 cells as a colorectal cancer
cell model and screened 160 FDA-approved drugs
(Table 2). Our initial trial revealed that CBT could effi-
ciently reduce the number of viable HCT116 cells after
48 h of drug treatment (Fig. 1A). A concentration of
0.03 pm CBT reduced the viable HCT116 cells to 50%,
whereas 0.24 um CBT reduced the cell viability to 30%
(Fig. 1B). To determine whether CBT plays a broad
inhibitory role for different colorectal cancer cells, we
next investigated its cytotoxicity to HCT116, LoVo,
HCTS8 and DLDI1 cells. Because CBT is an FDA-
approved drug for prostate cancer, we also included
prostate cancer cell DU145 and PC3 in the experiment
as positive controls. We examined cell viability at 48 h
after CBT treatment at different concentrations by the
MTT colorimetric assay and calculated the ICso. 1Cs
values of CBT to HCT116, LoVo, HCT8 and DLDI1-
cells were 0.029 pum [0.023-0.036 um, 95% confidence
interval (CI)], 0.063 um (0.047-0.087 um, 95% CI),
0.255 um (0.198-0.328 um, 95% CI) and 0.532 pm
(0.438-0.646 um, 95% CI), respectively. Meanwhile,
ICso values of CBT to prostate cancer cell DU145 and
PC3 cells were 0.054 pm (0.033-0.090 pm, 95% CI) and
0.066 pm (0.030-0.148 pm, 95% CI) (Fig. 1C). These
results suggest that CBT inhibits colorectal cancer cell
HCT116 and LoVo cells as efficiently as prostate cancer
cell DU145 and PC3 cells. However, a much higher dose
of CBT is required to inhibit colorectal cancer cell
HCTS cells and DLD1 cells.

Next, we examined the effect on colony formation.
The number of HCT116 colonies decreased gradually

Cabazitaxel suppresses colorectal cancer

with an increase in CBT concentration (Fig. 1D-F). To
investigate whether CBT can inhibit the migration of
colorectal cancer cells, we then examined the effect of
CBT on cell motility by the wound-healing assay using
HCT116 cells. An Ibidi culture insert was used to gener-
ate the wound gap and serum-free culture medium was
added to the cells after the insert was removed to reduce
the effect of cell proliferation. Obviously, the Ibidi cul-
ture insert generated gap demonstrated much slower
closing for CBT pretreated colorectal cancer cells than
for control cells at 48 h after insert removal (Fig. 1G,
H). Immunostaining of tubulin revealed that CBT-
treated HCT116 cells showed cytoskeleton disorder and
morphological malformation with a reduced pseudopod,
which is line with the reduced motility of CBT-treated
cells. (Fig. 11). Taken together, CBT can efficiently inhi-
bit the growth and migration of colorectal cancer cells.

CBT induces G2/M phase cell cycle arrest and
apoptosis in colorectal cancer cells

To determine how CBT suppresses colorectal cancer
cell proliferation, we a performed flow cytometry assay
to examine the effect of CBT on the cell cycle distribu-
tion of colorectal cancer cells and prostate cancer cells.
The CBT concentration at ICsy to the respective cell
lines was adopted for the assay. As expected, CBT
treatment led to G2/M cell cycle arrest in all tested cell
lines (Fig. 2A). There were approximately 3-fold more
cells at G2/M phase in CBT-treated cells than in the
control cells (Fig. 2B). This observation is consistent
with previous studies reporting that CBT causes G2/M
cell cycle arrest in cancer cells [21,22]

Because CBT induced G2/M phase arrest, we next
investigated whether CBT treatment triggers apoptosis
of colorectal cancer cells. Similarly, the CBT concentra-
tion at ICsq to the respective cell lines was adopted for
the assay. Forty-eight hours after CBT treatment, the
control and CBT-treated cells were stained with annexin
V-fluorescein isothiocyanate and propidium iodide to
analyze the apoptosis rate of these cells via flow cytome-
try. Compared to the control cells, CBT treatment led
to an approximately 2-fold or more increase in cell
apoptosis (Fig. 2C,D). Western blotting revealed that
the apoptosis marker-cleaved caspase-3 was also greatly
increased in CBT-treated HCT116 cells (Fig. 2E).

