
Systems

Feasible-metabolic-pathway-exploration technique

using chemical latent space

Taiki Fuji*, Shiori Nakazawa and Kiyoto Ito*

Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji-shi, Tokyo 185-8601, Japan

*To whom correspondence should be addressed.

Abstract

Motivation: Exploring metabolic pathways is one of the key techniques for developing highly productive microbes
for the bioproduction of chemical compounds. To explore feasible pathways, not only examining a combination of
well-known enzymatic reactions but also finding potential enzymatic reactions that can catalyze the desired struc-
tural changes are necessary. To achieve this, most conventional techniques use manually predefined-reaction rules,
however, they cannot sufficiently find potential reactions because the conventional rules cannot comprehensively
express structural changes before and after enzymatic reactions. Evaluating the feasibility of the explored pathways
is another challenge because there is no way to validate the reaction possibility of unknown enzymatic reactions by
these rules. Therefore, a technique for comprehensively capturing the structural changes in enzymatic reactions and
a technique for evaluating the pathway feasibility are still necessary to explore feasible metabolic pathways.

Results: We developed a feasible-pathway-exploration technique using chemical latent space obtained from a deep
generative model for compound structures. With this technique, an enzymatic reaction is regarded as a difference
vector between the main substrate and the main product in chemical latent space acquired from the generative
model. Features of the enzymatic reaction are embedded into the fixed-dimensional vector, and it is possible to
express structural changes of enzymatic reactions comprehensively. The technique also involves differential-
evolution-based reaction selection to design feasible candidate pathways and pathway scoring using neural-
network-based reaction-possibility prediction. The proposed technique was applied to the non-registered pathways
relevant to the production of 2-butanone, and successfully explored feasible pathways that include such reactions.

Contact: taiki.fuji.mn@hitachi.com or kiyoto.ito.kp@hitachi.com

1 Introduction

Microbial production of chemical compounds is an important con-
tributor to promote sustainable industries. Since the development of
a highly productive microbe often requires a huge amount of time
and effort, technologies for designing and constructing biological
functions of microbes on computers have become increasingly im-
portant to shorten the development period of such microbes. An
essential step in in silico microbial design technologies is metabolic-
pathway design in which a series of enzymatic reactions that pro-
mote desired chemical structural changes from a start compound
(metabolite) to a target compound are determined (Choi et al.,
2019). In addition to the selection of intermediate compounds, po-
tential enzymes catalyzing chemical reactions among the intermedi-
ate compounds should be found. Namely, to design highly
productive metabolic pathways, not only examining a combination
of well-known enzymatic reactions but also finding a combination
of potential enzymatic reactions that can catalyze the desired struc-
tural changes are necessary. Since it takes much manual and compu-
tational effort to explore all feasible metabolic pathways that
include such potential reactions, an efficient technique for exploring
such pathways is still necessary to shorten the development time of
highly productive microbes.

Although various in silico metabolic-pathway-exploration tech-
niques have been proposed (Wang et al., 2017), three major tech-
nical challenges for efficient metabolic-pathway exploration remain;
(i) how to represent an enzymatic reaction on a computer system,
(ii) how to design feasible-candidate pathways by combining a huge
number of potential enzymatic reactions and (iii) how to evaluate
the relevance of the feasible-candidate pathways. For the first chal-
lenge, most conventional techniques use a reaction�representation
method that involves manually preparing reaction rules defined in
advance and determining changes in the substructure focusing near
the reaction center based on the reaction rules (Araki et al., 2014;
Delépine et al., 2018; Hadadi and Hatzimanikatis, 2015; Kumar
et al., 2018; Moriya et al., 2010). While this representation method
accurately identifies small changes in partial structures such as a
functional group, they do not sufficiently identify the overall back-
bone structures involved in the substrate specificities of enzymatic
reactions. For the second challenge, conventional techniques often
explore feasible pathways by using rule-based logical operations
such as adding and removing functional groups or atoms. They have
an advantage in that unrealistic pathways that include unrealistic
compound structures and enzymatic reactions are not explored.
However, feasible pathways are not sufficiently explored because
these techniques do not take into account enzymatic reactions not
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existing in the operation rule. For the third challenge, validation of
the relevance of unknown enzymatic reactions also becomes a prob-
lem with conventional rule-based techniques. Therefore, chemical
embedding that can quantify the feature of compound structures
more precisely than conventional techniques, such as variational
autoencoder (VAE), is necessary.

We propose a feasible-metabolic-pathway-exploration technique
using the chemical latent space acquired from a deep generative
model for compound structures. The deep generative model for
compounds was recently proposed to map a compound structure
described in simplified molecular input line entry system (SMILES)
styles to a latent vector space (Gómez-Bombarelli et al., 2018; Jin
et al., 2018; Kusner et al., 2017). By using the chemical latent space,
this technique involves a method with which enzymatic reactions
are represented as a difference vector between the latent vectors of a
main substrate and that of a main product. By using metabolic reac-
tion representation, it is possible not only to determine changes in
the overall backbone structure related to substrate specificity but
also to eliminate the need for reaction rules that have been required
for each reaction so that reactions can be performed uniformly.
Thanks to the identical dimensions of the latent vectors, the latent
vector(s) of intermediate compound(s) between the start and target
compounds can be expressed by simple mathematical operation
among the reaction-feature vectors. Moreover, the latent vector of
each intermediate compound can be reconstructed using the deep
generative model and used for new compound structures. We also
developed a differential evolution (DE)-based feasible-pathway-
design technique of candidate pathways by combining potential
enzymatic reactions, and a neural network (NN)-based-reaction-
possibility prediction method to evaluate the relevance of potential
enzymatic reactions and feasible pathways as candidate pathways.
This design technique selects the reaction-feature vector(s) and mini-
mizes the squared error between the pathway-feature vector, which
was calculated by the latent vectors of the start and target com-
pounds, and the sum of selected reaction-feature vectors. The scor-
ing method calculates the reaction-possibility value and overall
pathway score of each reaction in consideration of the substrate spe-
cificity in the latent space. To verify the effectiveness of the proposed
technique, we applied it to pathway-exploration problems that in-
clude both registered and non-registered reactions.

