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Abstract: This study addresses the much-discussed issue of the relationship between health and
income. In particular, it focuses on the relation between mental health and household income by
using generalized additive models of location, scale and shape and thus employing a distributional
perspective. Furthermore, this study aims to give guidelines to applied researchers interested in
taking a distributional perspective on health inequalities. In our analysis we use cross-sectional data
of the German socioeconomic Panel (SOEP). We find that when not only looking at the expected
mental health score of an individual but also at other distributional aspects, like the risk of moderate
and severe mental illness, that the relationship between income and mental health is much more
pronounced. We thus show that taking a distributional perspective, can add to and indeed enrich the
mostly mean-based assessment of existent health inequalities.
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1. Introduction

The relationship between income and health is one of the most widely researched issues in
health economics and epidemiology, and has seen countless articles discussing its nature. To this end,
various health measures have been employed from objective measures, such as life expectancy [1] and
physiological outcomes [2,3] to subjective measures, such as single-item measures [4,5] or composite
health scores, like the SF-12 [6] (The SF-12 [7] is a short version of the original SF36 [8]). In terms of the
statistical methodology, we can equally observe an array of approaches.

1.1. A Review of the Methodological Literature

Most of the heavy empirical ploughing has been carried out by two kinds of workhorse
methods. On the one hand, many studies have employed concentration curves and indices [9–12].
On the other hand, health outcomes are contrasted between different groups with varying incomes
(and potentially other covariates) by means of relative frequencies [13], odds ratios [14], or other
effect sizes derived from regression estimates [15,16]. This is mostly done by employing conventional
regression approaches from the framework of generalised linear models.
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Recent years have seen numerous methodological advances, while improved data availability and
increased computational capacities have made their application to the analysis of socioeconomic
inequalities in health feasible. For concentration curves and indices, the use of level-based
concentration curves, instead of rank-dependent ones, have been proposed [17]. In the statistical
literature, numerous regression techniques have been developed that go beyond the still-dominant
standard generalised linear models in the epidemiological literature, like quantile regression [18],
expectile regression [19], conditional transformation models/distribution regression [20,21], recentered
influence functions [22], and generalised additive models of location, scale, and shape/structured
additive distributional regression models [23,24]. This set of approaches that contemplate not only the
conditional expectation but further distributional aspects has already found its ways in the literature
on socioeconomic inequalities in health [25–28], but much of the potential of the application of these
methodological advances is still dormant.

1.2. A Review of the Literature on Income and Mental Health

A lot of research exists on the relationship between income and mental health, and this section
aims to briefly summarize the important findings. One should keep in mind that the research
in the field differs in important aspects, such as in the used definitions of mental health (i.e., the
presence of mental disorders, continuous scores for constructs like life satisfaction and emotional
well-being), the operationalization of income (absolute income, relative income, changes in income,
income subsumed in variables like socioeconomic status), or in the subject of interest (individuals or
groups).

The prevalence of mental disorders is found to be higher among individuals with lower
income [29,30] or among those with lower socioeconomic status [31–33]. Equivalently, increased
odds for mental disorders are found for individuals with lower levels of income [14] or socioeconomic
status [13,32,34–36]. Wirtz et al. [37] reported that a higher income is associated with higher MCS
scores (higher MCS scores indicated good mental health, and vice versa), whereby MCS scores are a
composite mental health score which we also use in this publication (see Section 2). Additionally, Wood
et al. [38] showed that low income predicts mental distress since it functions as an indirect proxy for
social rank. McMillan et al. [39] did not find a relation between income and mood or anxiety disorder,
but did find one with drug abuse and suicide attempts. The latter was also found by Lee et al. [40].
Sareen et al. [41] revealed that having a low income was a financial barrier for accessing mental
health services.

Weich and Lewis [42] found that unemployment and measures of poverty (which were built
amongst other variables with the help of household income and savings) had predictive ability for the
prevalence of mental disorders, but ongoing subjective financial strain seemed to be an even better
predictor for the maintenance and onset of mental illness. Lorant et al. [43] researched the direction of
effects, and found that income reductions, as well as increasing financial strain, increased the risk of
showing depressive symptoms. On the other hand, increasing income, as well as reduced financial
strain seemed not to be related to decreasing depressive symptoms.