Cabazitaxel inhibits tumor growth in colorectal
cancer xenograft model

To evaluate the antitumor effect of cabazitaxel against
colorectal cancer, we subcutaneously injected GFP-
labeled HCT116 cells into nude mice to derive a
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Fig. 1. CBT can efficiently inhibit colorectal cancer cells. (A) Cell morphology of control and 0.03 and 0.24 um CBT-treated HCT116 cells at
high magnification (Top: scale bar = 100 um) and log magnification (Bottom: scale bar = 150 um). (B) Relative cell viability measured by the
MTT assay. Error bars indicate the SD. Student's ttest was used for statistical analysis. Data are mean & SD (n = 6). ***P < 0.001. (C)
In vitro cytotoxicity of CBT at a different concentration to human colorectal cancer cells HCT116, LOVO, HCT8 and DLD1, as well as Du145
and PC3 prostate cancer cells. Data are the mean + SD(n = 6). Red lines indicate the nonlinear fit sigmoidal curve. The cell viability rate
was obtained by normalizing the MTT assay output of CBT-treated cells with corresponding dimethylsulfoxide-treated cells. (D) Colony
morphology of control HCT116 cells and CBT (at the indicated concentration)-treated HCT116 cells. (E) The number of colonies formed by
HCT116 cells after treatment with control or CBT of the indicated concentration. Error bars indicate the SD. Student’s t-test was used for
statistical analysis. Data are the mean + SD (n = 3). ***P < 0.001. (F) Percentage of control or CBT-treated HCT116 cell formed colony area
in the total cell culture plate area. The area was measured using IMAGEJ. Error bars indicate the SD. Student's t-test was used for statistical
analysis. Data are the mean + SD (n = 3). ***P < 0.001. (G) Microscopic images of the wound-healing assay with control HCT116 cell
culture and 0.03 pum CBT-treated cell culture at the indicated time. Scale bar = 200 um. (H) Quantification of wound gap in control HCT116
cell culture and 0.03 um CBT-treated cell culture at different time points compared to the wound gap at O h. Data are the mean + SD
(n=3). **P <0.01. (I) Representative immunofluorescence images of control and CBT-treated cells blotted with antibody against tubulin.
Nuclear DNA was counterstained with DAPI. Scale bar in the 20-fold magnified image = 50 um, whereas the scale bar in the 40-fold

magnified image = 20 pm.

xenograft model of colorectal cancer. Based on the
dose of Jevtana (cabazitaxel) used for the patient, the
dose of CBT utilized for the mouse experiments was
derived according to the body surface area [23-25].
Accordingly, 8 and 16 mg-kg™' CBT were tested for
the efficacy. Because 10-40 mgkg ' 5-FU was
reported to be effective in inhibiting tumor growth
[26,27], we utilized 8 mg-kg~' 5-FU as a negative drug
control and 16 mg-kg™' 5-FU as a positive drug con-
trol for the assay. Mice injected with PBS were also
used as a negative control. All experimental mice had
xenograft tumors at day 7 after subcutaneous injection
of HCT116 cells. We then randomized the mice and
treated them with CBT and 5-FU, respectively. Using
IVIS Spectrum to monitor tumor growth, we found
that mice treated with 8 mgkg™' CBT, 16 mgkg '
CBT and 16 mgkg™' 5-FU showed relatively smaller
xenograft tumors than those treated with 8 mg-kg™!' 5-
FU and PBS (i.e. negative control groups) (Fig. 3A,B).
After further analyses of the drug efficacy by normaliz-
ing the tumor with tumor at the injection starting
point, we concluded that 8 and 16 mg-kg~' CBT can
inhibit HCT116 cell formed tumors in nude mice as
efficiently as 16 mg-kg™' 5-FU (Fig. 3C.D).

Cabazitaxel treatment induces the abnormal
expression of Tubb family gene expression in
colorectal cancer cells

To further investigate why CBT can efficiently inhibit
colorectal cancer, we performed RNA-seq assays to
determine the transcriptomic changes between the con-
trol and CBT-treated HCT116 cells. Compared to the
control, 421 genes were upregulated and 340 genes
were downregulated in CBT-treated HCTI116 cells
(Fig. 4A and Table 3).