2 Materials and methods

2.1 Feasible-metabolic-pathway exploration and related

work
Exploration of metabolic pathways involves discovering a series of
enzymatic reactions that promote a desired structural change in
chemicals from a start compound to a target compound. During the
exploration, it is necessary not only to explore all the pathways con-
sisting of several known enzymatic reactions registered in curated
biological pathway databases (DBs), such as Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa and Goto, 2000), Metacyc
(Caspi et al., 2018) and MetaNetX (Moretti et al., 2016) but also
feasible pathways composed of enzymatic reactions that have not
been registered in the DBs but potentially catalyze intermediate
compounds (Fig. 1).

For efficient exploration of such feasible pathways on computer
systems, it is useful to use a method with which each enzymatic reac-
tion is regarded as an arithmetic expression, i.e. vectors or matrices,
and an entire pathway can be computed as an arithmetical superpos-
ition of individual reactions. By using such a mathematical method,
a structural change between a substrate and product catalyzed by an
enzymatic reaction can be expressed as an addition, substitution or
rearrangement; thus, a variety of potential enzymatic reactions and
intermediate compounds can be easily created and explored using
computational algorithms.

Reaction representations, such as molecular fingerprints, based
on certain substructure-counting methods, that represent a com-
pound structure with a vector consisting of the number of defined
partial structures constituting the whole structure have been

proposed (Araki et al., 2014; Kumar et al., 2018). They also define a
difference vector obtained by subtracting the structural-feature vec-
tor of the main substrate from a main product as a reaction feature
and associated with the Enzyme Commission (EC) number by using
the metabolic pathway information of KEGG. Therefore, it is pos-
sible to acquire the structural-feature vectors of a product com-
pound by adding an arbitrary reaction-feature vector to the
structural-feature vectors of the substrate compound.

One problem in such a conventional fingerprint-based vector
representation is that a molecular fingerprint vector cannot repro-
duce a compound structure because it does not have information on
the connectivity among partial structures. In the case of a fingerprint
of an unknown compound that is catalyzed by potential enzymes, it
is only possible to specify a known similar compound structure by
performing a structure search. Furthermore, in the case of com-
pounds having different absolute configurations, i.e. isomers, even
known compounds cannot be distinguished. To solve this problem,
it is necessary to develop a pathway-exploration technique using an-
other mathematical method of enzymatic reactions that satisfies the
following two points:

• Compounds in the metabolic pathway can be expressed in a dis-

tributed representation with a feature space of a fixed dimension.
• A structure-feature vector of a product after adding a reaction-

feature vector to a structure-feature vector of a substrate can be

decoded to a compound structure without losing information on

the connectivity.
A deep generative model for chemical compounds, known as a

molecular autoencoder, is an innovative technique of compound ex-
pression based on the variational Bayesian method, in which strings
of the SMILES of compounds are encoded to a fixed dimension of
latent vectors (Gómez-Bombarelli et al., 2018). To satisfy the above
requirements, therefore, the proposed technique uses latent vectors
based on the junction-tree VAE (JT-VAE), which is a state-of-the-art
deep generative model for chemical compounds (Jin et al., 2018).

2.2 Proposed feasible-pathway-exploration technique
2.2.1 Overall structure

Figure 2 illustrates the overall structure of the proposed technique.
The technique is roughly divided into two steps: reaction-feature
computation and pathway exploration. In the first step, reaction fea-
tures of compounds on a metabolic pathway are computed as feature
vectors by using a deep generative model and accumulated in the
reaction-feature DB. Pathway exploration consists of reaction-feature
selection in which candidate pathways are explored using the feature
vectors stored in the reaction-feature DB and pathway scoring in which
the most relevant pathway is selected from the candidate pathways.

2.2.2 Reaction-feature vectors using chemical latent space

As mentioned above, we use encoders based on the JT-VAE to en-
code a certain structure of a chemical compound into a latent vector.
Figure 3 shows an overview of the JT-VAE. It has two types of

Fig. 1. Feasible-metabolic-pathway exploration. There are often more than one

pathway for producing target compound from start compound in metabolic system.

In addition to such known pathways, unknown enzyme reactions and compounds

that are not registered in database (DB) may be included. Namely, there may be sev-

eral feasible pathways from start compound to target compound that include both

registered (gray solid lines) and non-registered (orange dotted lines) reactions

Feasible-metabolic-pathway-exploration technique using chemical latent space i771



encoders. One is a graph encoder and the other is a tree encoder.
Tree decomposition on the basis of the feature-tree technique (Rarey
and Dixon, 1998) is carried out for evaluating the molecular similar-
ity between small organic compounds. Instead of a linear representa-
tion, such as fingerprints, a more complex description, a feature
tree, is calculated for a molecule. Such a characteristic of the junc-
tion tree is effective for representing the overall backbone structure
of compounds; thus, the tree-latent vector encoded with the JT-VAE
is expected to also represent the compound structure.