Income inequality has also been found to be associated with mental illness. In a systematic review,
Pickett and Wilkinson [44] published evidence for a strong association between income inequality and
mental disorders, whereas a meta-analysis by Ribeiro et al. [45] revealed small effect sizes. Suicide
could be an exception and seems to be more common in more equal societies [46].

Lucas and Schimmack [47] summarized that the correlation between subjective well-being and
income is often found to be very small, yet small correlation coefficients can turn into large mean
differences when comparing different levels of income. Matz et al. [48] found that the degree of
matching between an individual’s spendings and his/her personality had better predictive ability
for life satisfaction than income. Even though these effects were found to be statistically significant,
the effects may be too small to be relevant [49]. Kahneman and Deaton [15] found that life satisfaction
and emotional well-being seemed to rise with increasing income, with emotional well-being satiating at
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an annual household income of 75,000$ (USA). Additionally, Kushlev et al. [16] reported that a higher
income was related with less daily reported feelings of sadness, but not with more daily reported
feelings of happiness. Westerhof and Keyes [50] found significant effects when predicting mental
illness with the help of income and other socio-demographic variables.

Boyce et al. [51] found the income rank to be more important for the evaluation of life satisfaction
compared to absolute income. Yu and Chen [52] found that relative, as well as absolute income was
related with negative aspects of emotional well-being, whereas only relative income was related to
positive mental well-being. In contradiction to these findings, Sacks et al. [53] provided a review in
which they stated that subjective well-being rose with increasing income. According to the authors,
this holds for within-country (individual level) and between-country comparisons. The satiation thesis
is questioned in this study, and absolute income is identified as more important than relative income.

Overall, we find that there is strong evidence for the assumption that income is related to
constructs related to poor mental health, as well as constructs related to good mental health. The current
state of research is characterized by disunity about the working mechanisms of the effects of income.
On the other hand, there is high methodological cohesion which either sees assessments on the basis
of ranks, or is based on arithmetic means.

1.3. Aims and Structure of the Paper

This paper aims to add to the young and evolving branch of literature of distributional regression
approaches in health economics in two important ways. Firstly, it considers the relationship between
income and mental health in a distributional framework. Secondly, it constitutes an exemplary
application of the frequentist framework of generalised additive models of location, scale, and shape
to the analysis of socioeconomic inequalities in mental health that is designed to guide applied
researchers in the use of this powerful, but in some ways, also challenging statistical methodology.
In this publication, we focus on the frequentist framework of generalised additive models of location
scale and shape. Readers interested in the Bayesian approach of structured additive distributional
regression are referred to Klein et al. [24], Silbersdorff [54], and Silbersdorff et al. [27].

The remainder of this publication is structured as follows: Firstly, we explain the mental health
concept, variables, and data on which our analysis relies. Then we go on to provide a general discussion
on the use of a distributional regression framework and contrast it to the conventional regression
approach. In Section 3, we consider the association between mental health and income found in our
data. Lastly, we draw conclusions obtained by our analysis. We thereby outline which findings are
particularly generated by taking a distributional perspective.

2. Materials and Methods

2.1. Data

To investigate the relationship between mental health and income, we used data from the German
Socio-Econocmic Panel (SOEP) [55]. The SOEP is a “[...] widely used long-running household
panel study that seeks to provide a representative view of the entire population [...]” ([55], p. 1).
We used only cross-sectional data for the year 2014. The survey for 2014 contained data from 16,037
households [56]. The SOEP data contains a large array of socio-demographic information and various
income variables, as well as variables on individual health. Concerning the socio-demographic
variables used in our analysis, we followed Silbersdorff et al. [27] and considered the age, marital
status, nationality, educational attainment, and place of residence, as well as the household income.
Additionally, we incorporated the employment status, as well as the place of living in terms of urbanity
in our analysis, since both variables are common in the field of mental health research (i.e., [34,57–62]).
Further information on these variables, as well as their SOEP identifiers, are provided in Appendix A.1.

