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Abstract: It is well recognized that the microbiome plays key roles in human health, and that damage
to this system by, for example, antibiotic administration has detrimental effects. With this, there is
collective recognition that off-target antibiotic susceptibility within the microbiome is a particularly
troublesome side effect that has serious impacts on host well-being. Thus, a pressing area of research is
the characterization of antibiotic susceptibility determinants within the microbiome, as understanding
these mechanisms may inform the development of microbiome-protective therapeutic strategies.
In particular, metabolic environment is known to play a key role in the different responses of this
microbial community to antibiotics. Here, we explore the role of host dysglycemia on ciprofloxacin
susceptibility in the murine cecum. We used a combination of 16S rRNA sequencing and untargeted
metabolomics to characterize changes in both microbiome taxonomy and environment. We found
that dysglycemia minimally impacted ciprofloxacin-associated changes in microbiome structure.
However, from a metabolic perspective, host hyperglycemia was associated with significant changes
in respiration, central carbon metabolism, and nucleotide synthesis-related metabolites. Together,
these data suggest that host glycemia may influence microbiome function during antibiotic challenge.

Keywords: microbiome; antibiotics; metabolism; metabolomics; streptozotocin;
hyperglycemia; ciprofloxacin

1. Introduction

The disruption of microbiome homeostasis (dysbiosis) is a detrimental side effect of
antibiotic usage [1,2]. Exposure to antimicrobial compounds rapidly and dramatically
changes both the transcriptional and metabolic function of the microbiome [3–5]. Ulti-
mately, antibiotic-induced dysbiosis is associated with a suite of acute and chronic negative
health outcomes in humans; thus, there is a dire need for therapeutic strategies that mit-
igate antibiotic-related microbiome damage [6,7]. The development of these strategies
will ultimately be reliant on the capacity to characterize determinants of microbiome
antibiotic susceptibility.

It is well established that microbial metabolism is intrinsically linked with drug sus-
ceptibility, both in vitro and in vivo [4,8]. In fact, bacterial metabolic rate is one of the best
predictors of antibiotic susceptibility [9]. Specifically, biological conditions that increase
metabolic rate potentiate bactericidal antibiotics, while metabolic starvation, mutations
that divert metabolism away from respiration, or environmental conditions that promote
fermentation, can confer antibiotic tolerance in some species [4,8,10–19]. Within the mi-
crobiome, the fermentation of dietary fibers provides protection toward select species,
suggesting that carbohydrate availability may be a key factor in the microbiome’s capacity
to withstand antibiotic insult [4]. Recently, we showed that streptozotocin (STZ)-induced
dysglycemia reduces fiber fermentation and increases both amino acid catabolism and
primary respiration within the cecal microbiome, which results in increased susceptibility
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to amoxicillin [5]. To expand on this work, we used the single-dose STZ model of dysg-
lycemia, which allows for hyperglycemic induction without dietary modification, and then
we challenged mice with a short course of the fluoroquinolone antibiotic ciprofloxacin [20].
We combined 16S ribosomal RNA (rRNA) sequencing with untargeted quadrupole time-of-
flight mass spectrometry (Q-TOF-MS) to profile changes in microbiome taxonomy and the
cecal metabolome during ciprofloxacin treatment in hyperglycemic and normoglycemic
animals. Our data demonstrate that although induced hyperglycemia does not cause
dramatic restructuring of the microbiome taxonomy, it does induce significant shifts in the
cecal metabolome after antibiotic treatment.

2. Materials and Methods
2.1. Animal Experiments

All animal work was approved by the Institutional Animal Care and Use Committee
(IACUC) of Brown University. Male C57BL/6J mice were purchased from The Jackson Labo-
ratory (Bar Harbor, ME, USA) at five weeks of age, then habituated in specific-pathogen-free
(SPF) conditions at 21 ± 1 ◦C with 12 h light/dark cycling. Animals were fed Laboratory
Rodent Diet 5001 (LabDiet, St. Louis, MO, USA) and provided autoclave-sterilized water.

After habituation, animals received an intraperitoneal injection of Na-Citrate (pH 4.5)-
buffered streptozotocin (150 mg/kg) or a Na-Citrate sham (control). Animals were provided
sucrose-supplemented drinking water overnight (10% for up to 18 h) to avoid hypoglycemic
shock. Animals were considered hyperglycemic if they exhibited a fasting blood glucose
≥250 mg/dL when assessed 48 h post-injection using the CONTOUR®NEXT commercial
blood glucose monitoring system (Bayer AG, Whippany, NJ, USA). Hyperglycemic and
normoglycemic mice then received ciprofloxacin (12.5 mg/kg) or a pH-adjusted vehicle
ad libitum via drinking water for 24 h. After this time frame, animals were sacrificed and
cecal contents were harvested for taxonomic and metabolomic screening (Figure 1A). It is
important to note that the animal experiments described here were performed alongside
those described in recent work by Wurster et al. [5]. Specifically, the animals receiving
a sham antibiotic (vehicle) were shared between these two studies. This work utilized a
total of 43 mice, representing groups of 8–12 animals per experimental condition over two
independent experiments.

