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The multiple roles of Rab9 in the endolysosomal system
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ABSTRACT
The small GTPase Rab9 has long been described as a protein that mediates endosome-to-trans-
Golgi Network (TGN) transport, and specifically mannose-6-phospate receptor (MPR) recycling.
However, studies have challenged this view by showing that Rab9 also is connected to sorting
pathways toward the endolysosomal compartments. We recently characterized the spatio-temporal
dynamics of Rab9 and, by using live cell imaging, we showed that it enters the endosomal pathway
together with CI-MPR at the transition stage between early, Rab5-positive, and late, Rab7a-positive,
endosomes. More so, the Rab9 constitutively active mutant, Rab9Q66L, accumulates on late
endosomes and promotes carrier formation at the TGN. Here, we discuss our findings in light of
previous reports on Rab9 in the retrograde transport pathway.
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Rab proteins belong to the Ras superfamily of small
monomeric GTPases and are central regulators of intra-
cellular trafficking events.1 Rabs are associated with
membranes in a dynamic on and off equilibrium which
is regulated by the activities of guanine nucleotide
exchange factors (GEFs) and GTPase-activating proteins
(GAPs). GTP-bound Rabs localize to specific organelle
membranes where they are involved in regulation of
defined intracellular events.

The process of endosome maturation is regulated
by Rab5 and Rab7a. Here, endocytosed cargo accu-
mulates in progressively more acidic compartments
destined for degradation in the lysosomes. Rab5 binds
to early endosomes and regulates homotypic early
endosomal fusion events.2 These endosomes undergo
maturation to become Rab7a-positive late endosomal
compartments targeted for lysosomes through the
process of Rab conversion which consists of a coordi-
nated loss of Rab5 and the concomitant acquisition of
Rab7a.3 These events are tightly regulated: in the ini-
tial steps, inactive GDP-bound Rab5 is activated and
recruited to the early endosomal membrane through
the actions of the GEF Rabex-5 and the effector
Radaptin-5.4 Among the downstream effectors of
Rab5 is the SAND-1/Mon1-complex that binds Rab5-
GTP but also initiates recruitment of Rab7a to matur-
ing endosomes.5,6 The SAND-1/Mon1-complex also
promotes the dissociation of Rabex-5 from the

endosome, thus leading to the detachment of Rab5
from the endosomal membrane.7 Rab7a persists on
late endosomes and is considered the key regulator of
endosome maturation, lysosome biogenesis and endo-
lysosomal transport.8

Late endosomes also carry other Rab proteins bound to
their organelle membranes, such as Rab9 and Rab7b.9-11

Rab7a and Rab9 use different machineries for recruitment
to membranes,12 and perhaps this explains why these 2
Rabs also locate to different domains while on the same
endosome.9 Rab9 has further been shown to act through
specific downstream effectors not shared by Rab7a, such
as GCC185, TIP47 and p40.13-15 However, the greatest
distinction between these 2 late endosomal Rab proteins
is that Rab9 has beenmainly reported to mediate the recy-
cling pathway of sorting receptors as cation-independent
mannose 6-phosphate receptors (CI-MPR)16 and not to
be directly involved in the process of endosome
maturation.

Interestingly, in our recent work, we demonstrated
through live confocal imaging that Rab9 entered the
endosomal pathway at the Rab5-to-Rab7a transition.17

Also, we showed for the first time that CI-MPR entered
the endosomal pathway alongside Rab9 (Fig. 1).

We further characterized the constitutively active
mutant of Rab9, Rab9Q66L, the live dynamics of which
have been unknown. Upon mutation in the catalytically
important glutamine in position 66, the intrinsic ability of
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Rab9 to hydrolyze GTP is lowered, thus creating a consti-
tutively active protein.18 Rab proteins predominantly
bind to their effectors and target membranes while in
their active state. Therefore, these mutants facilitate the
deciphering of the physiological functions of Rab pro-
teins. In our report we showed that Rab9Q66L accumu-
lated on late endosomes. Furthermore, the expression of
Rab9Q66L spread CI-MPR from the TGN into the endo-
somal pathway, and increased tubulation and carrier for-
mation originating from the TGN.17 Together, these
results show that Rab9 is involved in trafficking from the
TGN to endosomes.