In contrast to Silbersdorff et al. [27], we considered a mental health score, rather than a physical
health score as the outcome variable. Specifically, we used the Mental Component Scale (MCS) score
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obtained from the SF-12v2 questionnaire, which also contains the Physical Component Scale (PCS)
score used by Silbersdorff et al. [27]. We see this measure as well-suited for our purpose for several
reasons. Firstly, MCS scores claim to cover the whole spectrum of self-rated mental health—the MCS
scores are designed to have a mean of 50 and a standard deviation of 10 (norm population), where
higher scores indicate better mental health conditions compared to lower values [63]. According
to Ware et al. [8] (p. 72), very high MCS scores represent an “absence of psychological distress and
limitations in usual social/role activities due to emotional problems; (mental) health rated excellent”,
whereas very low MCS scores represent “frequent psychological distress; substantial social and role
disability due to emotional problems; (mental) health in general rated poor”. Secondly, the MCS
scores are a composite score of several items covering the concepts of mental health, social functioning,
vitality, and emotional aspects [64], and therefore cover mental health in its multifaceted nature.
Thirdly, the MCS scale has good test-theoretical properties. Its internal consistency can be evaluated
as acceptable [37], while its convergent and discriminatory validity, as well as its reliability can be
evaluated as good [37,65,66]. Lastly, despite the ongoing discussions concerning the definition and
measurement of mental health [67–72], we see this measure in line with the widely accepted definition
of the World Health Organization (WHO) [73]: “mental health is a state of well-being in which every
individual realises his or her own potential, can cope with the normal stresses of life, can work
productively and fruitfully, and is able to make a contribution to her or his community”. For further
information on the MCS scale, also see Appendix A.1.

It should be noted at the outset that differential item functioning by education, age, and sex have
been observed for the mental component score compared to the physical component score [74,75].
We condition on these variables to address this drawback.

A drawback of the data gathered by the SOEP is that it fails to include the institutionalized
population. Therefore, the results cannot be seen as representative of the whole German population,
but only of those outside any institutions—meaning that the results we portray with respect to the risk
of very low self-rated mental health are presumably underestimated to some degree.

However, despite this drawback, we deem the analyses on socioeconomic inequalities with respect
to mental health to be too important to be left void due to data-related deficiencies, and thus will
pursue the following analyses on the basis of this somewhat imperfect data.

2.2. Conditional Health Assessment beyond the Mean

In order to facilitate the understanding of the distributional regression approach, which we
propose in this publication, we aim to contrast it to the classical mean regression in an intuitive manner.

Let us consider the conditional health distribution for the simplified case, where we only regress
MCS on the household income and omit other variables for the sake of simplicity.

In Figure 1, we display the empirically observed conditional mental health distribution for both
men and women with a household income of around 15,000 Euro and 30,000 Euro, respectively,
with the help of histograms, and contrast it with the obtained estimates from standard mean regression
and distributional regression techniques. While the portrayed estimates are estimated for exactly
15,000 Euro and 30,000 Euro, the portrayed empirical distributions are drawn from individuals with
incomes in between 12,500 Euro and 17,500 Euro, as well as 27,500 Euro and 32,500 Euro, respectively.

Classical mean regression—including generalised linear models (GLM)—yields information on
the conditional arithmetic mean (displayed by the blue dot). This estimate is ideally suited for a
comparison of the expected health outcome. In our simplified example, one could thus deduce the
expected mental health score of an individual for any income level. From a mean regression-based
analysis, we could thus infer that the expected mental health level with a low income is roughly
1.2 units lower than that of an individual with a high income. As is argued by Silbersdorff et al. [27],
drawing a conclusion on the basis of this measure is somewhat problematic, as it gives equal emphasis
to improving the health of the already healthy, rather than improving the health of the ill. This is



Int. J. Environ. Res. Public Health 2019, 16, 4009 5 of 28

arguably problematic in any form of health-centered analysis, and particularly so in an analysis focused
on health inequalities.

Figure 1. Comparison of estimates between GLM and GAMLSS.