2.2. 16S rRNA Amplicon Sequencing: Library Generation

Total DNA was isolated using the ZymoBIOMICS DNA/RNA Miniprep Kit (Zymo
Research, Irvine, CA, USA). Amplicon sequencing libraries were generated by amplifying
the V4 hypervariable region of the 16S rRNA gene, using the Earth Microbiome Project
primers 515F and 806R in conjunction with Phusion high-fidelity polymerase [21,22]. The
cycling protocol for amplicon generation was as follows: (1) initial denaturation at 98 ◦C
for 30 s, (2) 34 cycles consisting of denaturation for 10 s at 98 ◦C, annealing at 57 ◦C for
30 s and extension at 72 ◦C for 30 s, followed by a (3) final extension at 72 ◦C for 5 min.
Libraries were cleaned using the NucleoSpin PCR Cleanup Kit (Machery-Nagel, Düren,
Germany) before being submitted to the Rhode Island Genomics and Sequencing Center
at the University of Rhode Island (Kingston, RI, USA). Samples were pair-end sequenced
(2 × 250 bp) on the Illumina MiSeq platform using the 500-cycle kit with standard protocols.
One 16S rRNA sample was generated per animal, amplified in triplicate, and pooled. This
yielded an average of 11,865 ± 6040 reads per sample. Sequencing reads were deposited to
the NCBI Short Read Archive (SRA) and are publicly available as of the date of publication
under the BioProject ID PRJNA811121.
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Figure 1. The impact of streptozotocin and ciprofloxacin treatment on microbiome composition.
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(A) Experimental design used in this study. Figure made with BioRender.com. (B) Weighted UniFrac
Distance between 16S rRNA amplicons. (C) Relative abundance of detected phyla in 16S rRNA
amplicons. Data represent mean ± SEM. (D) Differentially abundant bacterial genera following
ciprofloxacin treatment in STZ-treated and normoglycemic mice versus vehicle controls alongside
their interaction value. Data represent log2 fold change. (E) Differentially abundant bacterial genera
between STZ-treated and control mice after ciprofloxacin administration. Data represent log2 fold
change ± SEM. (F) Linear discriminant analysis of MetaCyc pathway abundance as predicted using
PICRUSt. Data represent STZ-treated versus control mice after ciprofloxacin treatment. For all panels,
n = 8–12 per group for (B): permutational ANOVA (* p < 0.05; *** p < 0.001). For (D,E): differentially
abundant = Benjamini–Hochberg adjusted p value < 0.05.

2.3. 16S rRNA Amplicon Sequencing: Read Processing and Analysis

The R (version 3.5.0) implementation of the DADA2 algorithm was used to subject raw
reads to quality filtering, trimming, de-noising, and merging as previously described [5,23].
The DADA2 function assignTaxonomy was used in combination with RDP training set 18 to
perform taxonomic assignment, and diversity metrics (α and β) were calculated using the
phyloseq R package (version 1.24.2) [24,25]. Differential abundance testing was performed
using the DESeq2 R package [26].

Metagenomic content was predicted using PICRUSt (version 2.0) with standard pa-
rameters [27]. DADA2-generated amplicon sequencing variants were phylogenetically
placed using the place_seqs.py script within PICRUSt. Then, gene family content was pre-
dicted using the hsp.py script. Finally, MetaCyc pathway abundance was predicted using
the pathway_pipeline.py script. The scripting functions within PICRUSt are dependent
on the following tools: EPA-NG and gappa (place_seqs.py), Caster (hsp.py), and MinPath
(pathway_pipeline,py) [28–31]. Linear discriminant analysis was performed on predicted
MetaCyc pathway abundances, using the Galaxy implementation of the LEfSe toolkit
with standard parameters [32] (https://huttenhower.sph.harvard.edu/galaxy, accessed on
5 November 2021).