Gene Ontology (GO) analysis on molecular function
term enrichment revealed that CBT treatment led to
the upregulation of genes involved in a variety of bind-
ing events, such as protein binding, protein dimeriza-
tion, DNA binding and organic cyclic compound
binding, etc. (Fig. 4B). The abnormal binding events
indicate the disruption of normal dynamics of the
microtube lattice inside the cells. Indeed, GO analysis
revealed that multiple TUBB and TUBA family genes
were upregulated in CBT-treated HCTI116 cells
(Fig. 4C). This might be a result of the inhibition of
the disassembly of the microtube by CBT forcing the
cells to complementarily express microtube assembly-
related genes. A function chord diagram further
revealed that Tubb3, Tubb6, Tubb2a, Tubb4a and
Tubb2b are linked to the microtubule-based process,
the response to an external stimulus, and the mitotic
cell cycle process (Fig. 4D), suggesting a disruptive
role of CBT on these processes.

Cabazitaxel inhibits colorectal cancer cell growth
via activating the p53 signaling pathway

In addition to a number of Tubb family genes being
upregulated in CBT-treated cells, KEGG pathway
analysis revealed that CBT treatment-induced genes
were enriched in the well-known antitumor p53 signal-
ing pathway (Fig. 5A). Meanwhile, CBT treatment
indicated that downregulated genes were related to
multiple metabolism processes, such as carbon meta-
bolism and glycine, serine and threonine metabolism,
as well as glycolysis (Fig. 5B). Furthermore, GSEA
revealed a positive correlation between p53 pathway
genes and CBT upregulated genes in HCT116 cells,
indicating that CBT indeed enhances the expression of
p53 pathway genes (Fig. 5C). Rending the genes to the
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Fig. 2. CBT induced G2/M arrest and apoptosis in colorectal cancer cells. (A) Cell cycle distributions of control and CBT-treated HCT116,
LOVO, HCT8 and DLD1 human colorectal cancer cells, as well as DU145 and PC3 prostate cancer cells, by flow cytometry analysis. Blue
represents G1 phase; red represents S phase and orange represents G2/M phase. (B) Percentage of cells at G1 phase, S phase and G2/M
phase in (A). Data are the mean + SD (n=3). *P < 0.05, **P < 0.01, ***P < 0.001. (C) Representative graphs of cell apoptosis of control
and CBT-treated HCT116, LOVO, HCT8 and DLD1 human colorectal cancer cells, as well as DU145 and PC3 prostate cancer cells,
examined by double staining with propidium iodide and annexin V-fluorescein isothiocyanate and a flow cytometry assay. (D) Early and late
apoptosis rate of (C). Student’s ttest was used for statistical analysis Data are the mean + SD (n=3). *P<0.05 **P<0.01,
***P < 0.001. (E) Representative image of western blotting (left) and densitometric analyses (right) of the expression of cleaved caspase-3
expression in CBT-treated and nontreated HCT116 cells. Actin was used as an internal control. Data are the mean 4+ SD (n = 2).
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Fig. 3. Cabazitaxel inhibits tumor growth
in a colorectal cancer xenograft model. (A)
Representative AVIS images showing
control, 8 and 16 mg-kg™' CBT-treated
mice that bear HCT116 xenograft tumor at
days 5 and 14 after the first injection. (B)
Representative AVIS images showing (©)
control, 8 and 16 mg-kg~"' 5-FU treated
mice that bear HCT116 xenograft tumor at
days 5 and 14 after the first injection. (C)
Representative pictures of tumors
harvested from CBT, 5-FU and control
treated mice. (D) Relative tumor growth
fold of CBT, 5-FU and control treated
mice. The relative tumor growth fold was
obtained by normalizing the tumor volume
at each time point with the tumor volume
at the injection starting time. Data are the
mean £ SD (n = 3).
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p53 pathway clearly showed that multiple cell cycle Furthermore real-time PCR assays also confirmed that

arrest-related genes, such as p21, 14-3-3-8 and Gaff45,
were increased in CBT-treated cells (Fig. 5D). p53
downstream genes Fas, Noxa, PUMA and PIGs,
which induce apoptosis, and PAI, TSP1 and Maspin,
which inhibit angiogenesis and metastasis, were also
upregulated in  CBT-treated cells (Fig. 5D).