Distributional regression, on the contrary, does not focus on a particular measure of the
distribution, but directly aims to estimate the whole conditional response distribution for each group
(displayed by the red function). From this conditional distribution, any desirable distribution measure
can be calculated in principle. One can therefore explore the influence of an explanatory variable
on any desired statistical distributional measures like the mean, variance, or skewness, as done by
Silbersdorff et al. [27]. Moreover, we can consider the inequality and risk measures associated with
that distribution. In our particular case of analysing health inequalities, we can deduce risk measures
defined as the share of individuals falling below a certain threshold. For example, we could consider
the risk of belonging to the lowest 5% of all individuals in the sample, which is displayed by the shaded
red area underneath the distribution to the left of the point T (for threshold). Figure 1 shows that the
shift in probability mass translates to a smaller probability for falling below the defined threshold for a
person with high income. Furthermore, we can deduce the risk for any given income of falling below a
globally defined threshold, which can be seen as the threshold to suffering from poor mental health.

While we consider only two risk measures in the following, it should be stressed that, in general,
it is straightforward to use the estimated conditional mental health distributions to explore any
number and kind of further risk measures—be they further thresholds or other distributional measures,
like inequality indices. One major advantage of the distributional approach is thus the need for
only one estimation process to estimate a host of distributional measures. This stands in contrast to
equally feasible approaches to estimate each distributional measure individually that render an array
of problems associated with simultaneous inference on several models [76].

The more comprehensive distributional perspective thus allows for a nuanced assessment of
the income–health relationship which not only contemplates expected health but other distributional
aspects as well, like risk measures. However, this naturally also implies a much greater model space
that is accompanied by some pitfalls, just as the assessment on an array of separately estimated
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models would be. In the following, we thus consider some vital components of the approach from
a user’s perspective, and give some guidelines for safe and sound usage. The underlying baseline
recommendation for distributional regression users with limited or no experience is to commence your
applied analysis by using simple models, rather than exploiting the extensive statistical artillery that
has been made available over the past few years. The guidelines we give here are thus intended to
provide a starting point for an applied researcher to use distributional regression in the context of
health inequalities and who may want to get a first sense of the existence and magnitude of potential
effects beyond the mean.) The estimation is done with the help of the GAMLSS-package [23] for the
statistical software R [77].

2.3. Considering the Conditional Distribution Set-Up

In the distributional regression framework, the distribution of the response variable—here, the
mental health distribution—is described by a distribution that is conditional on a set of explanatory
socioeconomic and potentially further variables, i.e., D(Y | x1, . . . , xK).

One assumes a parametric distribution, which parameter values depend on the explanatory
variables, that is, D(θ1(x1, . . . , xK), θ2(x1, . . . , xK), . . . , θL(x1, . . . , xK)). Therefore, one relates its
parameters (θ1, . . . , θL) to the variables (x1, . . . , xK) via a regression predictor, which contains regression
coefficients, in the form:

gl(θl) = ηθl , (1)

where θl denotes the l-th parameter of the distribution, gl denotes the corresponding link function,
and ηθl the predictor.

By relating all the parameters of the response distribution to a regression predictor, one models
the response distribution conditional on the variables. After the estimation, the variables can be fixed
at specific values to define groups that are of special interest. The resulting conditional response
distributions can then be compared between the groups using different measures (i.e., risk measures,
see Section 3.3.1) describing certain aspects of the conditional response distribution.

The analysis of socioeconomic inequalities using distributional regression requires the
consideration of various modelling components, which we will discuss in the following.

2.3.1. The Conditional Health Distribution

The greatest strength, and potentially the greatest weakness of the distributional regression
lies in the use of a parametric distribution for modelling the health distribution. If the selected
parametric distribution provides a sufficiently good approximation to the response under consideration,
the assumption will facilitate the estimation to a substantial degree. Choosing a distribution that
provides a sufficiently close approximation to the response distribution has thus been found to provide
more stability in the estimation process, meaning, among other things, higher estimation precision and
smaller standard errors [78]. For the usually rather limited sample sizes available in health inequality
research, this is of particular importance for the assessment of inequality in the tails, as data there is
naturally very scarce. If, however, the selected distribution does not sufficiently approximate to the
response distribution, the outcome will be very detrimental to the model fit, and may potentially yield
misleading results. The choice of a good parametric distribution is thus key to any analysis employing
a distributional regression framework.