2.4. Q-TOF-MS: Metabolite Extraction and Annotation

Total metabolites were extracted from flash-frozen cecal samples, using an LC/MS-
grade acetone:isopropanol (2:1) extraction solvent as described [5]. Metabolites were
sent to General Metabolics Incorporated (Boston, MA, USA) to be analyzed via flow
injection time-of-flight mass spectrometry on an Agilent 6550 iFunnel Quadrupole time-
of-flight Mass Spectrometer that was run in negative ion mode and equipped with a dual
AJS electrospray ionization source, as previously described (Agilent, Santa Clara, CA,
USA) [33]. Metabolomics was performed as fee-for-service. These metabolomics data were
acquired during the same run as the data described in Wurster et al. (2021), and the specific
parameters used to operate the Q-TOF-MS are described in significant detail there [5]. As
described in that work, we detected a total of 714.3 ms/spectra and 9652 transients/spectra,
with a mass accuracy approximating 0.001 Da [5,33].

Data processing and putative ion annotation were performed as described, using the
MATLAB Bioinformatics, Statistics, and Parallel Computing toolkits, which yielded Level D
annotation to both the Human Metabolome Database and KEGG [5,33,34]. Data annotation
was automated using a proprietary platform at General Metabolics and delivered upon
run completion. Principal Coordinates Analysis (PCoA) was performed on annotated ion
intensities and statistically tested with permutational ANOVA (PERMANOVA) using the
vegan R package (version 1.26.1) [25].

2.5. Q-TOF-MS: Computational Analysis

The DESeq2 R package (version 1.26.1) was used to perform differential abundance
testing on ion intensities [26]. Differentially abundant metabolites (Benjamini–Hochberg
adjusted p-value < 0.05) that included a KEGG annotation were subjected to pathway

https://huttenhower.sph.harvard.edu/galaxy
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enrichment analysis using the PAPi R package [35,36]. Only pathways with an adjusted
p-value < 0.05 were considered statistically significant.

3. Results

Following a 2-week habituation period, 7-week-old male C57BL/6J mice were given a
single intraperitoneal injection of either STZ or a sham vehicle. After 48 h, animals were
assessed for hyperglycemia and subsequently randomized. The next day, ciprofloxacin
(12.5 mg/kg) or a vehicle control was administered ad libitum via the drinking water for
24 h before animals were sacrificed and their cecal contents were collected for taxonomic
profiling and untargeted metabolomics (Figure 1A). This antibiotic concentration was
selected based on past work indicating a capacity to perturb the microbiome within a 24 h
period, and relevance to clinical concentrations [4,37].

First, we examined cecal β-diversity before and after ciprofloxacin treatment using
PCoA paired with PERMANOVA (Figure 1B). In line with our previous research, both
STZ-induced hyperglycemia and antibiotic treatment were associated with significant
divergence in community structure (Figure 1B) [5]. Hyperglycemia was associated with
a single significant taxonomic shift: the expansion of Verrucomicrobia, which has been
previously attributed to the abundance of Akkermansia muciniphila (Figure 1C) [5]. Inter-
estingly, hyperglycemia had no impact on the post-antibiotic expansion of Firmicutes,
but did appear to exaggerate the reduction in Bacteroidetes (Figure 1C). However, upon
further examination, the difference in abundance was not statistically significant (adjusted
p-value = 0.2). To profile host-dependent differences in taxonomic composition after
ciprofloxacin treatment, we next performed differential abundance testing on genus-level
amplicon sequence variant (ASV) abundance [26]. Surprisingly, the abundance of very few
taxa were STZ-dependent in response to ciprofloxacin, based on interactions term analysis.
Hyperglycemic mice had a less severe reduction in Clostridia_sensu_stricto and Parasutterella
(Figure 1D: positive interaction) and did not experience the increase in Duncaniella exhibited
by controls in response to ciprofloxacin (Figure 1D: negative interaction).

To further profile the differences between STZ-treated and control communities after
ciprofloxacin exposure, we again examined genera-level differential ASV abundances. We
found that STZ and ciprofloxacin co-treatment impacted the abundance of several Fir-
micutes; the abundance of Neglecta increased, while the genera Kineothrix, Eisenbergiella,
and Acutalibacter significantly decreased compared to normoglycemic ciprofloxacin-treated
animals (Figure 1E). Because paired metagenomic and metatranscriptomic sequencing
were not performed, it is impossible to make definitive claims about microbiome function
in these samples. However, computational tools such as PICRUSt can be implemented
to predict metagenome content from 16S data, allowing for functional inference [27,38].
Using PICRUSt2, we predicted differences in MetaCyc pathway-related gene content that
were uniquely affiliated with hyperglycemic or normoglycemic mice after ciprofloxacin
(Figure 1F). Strikingly, despite their similar taxonomic compositions, the predicted
metagenome of the STZ and ciprofloxacin-cotreated microbiota was distinct from that
of normoglycemic ciprofloxacin-treated controls. This is likely explained by the additive
effect of functionally redundant pathways changing in unison without contributing to taxa-
level significance. Overall, hyperglycemic communities had a greater variety of associated
MetaCyc pathways, with notable enrichment in nucleotide metabolism, monosaccharide
capture, menaquinone generation, aerobic respiration, and TCA cycle activity (Figure 1F).
Ultimately, this suggests that the STZ-treated microbiota has more significant differences in
functional potential than the normoglycemic microbiota after antibiotic exposure.