the mRNA levels of p53 downstream genes such as
Tp53i3, Gadd5a, Pmaipl, Cdknla and Fas were signif-
icantly higher in CBT-treated HCT 116 cells than in
control cells (Fig. 5E). In addition, the expression of
p53 major downstream protein p21(Wafl/CiP1) that
links DNA damage to cell cycle arrest was enhanced
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Fig. 4. Cabazitaxel inhibits colorectal cancer cell growth via activating the P53 signaling pathway. (A) Scatter plot showing the upregulated
genes (red points) and downregulated genes (blue points) in CBT-treated HCT116 cells compared to control cells. The cut-off for expression
difference is 0.58. (B) GO enrichment analysis showing the enriched molecular of upregulated genes in CBT-treated HCT 116 cells
compared to control HCT116 cells. GO terms of upregulated and downregulated differentially expressed genes were assessed separately
for enrichment using Fisher's exact test. (C) DAVID analysis of the enriched TUBB and TUBA family related genes. (D) Function chord plot
of CBT induced upregulated TUBB family genes.

3042 FEBS Open Bio 11 (2021) 3032-3050 © 2021 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of
Federation of European Biochemical Societies



Cabazitaxel suppresses colorectal cancer

W. Zhang et al.

STAVSTAONN
¢XLid
OHLEYIN
L¢84NZ
THASN
ddAd

d8dS4O
€dv1Sdy
LddS
O0A9d1V
L87LOONIT
40X0
alvant
GOXOH
¢d18z
¢dvo
6LOHNS
LVN4I
JLHLLSIH
dAeeLNVA
2l
CAINSd
LaNID
ONT4
84NS
€LCCO0ONIT
LALT

LI
\{ORE|
LXdd
€94AM
1011dvd
n1o
GVAND
9LLHOLD
g15vda
0LgLudv
AON
CONN
v4VOS
g134
IVCHLLSIH
G1INdd
1g43d
V101

VG6LNM
¢EH08LO-LL1dY
€dlHLS
EVIAV
LNIAVO
¥00LOONIT
aodv
L2oas
vS§20dd
INIA
LSV-0LNdVO
€310d
LELBC6LOLOOT
QoA
LVINIT
8dgLaM
¢dso
LdILvd
Ldg61Sdd
10dSd
¢d1dsId0
4ONVA
LOWT
4vOIL

120 1¢
CINIdL
¢C94NZ
¢8dvecdldy
E€C1ddIN
8EINgY
g110
CTAN
¢4¢dN
0dds
VLLdVAV
¢S1V
Sass

AED)
980020

64918z
¢v00LsS
MDId
L@3aLio
L71SO4
LSV-L1dHaVv
LINIdd3S
dEHCLSIH
EINST
LSV-50N9ad
VOocdId
LV0EDTS
LNIDSO
LIAN
¢d3d
L7184
ENMAD
L1l
RrELAR
€d3|
L140d
LdIVIAM
HEHLLSIH
ld3d
LXOLV
LNHO
OJESINVAS
ddnd
dCCVN4|
LAXN
geaviv
LSdVHNY
LININST
¢asor
[AATAON N
SV4
8ddSH
10d3
OHZ-GEVIHIN

8494
gECAINY
CVHd43
LSODINH
Sc3dan
¢80905001L0071
roadyy
LSV-CSYNL
€ddant
EVATHd
49d
71v9LI1S
4939H
LMX8d
SAMmdd
V1N
700C0ONIT
LSV-TLHSY
GZANUNS
VARV
Ldgan4d
Naa
L7LOD
LSV-€AdNNHL
gLMAL
LVdUNS
LdNY
LSV-VNOd
LEYOOONIT
LNS3S
94449l
dVAT
¢OrvNda
6TAN
LSV-Lg4dNn
€4vL
NEZHLLSIH
¢OYSH
¢V1OV

C¢3INN-LINN
LSV-OE8INVS
C1LONV
ENTOVL
9LHAN
LV1dAD
¢1dd1v
LSV-E4dHLA
CXSN

gS0o4
434ATV
LSV-¥£94NZ
APHLLSIH
LL4T

N3V

44VIN
d8€3440-d1Z2D
OHZCHIN
CININdd
GLOHNS
LXOWWH
CINAIN
d4V.1d
asdddo
LSV-OA4N
91NYL
aliNdd

dNd
71dSnd
9¢¢H09)D
6LH

£84dD
OVCHL1SIH
fPHLLSIH
318X4N
€8EELESOLOOT
LONNL

¢4SD
LNVOV3OD

LOHNS
LINQ4Yd
0v3IHTHE
€di3

ST
027100
¢X1d
L2do
ZSV-9SVO
€800

[4ASEl
0L4
LdVIdL
€0L4NZ
IVZHLLSIH
987C¢0ONIT
9¢a3In
148494
o
GaNId4d3s
LSV-NVLS
VZHELSIH
dd1v
449N
143507
¢dNIdd3s
49A
CrEYS900T1
L¢1dd
LS3H
LV¥7HN
L¥88¢610L007
€ANY
V8¢NIT
€V00LS
LNLIND-4THO
dld
Ldsnd
02¢2dd