A body of evidence further supports a Rab9-dependent
transport targeted toward the endosomal pathway, and sev-
eral reports have shed light on the complexity of Rab9-
mediated trafficking and its multiple functions in intracellu-
lar transport (Fig. 2). Rab9 mediates sorting of lysosomal
enzymes into late endosomes19,20 and is therefore involved
in lysosome biogenesis.20,21 Furthermore, formation of auto-
phagosomes depends on Rab9, whichmediates the fusion of
isolation membranes with vesicles derived from the trans-
Golgi and late endosomes.22 Rab9 has additionally been
linked to the release of viral particles23 and shown to medi-
ate intracellular transport of lipids.24,25 Indeed, this small
GTPase is involved in the Golgi targeting of glycosphingoli-
pids and lipid transport from late endosomes.24,25

Nevertheless, in agreement with previous studies, silenc-
ing of Rab9 perturbed MPRs retrograde transport. Ganley

and co-authors speculated that this is a consequence of a
disrupted Rab9-dependent retrograde pathway.19 However,
silencing of Rab7a, which is involved in endosome matura-
tion, also reduces the retrograde transport of MPRs.26 This
indicates that the perturbed retrograde transport of MPRs
can also be a consequence of alterations in the endosomal
maturation. Therefore, this could also explain the effects of
Rab9 knock down on MPR retrograde transport, particu-
larly in the light of the recent findings showing Rab9 recruit-
ment to the endosomal pathway during the Rab5-to-Rab7a
conversion.17

The two main pathways involved in retrograde trans-
port of CI-MPRs use Rab920 and the retromer complex.27

For long time these 2 pathways have been considered
independent, however, recent evidence suggests that they
may be interconnected.28 It is very likely that additional
mechanisms exist, and in line with this, at least 2 other
Rab proteins have been shown to mediate retrograde
transport of CI-MPR: Rab7b and Rab29.10,11,29 CI-MPRs
are also subjected to complex regulation through AP-1,
AP-2 and GGAs as their sorting adaptors for intracellu-
lar trafficking.30 Each of these sorting complexes bind
CI-MPR cytosolic tail by means of distinct sorting sig-
nals, and these variations imply that CI-MPR follows
various sorting pathways. Interestingly, AP-1 mediates
not only the transport of CI-MPRs from the TGN to
endosomes, but also the retrograde transport of these
sorting receptors to the TGN.30-32

Figure 1. Rab9 in the endosomal pathway. During endosome maturation intraluminal vesicles (ILVs) are formed, the endosomes
become more acidic and acquire lysosomal enzymes, which eventually degrade the luminal content. The maturation of endosomes is
propelled through the process of Rab conversion, which consists of the coordinated loss of Rab5 and the concomitant acquisition of
Rab7a. CI-MPR and Rab9 enter the endosomal pathway at the late stage of the early endosomes where CI-MPR delivers its ligands,
newly synthesized lysosomal enzymes, to the maturing endosome. The drop in pH facilitates the release of the ligands from its sorting
receptor and activated the enzymes. In order to avoid degradation, CI-MPR is sorted through retrograde transport pathways toward the
TGN.
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Within the adaptor diversity, the tail-interacting pro-
tein of 47 kDa (TIP47) has long been considered the ret-
rograde adaptor that connects Rab9 to CI-MPR on late
endosomes.14 However, a careful study by Bulankina
et al.33 challenged this view by demonstrating that
knockdown of TIP47 had no consequence for CI-MPR
recycling and distribution, nor did it affect lysosomal
enzyme sorting. TIP47 is indeed involved in the biogene-
sis of lipid droplets in the cell.33,34

The retromer complex also mediates CI-MPR retro-
grade transport and consists of a conserved heterotrimer
of the vacuolar protein sorting (Vps) proteins Vps26,
Vps35 and Vps29 and a dimer of phosphoinositide-bind-
ing sorting nexins (SNXs).35 It has been suggested that
the choice of retrograde pathway (Rab9- or retromer-
dependent) is regulated by both the cytoplasmic domain
and the transmembrane region of the cargo.36 Intrigu-
ingly, a recent publication connected Rab9 to retromer
transport in Drosophila during embryonic development
through an interaction with Vps35,37 and while specula-
tive for now, further investigations are required to
unravel a possible role of Rab9 in retromer-dependent
CI-MPR transport.

The retromer recruitment to endosomes is mediated
by the sequential action of Rab5 and Rab7.38 In our
recent work, we found Rab9 to enter the endosomal
pathway at the late stages of early endosomes,17 which
coincides with the point of retromer recruitment to the
endosomal pathway.38,39 Together, these findings suggest
a connection between Rab9 and the retromer in the

transport between endosomes and the TGN that will be
important to elucidate in the future.
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