Given the host-dependent differences in predicted metagenome content, we next
sought to characterize the cecal metabolome in hyperglycemic and normoglycemic mice
during ciprofloxacin treatment using Q-TOF-MS (Figure 2). First, we profiled the diver-
sity of the cecal metabolome via PCoA paired with PERMANOVA, and found that both
hyperglycemia and antibiotic exposure dramatically shape the diversity of the metabolome
(Figure 2A). We then performed differential abundance testing to examine which predicted
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Q-TOF-MS metabolites and KEGG pathways were altered after ciprofloxacin exposure,
and which had altered abundances during antibiotic treatment in a host-dependent man-
ner (Figure 2B, Supplementary Materials). After ciprofloxacin treatment, hyperglycemic
communities were enriched for metabolites involved in purine metabolism, peptidogly-
can synthesis, and dietary-fiber components like isoflavonoids and phenylpropanoids
(Figure 2B). Simultaneously, metabolites involved in nitrogen metabolism, carbon fixation,
energy carrier generation, catabolism, pyruvate processing, and TCA activity were all
depleted in STZ-treated communities relative to normoglycemic controls (Figure 2B). It is
likely that the reduction in central carbon metabolites (pyruvate, TCA, energy carrier gener-
ation, etc.) reflects the diminished transcription of the affiliated pathways and represents a
ciprofloxacin-specific response akin to what was identified by Cabral et al. [4,37]. The spike
in purine and peptidoglycan metabolites may additionally indicate increased ciprofloxacin
sensitivity in the STZ-treated microbiome, as ciprofloxacin causes lethal stalling of DNA
replication that can induce the bioaccumulation of nucleotides, nucleosides, and cell wall
synthesis components [39–41].

Supporting evidence for host-dependent microbiome function during ciprofloxacin
treatment can be seen in the differentially abundant metabolites that are subjected to STZ
interaction (Figure 2C). STZ-treated communities uniquely exhibit an overall increase in
multiple sugars and sugar alcohols, including hexonic acids, ribitol, and pentose dur-
ing ciprofloxacin treatment, suggesting that STZ-induced hyperglycemia increases cecal
monosaccharide concentrations (Figure 2C). Multiple features involved in central carbon
metabolism showed host-specific regulation in response to ciprofloxacin, including STZ-
specific elevation in carnitine electron acceptors, nicotinate, and pyruvate oxime, and an
STZ-specific decrease in isocitrate and malate [42,43] (Figure 2C). These data strongly
suggest active differences in TCA cycle activity between STZ-treated and control mice
after ciprofloxacin exposure. Because modifications in the TCA cycle are a characterized
microbiome response to ciprofloxacin [4], differences in TCA activity may ultimately indi-
cate host-dependent ciprofloxacin susceptibility. We additionally observed STZ-specific
accumulation of nucleotide-generation metabolites, including conjugated and unconju-
gated uracil, inosine, and deoxyuridine (Figure 2C), which may indicate differences in
ciprofloxacin-related DNA replication rates between STZ-treated and control mice.

Other metabolites that were varied between hyperglycemic and normoglycemic
mice after antibiotic exposure included those involved in cholesterol metabolism, tryp-
tophan metabolism (indole-3-acetate), heme processing (dueteroporphyrin IX), amino
acid catabolism (3-dehydroshikimate, 6-methylnicotinamide, and ketovaline), and lipid
processing (Figure 2C) [44–46]. Together, these data highlight that even after antibiotic
exposure, host hyperglycemia is associated with significant changes in the metabolic envi-
ronment of the cecal microbiome, which undoubtedly impacts upon microbial function and
metabolic capacity.
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Figure 2. Streptozotocin-induced hyperglycemia is associated with metabolome divergence after
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ciprofloxacin treatment. (A) Bray–Curtis dissimilarity of Q-TOF-MS extracts from experimental
groups. (B) KEGG pathway enrichment of differentially abundant Q-TOF-MS metabolites after
ciprofloxacin treatment. Data represent STZ-treated mice versus normoglycemic controls. Split-
colored bars indicate that this biological pathway contains metabolites that were both enriched
and depleted. (C) Differentially abundant Q-TOF-MS metabolites in control and STZ-treated
mice during ciprofloxacin treatment. Data represent log2 fold change versus vehicle-treated con-
trols ± SEM. Numbers represent grouping by biological pathways: (1) monosaccharides, (2) cen-
tral metabolism and respiratory metabolites, (3) steroid and heme biosynthesis and processing,
(4) nucleotide metabolism, (5) amino acid metabolism. For full results see Supplementary Materials.
For all panels, n = 6 per group, with 2 technical replicates per group. For (A): permutational ANOVA
(** p < 0.01; *** p < 0.001).