9G9v¥9001
8G€9050010071
N4S

NAr

LV00LS
gcadnt
SINTVO
16YNYVOS
VLiLISvd
LSEHL
LSV-LVOSSS
vrvant
¢914

avdy

LAIS
€9440610-¢443S
[4DE|
AEHLLSIH
SEANE]
aeddn
v6eEXdd
€3101
EVYHUN
vSraavo
vivant
69HNS
¥1dd
8CVNYVIS
€1€Gd L
CIVNS

€4dO
9GrAdvoO
CSV-Vedvdl
vedaanlt
d0O1AD
clLidl
349CHLLSIH
Od¢HZISIH
asraavo

LALYN

€41V

¥vdO
8GVHONS
SO4

91SoY
¢SHHA
L3INIdH3S
VSCINVAS
Y6VHONS
LIVNS

odd
LY3IHTHE
¢0d4M
810X0
OLHLLISIH
€-¢dvVLdd
LINVVOS
L9HAD
JdC¢HL1SIH
AGCHLLSIH
96¢4NZ
g1Ldven
fdCcHLLSIH
3Gd1V-CONTS
¢10X0

4910
VCLHEDZ
VLLININS
€0a44v
L7OXD
L-Ed4VL1dX
EVVCHCISIH
YVYVCHZLSIH
AVEHLLSIH
O4dc¢HLLSIH
€10X0
349¢HCLSIH
LSV-11£E0dD

sauab paleinBaidn j01u0) SA 19D

auleu ausn

's|j@0 9| L1DH paieali-1g) ul seusb passaidxe [eiuaieyiq "€ ajqel

3043

FEBS Open Bio 11 (2021) 3032-3050 © 2021 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies



W. Zhang et al.

Cabazitaxel suppresses colorectal cancer

gLx1s 11dV9dLlY EVECIS vZcdHO d6veHO £d01LSdY 19d22
Vvc3add ENSSL GEVSCO1S .dV40 74911 LNLSNIN €didL
LINLIFI LdSNNSN LH149I1 SHVYV dI16HINLIN 410 ¥G¢59¢L¢01001
HLVYNOVO JLELNVA L9INS LLIN 11040 ¢NdHEY ¢NOT
E€dSIN d86LINTINL dLOAIN 9NddL L1VSd [PHLLSIH 692798601001
1L13S 9940610 LOND L4934S LEAYMANY CINLSD ¢dg9d1o
LSV-9SH30 [AveltSl 191D rearogl dLISN IdIXTIN LX08Y
CHLAD €axd dg4dl10 ve¢o0d aoldvd 940OVvd gL0aH™
LVXON geldl LT3N LgEHATV 1908V VLINIL gdeLVHONS
9LTIN Gl9dIdN Dd4930 VANYT 714d0 711LdONY €204V
L6ELLLDOT YEAOW ¢dod LVLZDT1S HdI9 H0d3 A0d
NIdHV XdS €dVSY ATV €SdHL LONDY YNS8-GVNY
ENGArA 7IOXOH 795 100NIT CNAT10 ¢8¥7COONIT YASHL 0L¥YNHVIS
LSV-VNdLId COVNIVDILS vdldd LNdHY g11dD GN4TS 110d49vd
130Vvd Lddvd dclXad V6CZCINYA £800d00 £dvHaMdo LY¥2C690071
oADS d94SH4ANL LOON €90L0ONI1 LH4 ddH1 V6CZLINVA
0ELLOONIT V11709 LA 61494 LSv-8100d20 090651001 LHddY
[VA4E] CINOD CVI9SdH A1A=EE| DHOLZHIN I1d7S SYNYVOS
19191V G41v 7493 VINLSD LAOHIVIN L1agHy EGVHONS
0¢dVDHS LaM1HA L1LgINET LEL62LD07 74SH HASDHJ ddINY
JAX3H VLNINS a¥HO HHODd vNdai SOO0OIN LNHAD4
TL3ADAS SHVM LSHONN 81741090 [4E1)| 1INV E€CVHONS
ENTOOIN 9€H4d LddgHY 79dSO Ldg1n aroevld L8YHONS
CA4HLIN ENLYd LXOLS Ld4S3 CHOIY3 6V0 7VdONS
seuab pe1eiNBaIuMOp [011U0D) SA 1§D