Figure 4 illustrates the method for generating reaction-feature
vectors by using the encoders of the JT-VAE. First, the encoders
are trained using a compound dataset in a compound DB before
computing the reaction-feature vectors. Then, metabolic-pathway
information, such as ‘glycolysis’, is parsed from a metabolic path-
way DB, such as KEGG. Next, an SMILES string of a compound
on the metabolic pathway is input to the trained encoders of the
JT-VAE. A latent vector (zC00267) of the compound is generated
and mapped to a latent space of N-dimensions. A reaction-feature
vector is generated by subtracting the latent vector of the main
substrate from that of the main product with the following
equation:

rec ¼ zpro � zsub (1)

where zpro is a latent vector of a product compound and zsub is that
of a substrate compound, as shown in Figure 4.

In this manner, all reactions on metabolic pathways in the
metabolic-pathway DB are encoded to reaction-feature vectors and
stored in the reaction-feature DB. Simultaneously, each reaction-
feature vector is recorded and assigned an EC number. In Figure 4,
e.g. the reaction-feature vector rec2:7:1:1 generated from the latent
vectors zC00267 and zC00668 of the main substrate a-D-glucose (KEGG
Compound ID: C00267) and main product a-D-glucose 6-phosphate

(KEGG Compound ID: C00668) is recorded with the EC number of
2.7.1.1.

2.2.3 Pathway design of candidate pathways

Figure 5 shows the procedure of the pathway-design step of candi-
date pathways. This step consists (i) pathway-feature calculation,
(ii) random-subset generation, (iii) reaction selection, (iv)
combinational-reaction ordering and (v) unrealistic-pathway
removal.

First, a pathway-feature vector p is computed as a difference vec-
tor obtained by subtracting the latent vector of a target compound

Fig. 2. Overview of proposed technique. It involves reaction-feature-computation and pathway-exploration steps. In reaction-feature computation, variational autoencoder

(VAE) models are trained with public compound DB. By using latent vectors of compounds, reaction-feature vectors are then calculated. Pathway exploration consists of path-

way design and pathway scoring. Namely, several candidate pathways are designed and scored

Fig. 3. Architecture of junction tree VAE (JT-VAE) (Jin et al., 2018). JT-VAE has two encoders, graph and tree. Input of tree encoder is junction tree decomposed using fea-

ture-tree technique (Rarey and Dixon, 1998). Color node in feature tree represents substructure of compound

Fig. 4. Explanation of reaction-feature vector. First, latent vectors of compounds

registered in metabolic-pathway DBs are acquired from JT-VAE encoders. Then, by

using latent vectors of main substrate and product on basis of metabolic-pathway

DBs, reaction-feature vector, which is defined as difference vector of these latent

vectors, is obtained. Reaction-feature vector of EC2.7.1.1 subtracts hydroxy group

and adds phosphate group to a-D-glucose

i772 T.Fuji et al.



ztarget from a start compound zstart (Fig. 5(1)). Namely, the pathway-
feature vector p is derived from the following equation:

p ¼ ztarget � zstart: (2)

Next, M reaction-feature vectors are randomly selected from the
reaction-feature DB. The selected vectors are defined as a reaction
subset to reduce the calculation amount and enhance search effi-
ciency (Fig. 5(2)).

Then, a set of reaction-feature vectors for designing pathways are
determined using an optimization method to minimize the squared
error between the pathway-feature vector and sum of the reaction-
feature vectors in the set (Fig. 5(3)). In other words, the objective
function of the optimization is defined with the following equation:

min jej2 ¼
XN�1

j¼0

pj �
XM�1

i¼0

xiri;j

 !2

s:t: jej � Th;XM
i¼1

xi � K;xj 2 f0; 1; 2; :::;Kg

(3)

where pj is a value for the pathway-feature vector p of jth dimen-
sion, xi is a integer value for the ith subset index, ri;j is a reaction-
feature vector’s value of the ith subset index and jth dimension, Th
is the error threshold and K is the maximum number of reaction
steps.

Since the objective function uses the square error e between the
sum of the selected reaction-feature vectors and pathway-feature
vector, a penalty function that increases non-linearly according to
the maximum number of reaction steps is provided. Namely, the
minimization problem is dealt with as a non-linear integer program-
ming (NLP) problem.

To solve this NLP problem, we apply a DE technique (Storn and
Price, 1997) for its high search performance despite it being a simple
algorithm. We introduce a fitness function f ðxÞ into the DE tech-
nique, which is derived from the square error jej2 among the feature

vectors and a penalty function k that increases non-linearly accord-
ing to the maximum number of reaction steps provided as a con-
straint condition.

min f ðxÞ ¼ jej2 þ k! min (4)

k ¼ C� exp ðxlenÞ2 ðxlen > KÞ
0:0 ðxlen � KÞ

(
(5)

where xlen is the number of selected reactions and C is a constant
parameter. Each individual in the initial population is initialized
such that the sum of the elements is within the maximum number of
reaction steps. A binary DE algorithm is used in which the value of
each element after the evolution calculation is rounded off to handle
as an NLP problem. The binary DE algorithm for reaction-feature
selection is described as Algorithm 1. By applying the binary DE al-
gorithm to reaction-feature selection, a set of reaction-feature vec-
tors is obtained as a set of component vectors for designing the
desired pathway-feature vector.All candidate pathways are then
constructed by ordering all combinations of the reaction-feature vec-
tors in the set (Fig. 5(4)). Simultaneously, intermediate compounds
in the candidate pathways are reconstructed using the decoder of the
JT-VAE. Namely, the reaction-feature vectors are sequentially
added to the latent vector of the start compound while obtaining la-
tent vectors of intermediate compounds at each segment in the can-
didate pathways. These latent vectors of the intermediate
compounds are then reproduced as a compound structure SMILES
string by the decoder of the JT-VAE.