One major problem with health scores like the MCS is that they follow a shape (negative skewness)
that runs counter to most usual parametric distributions. Thus, Silbersdorff et al. [27] suggests the
following linear transformation:

gMCS(S) = S∗ =
S0 − S
Sscale

, (2)
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where S is short for score and denotes the untransformed MCS scores, and S∗ denotes the transformed
MCS scores. S0 is a constant ensuring that S∗ has positive support, and Sscale is a rescaling factor.
Within this publication, S0 = 100 and Sscale = 10 are used such that the distribution of S∗ is positively
skewed and the values are restricted to the interval [0, 10]. A contrast between the original and the
transformed marginal distribution of the MCS score is shown in Figure 2.

Figure 2. Histogram of MCS scores. Left: not transformed, right: transformed.

Using this transformation, we have done extensive comparisons based on information criteria
and residual diagnostics on a host of potential distributions. A distribution is an option if it
supports the permissible range of mental health values, here being [0, 10]. For an extensive account,
see Appendix A.2. Here, we concentrate on three distributions—the gamma distribution (Ga) with
two parameters linked to a regression predictor, the Box–Cox power exponential (BCPE) with three
out of four parameters linked to a regression predictor, and the generalised beta distribution of the
second kind (GB2) with all four parameters linked.

The comparison on the basis of various information criteria shows that the more complex three-
and four-parameter distributions generally outperform the more simplistic gamma distribution with
only two parameters.

Residual diagnostics reveal that this difference is due to the rigidity of the gamma distribution
in the tails, which leads to inferior fits. Residual diagnostics plots are provided in Appendix A.3.
However, the observed differences are minor, and all three distributions provide adequate fits in
the sense that from the most flexible four-parameter distribution to the more rigid two-parameter
distribution, all distributions yield similar results concerning the risk measures used for the assessment
of socioeconomic inequalities in health.

Moreover, the more complex characteristics also feature various problems—first and foremost,
there is decreased estimation stability due to the much increased model complexity. This not only
leads to much wider confidence intervals, but also to some undesired statistical artifacts, like very high
expected mental health outcomes for very low incomes.

With regard to the choice of the response distribution, we thus conclude that any of the three
distributions provide a sufficiently good fit to model health outcomes in the distributional framework
we employ here. While all three distributions are thus viable candidates to be used in the analysis of
socioeconomic inequalities in health, we advise inexperienced users to stick to the simplest of the three
distributions, namely the gamma distribution.
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2.3.2. The Predictor Specification

The predictor specification defines the nature of the dissection of the population into the groups
used for the analysis. In principle, all parameters are allowed to have separate predictors containing
potentially completely different variables and structures (e.g., linear interaction terms, splines, local
regression smoothers, ridge and lasso regression terms, neural networks, . . . ) are implemented in the
GAMLSS software [23]. However, by using simple linear predictors, the groups’ differences are coerced
to follow certain patterns that facilitate the estimation procedure, stabilize the estimation results, and
potentially allow for a straightforward interpretation of the results. For the sake of simplicity, model
comparability, and technical feasibility, we thus recommend using one generic straightforward linear
predictor for all the distributions’ parameters that takes the form:

ηθl = β
θl
0 +

K

∑
k=1

β
θl
k xk. (3)

Even in this simplified predictor framework, it must be noted that the vector of all regression
coefficients β entails parameters not only for one predictor, but for all L predictors required to specify
the response distribution yielding L× (K + 1) parameters, which can quickly yield a daunting model
complexity for the kind of finite datasets and computational capacity that are available for research in
health inequalities.

Thus, the use of distributional regression requires researchers to heed the advice of Box [79] to
select variables economically and refrain from any form of “kitchen sink” regression, with the obvious
difficulties for causal inference.

2.3.3. The Link Function and Other Technical Aspects

The link function gl links the predictor to the parameters of the response distribution. It is first
and foremost designed to ensure that the parameters are constrained to valid values. Moreover, they
can transform the impact of the covariates on the parameter. While the effect of applying different
link functions is far from negligible, we found that the default choices (see Table A1 of Appendix A.2)
generally yielded reliable results (pending the quality of the distribution).

Equally, the additional inputs that are usually required (e.g., optimization options) are generally
not critical, as long as one does not veer too far from the sensible options usually put down as
a default, and as long as one sticks to simple two-parameter distributions and linear predictors.
However, once the models get more intricate as many-parameter distributions or complex predictors
are selected, the optimization routines will quickly run into the curse of dimensionality and require
thoughtful usage.