¢020€LD01 VI91NHL L6HO91LD Lv4vod LdNHSO JFHOV aNnnr

LA LTNDS IHNY Ld10 981l LOONIT ¢VdaH [SIAE A VINMAD

€LH061D Leand 0LVOSL €099 J014SH4NL 6CINIdL €24lg G1LOOONIT

o4ddlL g/X00 LdOd AVZHLLSIH ¢4SHS [Aje] TLOAHN S€1d44

LYINSd HVZHLLSIH dddg3o £1¢2/L2001L0071 0ZDHNS 6L4NZ Gvo0lLS 9¢100

1SOL €17adx0od C¢L¥/,0500L0071 1911d 94994 ENCAVIN V1OV dd¢HELSIH

LSV-LHAI dZNMAdd ¢asns LdH3 0Lv00LS NVZHL1SIH 9ddnlL 49¢HZLSIH

¢S3H ¥G94NZ Gdav4d dHVOIN L1d odv 100N €40V

6L4SYINL r4VveH L4SD CTAdSL 304V 1HHS Nav dgeHL1SIH

Lidil S1LdVN LaN43 €3IXO0TV 1OHdd G9/.26101L001 €493 VIGXdN

¢Xd4dS LXNId 0v€69€501L001 vvradnl o¢edl3 TIHA IYHLLISIH LvVaH

alvant C¢SV-¢d9ON 8¢vv¢/c0LO01 7080420010071 S RSD d90N L4937 1SVD

LONI CV1IN L¥60££501LD01 INGZHL1SIH LSO OIVNN 593dd €dIVANL

sausb palenBaidn |013U0) SA | gD

awleu ausn

“(panupuo)) '¢ alqel

FEBS Open Bio 11 (2021) 3032-3050 © 2021 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

3044

Federation of European Biochemical Societies



Cabazitaxel suppresses colorectal cancer

W. Zhang et al.

LVEYDTS

LSV4Z

LACINP

€0d04

6143DHYY

Y0v¥2Lc0L0071

g8vo109

L7300

£949

gvHL1SIH

LSV-rAddS

910dd0

LSV-EV6I1S

G6E4NZ

g5.04d41

LSV-V4VIN

11S680VV M

¢OON

OdNAS

£98€¢r14

€Vrdld

¢NVd

vVO

94N1OLO LAMN3
L1d49 LANOT
¢ACVNIOVI 89¢ININL
0389 6VNUVOS
NoN ¢dar

gveZHZLSIH
v11ad
YINAHEY
¢4
LSV-090UNL
G¢4SHANL
944Vl
€0GLOONIT
V493N
gLaoiH
IATAORIN
99NIHL
[AlAE!
LdWVIS
9OVAH
vdLLl
g00CINIINL
CINSOS
SOTH

Ml1d

LAd

Vv LAINY
LOXO4
8LNVdSL
¢01S9

gH1
€4SSHd
LVGrI1S

T1dAAHd
Zv1
2041V
LSV-CNSHN
§855050010071
L1293
LE98INVA
g1e03s
GvoLIT1S
21480
0LZdNN
60NV
dnvid
LZHAM
LSV-GZdININ
SOV
HA9ING
d34N
LYSIN
v8v9109
ZVND

0dD
ALANVO
LVHYd
E€ELLOONIT
X0l
00l13d
LaLa

64
LOISVY
EVOLl

dGLOAN
LdINg
9804H1
YSCNINL
SLALOM
d6LAYINY
81ANN
d4901dL
OSHvY
YONNZI
vHAX04
1edING
L4443
veavy
GO4HOGLD
9e0X4g4
GZLLOONIT
¢g1vo
9¥8¢¥9001
GVNI4H3S
¢439HYY
L1SdHA
LVLOTS
SINMIN
LV2d0