Finally, we evaluate the candidate pathways and remove unreal-
istic ones in the following manner (Fig. 5(5)). In the ordering process
of the reaction-feature vectors in Figure 5(4), intermediate com-
pounds having unrealistic structures are often included in candidate
pathways due to the ambiguous characteristics of the latent space of
the JT-VAE. To eliminate such a pathway, we calculate changes in
the molecular weight from a substrate and product at each segment
of the candidate pathways. Namely, we omit a pathway including a

Fig. 5. Procedure of pathway design of candidate pathways. Reaction-feature-vector sets are selected using optimization method to minimize squared error between pathway-

feature vector and sum of selected reaction-feature vectors. This figure illustrates example in which three reaction-feature vectors (ra; rb and rc) are selected. There are total of

six combinational orders. Intermediate compounds are reconstructed using JT-VAE decoder. Finally, unrealistic pathway(s) is removed based on molecular weight changes,

and remaining candidate pathways are added to candidate-pathway list
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segment having greater change in molecular weight than the prede-
fined threshold.

By repeating steps (i)�(v) several times, it is possible to obtain
candidate pathways from the start compound to target compound.

2.2.4 Pathway scoring of candidate pathways

By using the reaction-feature vectors, we also developed a pathway-
scoring method to evaluate the feasibility of candidate pathways
designed according to the method explained in the previous section.
Reaction-possibility prediction is carried out using the voting
scheme that averages the outputs of the sets of discriminators
trained with different datasets.

The voting scheme is an effective method for outputting the pre-
diction values in terms of reducing the rejection rate and/or improv-
ing the accuracy rate (Battiti and Colla, 1994). A general binary
classification cannot deal well with real reactions that are mistaken-
ly judged as virtual or reactions that have the possibility of reaction
that would actually occur but tagged as a virtual reaction. ‘Virtual’
means that the reaction is virtually calculated on computer and not
registered in KEGG. To solve this problem, we avoid complete rejec-
tion by using the voting scheme for an output of an ensemble of
NNs. That is, an output is not as a value of real (1) or virtual (0)
value but a reaction-possibility value from 0.0 to 1.0 with
ambiguity.

Figure 6a illustrates the ensemble of NNs and the training of
each NN. Each reaction-possibility value vr is acquired from the en-
semble of NNs. Each NN takes the input as a pair of a reaction-
feature vector and substrate-latent vector and outputs 0 or 1. In
training, multiple weights are acquired when performing R-fold
cross validation for each dataset (the number of datasets is Q). The
registered enzymatic-reaction data are set as real data (labeled as
1.0) and non-registered data are set as virtual data (labeled as 0.0).

The total number of NN models is Q�R. The average of these out-
puts is taken, then a vr is calculated from 0.0 to 1.0.

Figure 6b shows how the pathway-feasibility value vp of each
candidate pathway is obtained when three reactions are selected in
the pathway from the start compound to the target compound.
When three reactions are selected, there will be two intermediate
compounds. That is, in the latent space, the pathway-feature vector
from the latent vector S of start compound to that of target com-
pound T are represented by three reaction feature vectors (r1; r2 and
r3). In addition, two intermediate compounds are represented as Ia

and Ib. In each reaction, the latent vector of the substrate and the re-
action feature vector are input to the above ensemble NN to obtain
the vr. By multiplying all the obtained vrs, the vp is obtained.

The candidate pathways are then sorted by the score s calculated
with the absolute error jej and vp, as shown in Equation (6).

s ¼ jej
vp

(6)

3 Results

3.1 Datasets and VAE training
The VAE-training dataset of SMILES consisted of the ZINC dataset
(Sterling and Irwin, 2015) used in the JT-VAE and compound data
acquired from metabolic-pathway DB, KEGG. The SMILES strings
of the compounds of the metabolic-pathway DBs were acquired
from PubChem (Kim et al., 2016) and ChEBI (Degtyarenko et al.,
2007). In the training dataset, compounds containing ‘*’ indicating
a wild card and ‘.’ of an ionic bond were excluded. Over 260K
pieces of compound data were prepared under these conditions. The
number of training epochs was set as 10. By applying tree decom-
position over 260K molecules, we collected our vocabulary set V of
size jVj ¼ 1279. The hidden state dimension was set as 450 for all
modules in JT-VAE and the latent bottleneck dimension was set as
56 by referring to JT-VAE (Jin et al., 2018).

The enzymatic-reaction dataset for pathway design consisted of
9794 pieces of reaction data acquired from the metabolic-pathway
DBs. Each piece of data includes an EC number and reaction pair of
the main substrate and main product. By using the trained encoder
of the JT-VAE, the latent vectors of compounds were acquired from
the metabolic-pathway DBs (Kanehisa and Goto, 2000) and com-
pound DBs (Degtyarenko et al., 2007; Kim et al., 2016). The reac-
tion vectors of the enzymatic-reaction dataset were generated using
the chemical-latent vectors. Then, each reaction vector was recorded
to the dataset and assigned an EC number.