Our bottom-line suggestion for the applied research on socioeconomic inequalities in health using
distributional regression techniques is thus to keep things simple, in the sense that simple distributions
(like the two-parameter gamma distribution) and simple predictors (like the linear predictor) should
be employed. While more complex distributions and predictors may often yield models with better fit,
the risk of technical or even inferential problems (if the models are not applied with the necessary care
and background knowledge) does, in practice, outweigh the theoretical benefits.

The estimation of GAMLSS, as provided by the GAMLSS software [23] is based on the maximum
likelihood principle [80]. For the sake of simplicity, assuming that no smoothing functions, random
effects, or modeling techniques are present in the model, estimates are obtained by maximizing
the log-likelihood defined by ` = ∑N

i=1 ln( f (yi|µi, σi, νi, τi)), where each parameter is related to a
regression predictor containing the parameters to be estimated [81]. For more complex modelling
structures, estimates need to be obtained by maximizing a penalized log-likelihood given by `p =

`− 1
2 ∑4

k=1 ∑Jk
j=1 γT

kjGkj(λkj)γkj [81]. The penalized log-likelihood is defined under the assumption
that the model can be written as a random effect model with smoother s(x) = Zγ, where Z is
a design matrix constructed with the data (x) and γ is a parameter vector to be estimated under
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the restriction of a quadratic penalty γT
kjGkj(λkj)γkj, with penalty matrix G and hyperparameters

λ that regulate the amount of smoothing [80,81]. The optimisation is carried out using a two-cycle
backfitting algorithm. The user of the GAMLSS software can choose between two specific algorithms:
The RS and CG algorithm [23]. While the RS algorithm is more stable and faster in general, the CG
algorithm may outperform the RS algorithm in situations where the distribution parameters are highly
correlated [81]. Using only linear predictors and the gamma distribution, the computational stability of
the RS algorithm tends to outweigh the advantages of the CG algorithm, so we recommend using the
former as a default option to inexperienced users. Detailed information on the estimation routines are
provided by Stasinopoulos and Rigby [23], Rigby and Stasinopoulos [80], and Stasinopoulos et al. [81].

3. Results

Following the notions from the previous section, we will use the two-parameter gamma
distribution to model the transformed MCS in a distributional regression framework. In this
section, we solely display and discuss extended results (regression estimates, distributional measures,
exemplary conditional densities) for this distribution, but also provide other distributions (i.e., the
BCPE and GB2 distribution) in the Appendix A.4.

3.1. The Predictor

The following regression predictor set-up is applied to all parameters of the distribution, with θ

denoting a generic parameter representing either of the gamma distribution’s parameters, µ or σ:

ηθ = βθ
0 + βθ

1 AGE + βθ
2 AGESQ + βθ

3LOGINC + βθ
4GER

+ βθ
5EDU2 + βθ

6EDU3 + βθ
7EDU4 + βθ

8MAR2

+ βθ
9MAR3 + βθ

10MAR4 + βθ
11EAST + βθ

12CITY

+ βθ
13UNEMPLOYED,

(4)

where AGE denotes the age of the individual in years, and AGESQ denotes the squared age of
the individual. LOGINC refers to the logarithm of the annual net equivalised household income.
GER refers to a dummy variable indicating whether an individual is a German national or not.
The variables EDU1–EDU4 represent the respondents’ educational attainment measured with the
International Standard Classification of Education (ISCED97) [82]. EDU1 includes all individuals
with ISCED levels 0, 1 and 2, representing pre-primary, primary, and lower secondary education;
EDU2 includes all observations with ISCED level 3 representing upper secondary education; EDU3

includes all observations with ISCED levels 4 and 5; EDU4 includes all observations with ISCED level
6. In Germany, this means that the first education level (EDU1) contains the educational attainment of
finishing kindergarten and/or Haupt-, Realschule, or the Gymnasium (ohne Oberstufe). The second
education level (EDU2) contains the educational attainment of finishing Berufsschule, Gymnasium
(Oberstufe), or equivalent schooling levels. The third education level (EDU3) contains the educational
attainment of being awarded a Bachelor’s or Master’s degree. The fourth education level (EDU4)
contains the educational attainment of being awarded a doctorate or a habilitation. The variables
MAR1–MAR4 represent the respondents’ marital status, with MAR1 containing individuals who are
married and living together or who are in a same-sex partnership and living with their partner; MAR2