Sd10
LddN LONOX
LBINFINL 8LVvceI1S
0LSLAVAV VLIS
740vd VNIV
8r0OX4d4 YOWL
NOT1O SNSV
g9Ad G6¢1¢0€0L001
dLAdINVdD Hddd
€194 9493
¢ocdLv LLVLDTS
oL GSVO
¢ON3 LOAOMH
HdTN d0¢2vedOo
6v9071S ILdvdN
LTAHD LanWa1
ENS8LVNY 9VNHVOS
LTLAS LGdId
§doI4g SLAdVIN
¢dguN 10dd1d
€1nd g4docl
dvO4ddld E4INVT
AdoH ¢daN
¢aoiL £69£00 D0TX
L@sgdid LOVHO
CLINTVO VYHLLSIH
LEVZCOTS OVZHZISIH
aledi acydyds

souab palenBalumop [041U0) SA 19D

‘(penupuoD) ' alqel

3045

FEBS Open Bio 11 (2021) 3032-3050 © 2021 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies



Cabazitaxel suppresses colorectal cancer

in CBT-treated HCT116 cells compared to the control
cells (Fig. 5F). Meanwhile, CBT treatment led to obvi-
ous DNA damage, as manifested by the expression of
p-H2A.X, p-Chk1 and p-Chk2 (Fig. 5G).

To examine whether activation of p53 pathway
plays a key role for CBT efficacy, we used the
CRISPR/Cas9 system to knock out TP53, a pS53
encoding gene, in HCTI116 cells by two different
gRNAs and generated TP53 KOI1 cells and TP53 KO2
cells. Western blotting revealed that p53 was com-
pletely depleted in the TP53 KO cells (Fig. SH). The
MTT assay revealed that the ICsy values of CBT to
TP53 KOI1 cells and TP53 KO2 cells were 0.175 and
0.096 um, respectively, which were approximately at
least 3-fold higher than the ICsy of CBT in HCTI116
cells. The enhanced resistance to CBT of TP53 KO
cells indicates that the inhibitory effect of CBT to
HCT116 cells relies on the TP53 pathway (Fig. 5I). All
of these results substantiate our conclusion that CBT
inhibits HCT116 cells mainly by activating the p53
pathway.

Discussion

As a result of the resistance of colorectal cancer to
current drug therapies, there is an urgent need to
develop new antitumor drugs. In the present study, we
found that FDA-approved drug CBT exhibits potent
antitumor efficacy to colorectal cancer. CBT is a
microtubule inhibitor [28] that has been reported to
bypass some cancer resistance mechanism toward
chemotherapeutic agents and shows good efficacy to
metastatic prostate cancer, breast cancer and ovarian
cancer [4,29,30]. In the present study, we demonstrated
that CBT also has potent antitumor function with
respect to colorectal cancer.

Tubulins are the primary targets of CBT. Tubulin is
the basic block of microtubes that contributes to the

W. Zhang et al.

cytoskeleton and cell mobile elements. Hence, polymer-
ization and depolymerization of tubulin are essential in
mitosis, intracellular transport and cell movement, etc.
CBT binds to tubulin and promotes microtube assem-
bly and inhibits its disassembly. Hence, CBT seriously
interferes with the recycling of tubulin and the normal
dynamics of microtube networks in cells that are
required for biological processes. We observed signifi-
cant upregulation of Tub family gene expression,
which manifests as the compensative expression of
these genes by cells in response to the microtube
assembly-related units after CBT treatment. Consistent
with this, we observed a series of microtube inhibition-
related cell biology abnormalities, such as cell cycle
arrest, cell proliferation, and migration inhibition and
apoptosis. In the end, we found that CBT efficiently
inhibits the growth of HCTI116 xenograft tumor.
Unlike inhibition of androgen receptor and heat shock
proteins in prostate cancer cells or targeting the phos-
phoinositide 3-kinase/Akt/mechanistic target of rapa-
mycin pathway in lung adenocarcinoma cells [5], CBT
enhances the antitumor pathway-p53 signaling path-
way in colorectal cancer cells. p53 and its downstream
genes are well characterized with resect to inducing
apoptosis and senescence of cancer cells and inhibiting
tumor growth and angiogenesis in cancers [31]. The
p53 signaling pathway is frequently dysregulated in
colorectal cancer. Approximately 40-50% of sporadic
colorectal cancer harbor a p53 mutation [32]. Reactiva-
tion or restoration of the p53 pathway downstream
effectors can efficiently improve the prognosis of col-
orectal cancer. In line with the apoptotic phenotype
triggered by CBT, we found that CBT treatment leads
to activation of multiple p53 downstream target genes,
such as apoptosis activating genes including Gadd45a
[33], Tp531i3 [34] and Pmaipl [35]. The marker for
DNA damage, p-HA2.X was also elevated in CBT-
treated HCT116 cells. p-H2A.X not only recruits