Fig. 6. Pathway-scoring method of candidate pathways. (a) Ensemble of neural net-

works (NNs) is used for predicting reaction-possibility value. Multiple NN model

weights are obtained from training using each dataset. Each NN outputs 0 or 1.

Reaction-possibility value vr from 0.0 to 1.0 is finally obtained using voting scheme.

(b) This is example of pathway-feasibility value vp by multiplying three reaction-

possibility values of reaction feature vectors (vr1; vr2 and vr3)

Algorithm 1 Binary DE algorithm for reaction selection

Initial population P(g¼0) is P individuals generated randomly

Evaluate P(g¼0)

Set individual’s length as reaction subset size M

for generation g¼1 to Terminate do

for individual p¼0 to P – 1 do

Generate random numbers a, b, c 2 [0, P – 1]

Select three individuals xa; xb; xc as parents

for parameter j¼0 to M – 1 do

Calculate mutator vj ¼ xa;j þ Fðxb;j � xc;jÞ
Modify value to binary 0 or 1 as follows:

if vj >¼ 0:5 then

Set vj ¼ 1:0

else

Set vj ¼ 0:0

end if

Compute crossover as follows:

Generate uniform random rnd � Uð0; 1Þ
if rnd < CR then

Set uk ¼ vj

else

Set uk ¼ xp;j

end if

end for

if f ðuÞ <f ðxp) then

Replace xp with u

end if

end for

end for
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In the training of the NN-based reaction-possibility prediction
for pathway scoring, four types of datasets were used. The details of
virtual datasets are given in Section 3.5.1.

3.2 Reaction representation
3.2.1 Reconstruction performance of metabolic pathway

compounds

Although a study on the JT-VAE using the ZINC dataset reported
that the reconstruction accuracy was �70% (Jin et al., 2018), the re-
construction accuracy of the KEGG compound dataset we used was
�56%. KEGG compounds contain relatively large numbers of
macrocyclic and long-chain compounds. The reconstruction of these
compounds has bad chemistry with the JT-VAE. This is because the
estimation becomes difficult when the number of neighbors in the
junction tree increases or the number of prediction steps increases.

3.2.2 Enzymatic reaction classification performance

EC number classes were set as the same EC number class of each
digit (i.e. one digit: ECX; two digits: ECX.X; three digits:
ECX.X.X). Each EC number (one digit) had the following number
of reaction-data pieces (Table 1). The reaction-feature vectors of the
same EC number class should be distributed closely in the feature
space because the same type of enzyme may work for the same type
of structural change. To examine reaction-feature representations
useful for pathway design, a combination of tree- and graph-latent
vectors (normal), tree-latent vector and graph-latent vector of the
JT-VAE were compared on the basis of the classification accuracies
of reaction-feature vectors by using linear discriminant analysis
(LDA). Figure 7 shows the classification results from the LDA for
the reaction-feature vectors of among latent vectors. The confusion
matrices of two digits for each vector were calculated by aggregating
the confusion matrices of the results under the condition that the
digit of the EC number was three and the number of data pieces was
more than one. As a result, the classification accuracies of the tree-
latent vector were equal to the accuracies of combined tree- and
graph-latent vectors. It is also suggested that classifying the
reaction-feature vector using only the graph-latent vector was much
more difficult than using the tree-latent vectors. These results indi-
cate that the use of tree-, or both tree and graph-latent vectors can
determine the characteristics of each enzyme class. From the above
results, tree-latent vectors were used for the pathway design of can-
didate pathways. The calculation cost of pathway design can be
reduced as compared to using tree- and graph-latent vectors.

3.3 Reconstruction results after enzymatic reaction in

latent space
By using the JT-VAE to decode the latent vectors of products
obtained by adding reaction-feature vectors to the latent vectors of
substrates, the structures of the products in which the desired struc-
tural change occurred in the same enzyme class were obtained.
Figure 8 shows example results of the enzymatic reactions EC1.2.1
called dehydrogenase in the latent space. ‘Registered reaction (real)’
means that the reaction is registered in the KEGG. ‘Virtual’ means
that the reaction is virtually calculated on computer. The
‘Registered reaction (real)’ of EC1.2.1.3 registered in KEGG is a re-
action from which carboxylate (KEGG Compound ID: C00033) is
produced from aldehyde (KEGG Compound ID: C00084). Figure 8
shows three examples of enzyme reactions in latent space by using
the reaction-feature vector of EC1.2.1.3. The results in ex. 1 and ex.
2 in the figure show that the enzymatic reactions have the same
structural changes as ‘Registered reaction (real)’. In addition, the re-
sult in ex. 3 shows that the enzymatic reaction cannot occur bio-
logically because the substrates do not have essential structures for
catalyzation of the enzymes.

3.4 Pathway design of candidate pathways
We designed candidate pathways under the following conditions.
Only tree-latent vectors were used for the selection of the reaction-
feature vectors. The DE’s parameters, i.e. scaling parameter F and
crossover rate CR, were set as 0.5 and 0.5, respectively. The

Table 1. Number of data pieces for each EC number class (one

digit)

EC number class 1 2 3 4 5 6 7

Number of data pieces 3845 2667 1287 1158 488 344 4

Fig. 7. Confusion matrices for classification accuracies of each EC number class (digit: 2, classifier: LDA). (a) Tree & graph means that combination of tree- and graph-latent

vectors of JT-VAE were used, (b) tree-latent vector was used and (c) graph-latent vector was used

Fig. 8. Enzymatic reactions EC1.2.1.3 in the latent space
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constant parameter C of Equation (5) was set to 1000.0. The error
threshold Th was set as 50.0. The number of populations was set to
2000, and that of generations was set to a maximum of 50. The
threshold of molecular weight check for omitting unrealistic path-
ways was set as the amount of molecular weight change 63 between
the main substrate and the main product of the registered reaction
corresponding to the selected EC number.