4. Discussion

The key goal of this work was to expand upon the observation that streptozotocin-
induced hyperglycemia increased microbiome antibiotic susceptibility to amoxicillin, by
examining whether this trend held true for a structurally distinct antibiotic, ciprofloxacin.
Here, we present a discovery platform that pairs 16S rRNA sequencing data with pre-
dicted metabolite abundances to yield data that may inform the synergy between host
hyperglycemia and ciprofloxacin toxicity within the microbiome. In this work, we found
that induced hyperglycemia impacted community diversity and drastically modified the
composition of the cecal metabolome following ciprofloxacin treatment. We observed
notable differences in metabolites involved in respiration, central carbon metabolism, and
nucleotide metabolism, all of which are biological processes that are inherently involved in
microbial ciprofloxacin susceptibility.

Transcriptional modifications of nucleotide synthesis and salvage pathways have
previously been characterized as a microbial signature of ciprofloxacin susceptibility [4].
Ciprofloxacin has additionally been shown to induce significant changes in both gene
and protein expression within select species, with robust alterations to central carbon
metabolism, amino acid generation, and respiration being consistently reported [40,47,48].
In fact, mutations in core metabolic functions represent a primary pathway toward re-
sistance to this antibiotic, and the stimulation of these pathways is sufficient to sensitize
bacteria to ciprofloxacin [49,50]. Thus, modifications in TCA activity appear to be a con-
served microbiome response to this antibiotic. Our observed differences in respiratory
capacity (as indicated by predicted metagenome content and metabolite abundances) and
key ciprofloxacin-responsive pathways in STZ-treated hyperglycemic and normoglycemic
control mice may be indicative of divergence in microbiome function. For example, the
observed increase in monosaccharide import capacity and primary respiration is con-
gruent with the amoxicillin-specific findings presented in Wurster et al., where elevated
environmental sugar levels prompted an increase in phosphotransferase import and gly-
colysis within the hyperglycemic microbiota [5]. However, this hypothesis cannot be fully
confirmed without validated functional screening of the microbiome.

While these data have exciting implications, there are clear limitations in our experi-
mental methods that complicate biological interpretation and prevent the use of this data
set for mechanistic validation purposes. A key caveat of our metabolomic protocol is that
flow injection mass spectrometry does not include the chromatography separation that is
considered the gold standard of high-resolution MS within the field. Thus, it is likely that
there is some ambiguity in our metabolite annotations. In order to gain unambiguous high-
confidence ion annotation, further work would need to utilize both chromatography-based
separation and validation against reference standards, which is a labor-intensive process
that could take years, depending on the number of standards required [51]. Untargeted
metabolomics (such as Q-TOF-MS) provides the advantage of reporting the relative abun-
dance of metabolites, data that is easily integrated into other microbiome ‘omics datasets.
However, it is important to acknowledge that these data are not sufficient for reporting on
total metabolite abundance within samples [52]. Thus, we must interpret the data presented
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in this study within the context of an untargeted, discovery-based framework. Further stud-
ies will need to implement both higher-resolution machinery and targeted metabolomics
to quantify metabolite levels within these complex biological samples. Another major
caveat is that the untargeted metabolomics protocol used here cannot distinguish between
host-derived and microbially derived compounds. Thus, alternative strategies (such as
metagenomics or metatranscriptomics) will need to be implemented to confirm whether a
metabolite shift is bacterial in origin [5,51,53]. Another key limitation to consider is that
16S rRNA sequencing cannot reach species- and strain-level taxonomic classification [54].
Finally, the PICRUSt2 analysis utilizes 16S rRNA ASV data and is thus equally limited by
taxonomic resolution. Thus, any subsequent examination of the interplay between host
metabolism and antibiotic activity within the microbiome will need to rely on methods
within higher functional resolution to gain meaningful mechanistic insights.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics11050585/s1, supplementary material file.
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