Fig. 5. Cabazitaxel induces upregulation of the p53 pathway. (A) KEGG pathway analysis of the upregulated gene enriched biological
pathways of CBT-treated HCT 116 cells compared to control HCT116 cells. (B) KEGG pathway analysis of the downregulated gene enriched
biological pathways of CBT-treated HCT 116 cells compared to control HCT116 cells. (C) GSEA diagram showing the positive correlation of
p53 pathway genes and upregulated genes in CBT-treated cells compared to control HCT 116 cells. (D) Pathview rendered p53 downstream
pathway with integration of RNA-seq data of control and CBT-treated HCT 116 cells. Red indicates the upregulated genes after CBT
treatment. (E) Real-time PCR results showing the relative mRNA levels of Tp53i3, Gaddba, Pmaip1, Cdkn1 and Fas in control and CBT-
treated HCT116 cells. Three biological experiments were performed for each assay. Student’s ttest was used for statistical analysis.
**%P < 0.001. (F) Western blotting and densitometric analysis of p21 protein expression in control and CBT-treated HCT116 cells. B-actin
was used as an internal control in the experiment. The data are shown as the mean + SD (n = 3), Student’s ttest was used for statistical
analysis. (G) Representative western blot image showing the expression of p-H2A.X, p-Chk1 and p-Chk2 in control and CBT-treated HCT116
cells. B-actin was used as an internal control in the experiment. (H) Representative western blot image showing the expression of p53 in
TP53KO1, TP53KO2 and control HCT116 cells. B-actin was used as an internal control in the experiment. (I) /n vitro cytotoxicity of TP53 KO
cells and control HCT116 cells. The data are the mean &+ SD (n = 6). The cell viability rate was obtained by normalizing the MTT assay
output of CBT-treated cells with the control dimethylsulfoxide treated cells.
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proteins involved in DNA repair, but also correlates
with apoptosis. As a consequence of apoptosis, DNAs
are fragmented and trigger the phosphorylation of
H2A.X. Hence, p-H2A.X levels can be used to monitor
the anticancer therapy effect as well. An increase in p-
H2A.X in CBT-treated HCT116 cells demonstrates the
efficacy of CBT with respect to anti-colorectal cancer
at the molecular level. DNA damage generally acti-
vates p53 and its major downstream target p21 and
leads to cell cycle arrest. An increase in p21 in CBT-
treated HCT116 cells confirms the activation of the
p53-p21 pathway. To support our conclusion, we also
generated TP537/~ HCTI116 cells. Compared to
HCT116 cells, TP53~/~ HCT116 cells are more resis-
tant to CBT treatment, suggesting that CBT inhibitory
effect to HCT116 cells relies on the P53 signaling path-
way. Furthemore, p53 mutated HCTS8 cells and DLD1
cells are more resistant to CBT treatment than
HCT116 cells and LoVo cells also demonstrate the
need for p53 signaling so that CBT can exert its func-
tion in colorectal cancer cells. We also noted that mul-
tiple metabolism processes of HCT116 were also
disturbed by CBT. A well known characterisitic of can-
cer cells is that they adopt special metabolic features.
The disturbance of these features would affect cancer
cell survival, proliferation and migration. Detailed
mechanistic studies of the effect of CBT on the meta-
bolism of colorectal cancer are needed in the future.

In the present study, we have shown that CBT can
efficiently inhibit colorectal cancer proliferation and
migration. It suppresses colorectal cancer via enhanc-
ing the expression of multiple p53 downstream effector
genes and promoting cell cycle arrest, apoptosis and
inhibition of angiogenesis. Hence, CBT may serve as
an alternative option for colorectal cancer treatment in
the future.
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