We confirmed the change in the number of candidate pathways
with respect to the subset size. Figure 9 shows the transitions in the
number of candidate pathways when the number of repetitions was
set to 2000 and the subset size was changed from 100 to 1000 in
steps of 100. Each pathway included one or two reaction steps to
the target compound. The transitions are (A) two registered reac-
tions, (B), (C) one non-registered reaction (two types) and (D) a reg-
istered reaction and non-registered reaction. The number of
explored candidate pathways tended to decrease as the size of the
subset increased. This is because the larger the subset size, the higher
the probability that the subset will contain a particular desired reac-
tion combination. In the examples of the pathways including one or
two reaction steps, the reduction rate tended to slow at subset sizes
around from 400 to 500. The number of candidate pathways varied
widely from pathway to pathway. The number of candidate path-
ways tended to increase as the number of combination patterns of
enzyme reactions meeting a predetermined threshold and having
similar features increased. The pathways of (A) and (B) had a
smaller number of candidate pathways than those of (C) and (D).
Moreover, the difference between pathway of (C) and pathway of
(D) was stable when the subset size was over 500. The number of
candidate pathways decreased as the number of reactions increased.
Hence, it is necessary to set short pathways to explore many candi-
date pathways with this subset method. The difference in the num-
ber of candidate pathways is related to the number of structures that
exhibit the same structural change.

3.5 Pathway scoring of candidate pathways
3.5.1 Results of reaction-possibility prediction

We applied the reaction-possibility prediction method using the en-
semble of NNs to the enzymatic reactions that include both regis-
tered (real) reactions and virtual reactions. As described in Section
3.5.1, a reaction-feature vector and the tree- and graph-latent vector
of a substrate were used for input. We considered the following two
terms regarding the input.

1. Whether an enzyme reaction pair that constituted the reaction

feature vector is real or virtual.

2. Whether the substrate constituted the reaction-feature vector.

Therefore, we fist prepared the following four types of datasets
for training the NNs.

a. ‘Real’ dataset consisting of a real enzymatic reaction-feature vec-

tor registered in KEGG and the latent vector of the substrate

used for calculating the reaction-feature vector of the enzymatic

reaction (Real pair, Substrate in).

b. ‘Virtual-1’ dataset consisting of a real enzymatic reaction-

feature vector obtained from KEGG and the latent vectors of

substrates not used for calculating the reaction-feature vector of

the enzymatic reaction (Real pair, Substrate out).

c. ‘Virtual-2’ dataset consisting of a virtual enzymatic reaction-

feature vector consisting of the latent vector of the substrate and

product, which were randomly selected, and the latent vector of

substrate used for calculating the reaction-feature vector of the

enzymatic reactions (Virtual pair, Substrate in).

d. ‘Virtual-3’ dataset consisting of a virtual enzymatic reaction-

feature vector consisting of the latent vector of the substrate and

product, which were randomly selected, and the latent vector of

the substrate which was not used for calculating the reaction-

feature vector (Virtual pair, Substrate out).

The ‘Real’ dataset had 9794 pieces of enzymatic reaction data
registered in KEGG. In addition, the number of each virtual type of
dataset was 10. Each virtual dataset had 10,000 pieces of data.
Therefore, one training dataset combining real and virtual data con-
sisted of 19,794 pieces of data. In the training, 150 weights were
acquired when carrying out 5-fold-cross validation for each dataset.

Each NN had three full-connected middle layers (64, 32, 8). All
activation functions were set as the Rectified Linear Unit. Each
model outputs 0 or 1 for each input. The average of these 150 out-
puts was taken, and finally a reaction-possibility value was calcu-
lated from 0.0 to 1.0.

Table 2 lists the results of the average and standard deviation of
the reaction-possibility prediction for each type of data. We con-
firmed that the scores of the real and virtual data significantly dif-
fered. The average value of the ‘Real’ data was close to 1.0.
However, those of the ‘Virtual-1’ and ‘Virtual-2’ data were close to
or less than 0.5. The values of ‘Virtual-3’ data were very small. The
more realistic elements were included, the higher the possibilities of
reactions were, and the virtual data were not completely 0.0. This is
a reasonable result because a reaction that may be determined to be
real is actually included when estimating an unregistered reaction.

3.5.2 Results of candidate-pathway scoring

The performance of reaction-possibility prediction was verified
using a part of the ‘glycolysis’ pathway. Specifically, the feasibility
value of each candidate pathway acquired using the reaction-
possibility prediction method was verified when the pathways were
designed based on the condition that all reaction feature vectors are
used in the pathway from a-D-glucose 6-phosphate (KEGG
Compound ID: C00668) to glyceraldehyde 3-phosphate (KEGG
Compound ID: C00118). That is, the selected enzymatic reactions
were EC5.3.1.9, EC2.7.1.1 and EC4.1.2.13. Figure 10 shows the
results of the pathway-feasibility values of candidate pathways. It
should be noted that, after reconstruction of compounds, some path-
ways may be removed by pruning the pathway based on the amount
of change in molecular weights. We confirmed that the registered
pathway had the highest feasibility value and that pathway scoring

Fig. 9. Transition in number of candidate pathways when number of repetitions was

set to 2000 and subset size was changed from 100 to 1000 in steps of 100. The tran-

sitions are (A) pathway from C00631 to C00022 including two registered reactions

from (B) pathway from C02233 to C02845 including one non-registered reaction,

(C) pathway from C03044 to C02845 including one non-registered reaction and

(D) pathway from C00810 to C02845 including one registered reaction and non-

registered reaction

Table 2. Results of reaction-possibility prediction (max: 1.0; min:

0.0)

Substrate in Substrate out

Real pair 0:9960:02 0:5460:23

Virtual pair 0:3560:17 0:0960:12
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indicates that pathway pruning using the reaction-possibility value
can also be applied.

3.6 Feasible pathway exploration
We applied the proposed technique to non-registered pathways to
verify its performance. Figure 11 shows two enzymatic reactions of
validation pathways that are non-registered pathways for producing
the target compound 2-butanone (KEGG Compound ID: C02845)
reported in previous studies (Chen et al., 2015; Srirangan et al.,
2016).

We first investigated the reaction-feature vectors closest to the
two types of reported non-registered reactions in each enzymatic re-
action class of three digits. We then verified whether the pathways
could be explored using the proposed technique. Each reaction-
feature vector was calculated from the difference between the latent
vector of each target compound and those of the precursor. The
pathway design of candidate pathways was carried out using only
the tree-latent vector of the JT-VAE. The pathway score and each
reaction-possibility value of the enzymatic reactions were also out-
put with the reaction-possibility prediction method.

We explored feasible pathways connecting metabolic pathways,
as shown in Figure 11. Validation pathway A was reported by
Srirangan et al. (2016). This pathway includes the non-registered

enzymatic reaction in which 2-butanone is generated from 3-oxo-
pentanoate (KEGG Compound ID: C02233). The EC number of the
corresponding reaction is 4.1.1.4. The enzymatic reaction of
EC4.1.1.4 registered in KEGG is a reaction from which acetone
(KEGG Compound ID: C00207) is produced from acetoacetate
(KEGG Compound ID: C00164). This pathway reports a pathway
involving a compound with CoA, but since it is difficult to target a
long compound such as CoA with the JT-VAE, we explored from
the precursor, 3-oxopentanoate. Namely, we applied the proposed
technique to the pathway when 2-butanone was set as the target
compound and 3-oxopentanoate as the precursor was set as the start
compound. Validation pathway B was reported by Chen et al.
(2015). This pathway includes the non-registered enzymatic reaction
from which 2-butanone is produced from 2,3-butanediol (KEGG
Compound ID: C003044). The EC number of the corresponding re-
action is 4.2.1.28. The enzymatic reaction of EC4.2.1.28 registered
in KEGG is a reaction from which propanal (KEGG Compound ID:
C00479) is produced from propane-1,2-diol (KEGG Compound ID:
C00583). For validating pathway B, pathway exploration was con-
ducted with the proposed technique using acetoin (KEGG
Compound ID: C00810), which is a precursor of the precursor, as a
start compound. We confirmed that each reaction-feature vector
generated by the substrate and product described in each study was
very similar to the reaction feature-vector of the EC number
described in those studies. In both enzymatic reactions, the EC num-
ber of the most similar reaction-feature vector in the relevant EC
number class (three digits) matched the number described in those
papers. Moreover, by using the proposed technique, the feasible
pathways including potential pathways reported in the previous re-
search (Chen et al., 2015; Srirangan et al., 2016) could be explored,
as shown in Figure 11, i.e. red dotted lines. Pathway B from pyru-
vate to 2-butanone includes four or five reactions. However, when
2-butanone was explored as the target compound, the correct pathway
was obtained for one or two step reactions to 2-butanone. Namely,
we obtained correct pathways when 2,3-butanediol or acetoin was set
as the start compound. We confirmed that if the number of reactions
is three or more, the probability that the correct reactions were
included in the subset decreases; thus, exploration becomes difficult.

4 Discussion and conclusions

We proposed a feasible-pathway-exploration technique, which involves
(i) reaction representation using chemical latent space for an enzymatic
reaction on a computer system, (ii) candidate-pathway design using a

Fig. 10. Results of candidate-pathway scoring. Pathway from a-D-glucose 6-phos-

phate (KEGG Compound ID: C00668) to glyceraldehyde 3-phosphate (KEGG

Compound ID: C00118) was used. Selected enzymatic reactions were EC5.3.1.9,

EC2.7.1.1 and EC4.1.2.13. There were six combinations. Each line indicating each

reaction-feature vector is in different color, and thickness of line corresponds to

value of each reaction possibility

Fig. 11. Results of exploring feasible pathways. Pathway from Pyruvate (KEGG Compound ID: C00022) to 2-butanone (KEGG Compound ID: C02845) and pathway from

acetyl-CoA (KEGG Compound ID: C00024) to 2-butanone are reported in Srirangan et al. (2016) and Chen et al. (2015), respectively, but both reactions from precursors to

2-butanone are not registered in KEGG. Non-registered reactions are represented as red dotted lines. Moreover, vrs are reaction-possibility values. Both reactions were

explored using proposed technique
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DE algorithm by combining potential enzymatic reactions and (iii)
pathway scoring using an NN-based reaction-possibility prediction
method for determining the pathway-feasibility values of the candidate
pathways. We applied the proposed technique to the non-registered
pathways relevant to the production of 2-butanone. The proposed
technique explored feasible pathways including non-registered enzym-
atic reactions.

From the results shown in Figures 8 and 11, the same structural
change as the relevant enzyme reaction can occur by adding the
reaction-feature vector to the latent vector of the substrate. As
shown in Figure 8 for ‘Virtual 3’, deviating reactions from the
enzyme-reaction rules were confirmed because the enzyme-reaction
rules were not applied, although the degree of freedom of the reac-
tion representation was high. We removed the pathways including
such reactions based on the amount of change in molecular weight.
With a hybrid method applying the minimum enzyme-reaction rules
to reaction representation, a more accurate solution can be expected
to this problem.

The tree-latent vector of the JT-VAE used for pathway explor-
ation was useful for classification of enzyme reactions and pathway
design, confirming that it can capture the substrate specificity of en-
zyme reactions. This is because the feature-tree technique (Rarey
and Dixon, 1998), which deals with substructures as chunks, can
capture the similarity of changes in the overall backbone structure.
Moreover, in the pathway design of candidate pathways, the binary
DE algorithm was simply applied to the NLP problem whose dimen-
sion was large in combination with the subset method. This is a very
effective method in the exploration of pathways including one or
two reactions. Namely, the feasible pathways could be explored
when the precursor of a target compound or the compound before
the precursor was set as the start compound. The use of the subset
method raised a problem in that an effective solution could not be
provided unless the corresponding reaction was included due to the
increase in the number of reactions. To solve this problem, cluster-
ing the features of the reaction in advance and applying a multi-step
search using the center vector are effective. This enables searches
that target all reactions while maintaining search efficiency. A
method with which the reaction-feature vector DB is formed into a
tree structure is also effective.

From the results in Figure 11, the feasibility values of candidate
pathways using the NN-based reaction-possibility prediction
method were near 1.0 for actual pathways and reactions not regis-
tered in KEGG but reported in the paper. The values were lower for
non-registered reactions not reported. Therefore, we succeeded in
making the reaction-possibility prediction method based on the
registered-reaction DB. In pathway scoring, it is necessary to score
with higher accuracy by gathering the enzymatic reactions in other
DBs and papers. It is effective not only to judge whether there is a
registered enzymatic reaction but also to carry out training with an
index such as a physical quantity relating to the enzymatic reaction.
For example, it may be possible to incorporate indicators such as
toxicity and naturalness.

Regarding future challenges for chemical VAEs, a technique for
improving compound-reconstruction accuracy and dealing with the
compounds excluded in this paper is necessary. There is a need for
technology that can use long-chain compounds, which have long
SMILES character strings, compounds containing macrocycles
and those represented by ionic bonds that cannot be ignored in
metabolic pathways. As a state-of-the-art technique, a hyper-graph
grammar for chemical structures was proposed (Kajino, 2019). This
technique has higher compound-reconstruction accuracy than using
JT-VAE. We will improve the proposed technique so that multi-step
pathways can be explored more accurately.
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Stockholmsmässan, Stockholm, Sweden, Jul 10, 2018-Jul 15, 2018, pp.

2328–2337.

Kajino,H. (2019) Molecular hypergraph grammar with its application to mo-

lecular optimization. In: International Conference on Machine Learning,

Long Beach, CA, USA, Jun 10, 2019-Jun 15, 2019, pp. 3183–3191.

Kanehisa,M. and Goto,S. (2000) KEGG: Kyoto encyclopedia of genes and

genomes. Nucleic Acids Res., 28, 27–30.

Kim,S. et al. (2016) PubChem substance and compound databases. Nucleic

Acids Res., 44, D1202–D1213.

Kumar,A. et al. (2018) Pathway design using de novo steps through uncharted

biochemical spaces. Nat. Commun., 9, 184.

Kusner,M.J. et al. (2017) Grammar variational autoencoder. In: International

Conference on Machine Learning,Sydney, Australia, Aug 6, 2017- Aug 11,

2017, pp. 1945–1954.

Moretti,S. et al. (2016) Metanetx/mnxref–reconciliation of metabolites and

biochemical reactions to bring together genome-scale metabolic networks.

Nucleic Acids Res., 44, D523–D526.

Moriya,Y. et al. (2010) Pathpred: an enzyme-catalyzed metabolic pathway

prediction server. Nucleic Acids Res., 38(Suppl. 2), W138–W143.

Rarey,M. and Dixon,J.S. (1998) Feature trees: a new molecular

similarity measure based on tree matching. J. Comput. Aided Mol. Des., 12,

471–490.

Srirangan,K. et al. (2016) Engineering Escherichia coli for microbial produc-

tion of butanone. Appl. Environ. Microbiol., 82, 2574–2584.

Sterling,T. and Irwin,J.J. (2015) Zinc 15–ligand discovery for everyone.

J. Chem. Inf. Model., 55, 2324–2337.

Storn,R. and Price,K. (1997) Differential evolution—a simple and efficient

heuristic for global optimization over continuous spaces. J. Global Optim.,

11, 341–359.

Wang,L. et al. (2017) A review of computational tools for design and recon-

struction of metabolic pathways. Synth. Syst. Biotechnol., 2, 243–252.

i778 T.Fuji et al.


	l
	l
	l
	l
	l
	l
	l