contains all individuals who are married but living separately, divorced, having a dissolved registered
partnership, or those who have a registered same-sex partnership but are living separately; MAR3

contains all individuals who are single; and MAR4 contains all individuals who are widowed. EAST
denotes a dummy variable indicating whether an individual lives in former West or East Germany.
CITY denotes a dummy variable indicating whether an individual lives in an urban area or not.
UNEMPLOYED denotes a dummy variable indicating whether the respondent is unemployed or not.
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Note that the predictor does not contain coefficients for the variables EDU1 and MAR1 since
they function as the reference group, meaning their effect is subsumed in the intercept βθ

0. Further
information on how the above mentioned variables were built, as well as their theoretical background
and SOEP references, are provided in Appendix A.1.

3.2. The Regression Coefficients

The results of the regression are displayed in Table 1, with the standard errors denoted in
parentheses following the coefficients’ estimate. The standard errors were computed on the basis of
the variance–covariance matrix provided by the GAMLSS software [81]. It should be noted that these
values are to be interpreted with caution. For this reason, we provide the more reliable bootstrap-based
intervals for the analysis of the mental health and income association.

Table 1. Linear effects of ηµ and ησ for MCS in the Gamma model, with standard errors in parentheses.

Male Female

ηµ ησ ηµ ησ

const. 1.771 *** (0.045) −1.003 *** (0.172) 1.944 *** (0.043) −0.994 *** (0.158)
MAR2 0.018 * (0.008) 0.115 *** (0.028) 0.031 *** (0.006) 0.075 *** (0.022)
MAR3 0.007 (0.006) 0.052 * (0.025) 0.021 *** (0.006) 0.042 . (0.022)
MAR4 0.043 ** (0.014) 0.036 (0.048) 0.025 ** (0.009) 0.028 (0.03)

GER −0.019 ** (0.007) −0.028 (0.027) −0.032 *** (0.006) −0.035 (0.025)
UNEMPLOYED −0.026 ** (0.010) −0.048 (0.034) −0.027 ** (0.009) −0.094 ** (0.029)

EDUC2 −0.007 (0.007) −0.046 . (0.027) −0.020 *** (0.006) −0.038 . (0.021)
EDUC3 −0.004 (0.009) −0.052 (0.032) −0.002 (0.008) −0.006 (0.028)
EDUC4 −0.008 (0.008) −0.101 *** (0.031) −0.016 * (0.007) −0.056 * (0.026)

CITY 0.014 *** (0.004) 0.012 (0.016) 0.005 (0.004) −0.013 (0.015)
EAST 0.008 . (0.005) −0.036 . (0.019) 0.003 (0.005) 0.001 (0.017)
AGE 0.003 *** (0.001) 0.005 (0.003) 0.001 (0.001) 0.001 (0.003)

AGESQ 0.000 *** (0.000) 0.000 (0.000) 0.000 ** (0.000) 0.000 (0.000)
LOGINC −0.021 *** (0.004) −0.083 *** (0.017) −0.029 *** (0.004) −0.070 *** (0.015)

Notes. ***, **, * and . refer to significance levels with p ≤ 0.001, p ≤ 0.01, p ≤ 0.05 and p ≤ 0.1 obtained from
t-tests with H0 : βθ

j = 0 and H1 : βθ
j 6= 0.

Due to the intricate nature of the parameter interpretation, we have refrained from discussing
the results at length. The interpretation is intricate, since the parameters of the response distribution
cannot necessarily be equated with a distributional measure, like the expectation, variance, or skewness
(which would be more or less straightforward to interpret). Distributional measures are often
functions of several parameters of the response distribution. We used the gamma distribution in
mean parameterisation with density:

fY(y|µ, σ) =
y1/σ2−1e− y/(σ2µ)

(σ2µ)1/σ2 Γ(1/σ2)
, (5)

for y > 0, µ > 0, σ > 0, with E(Y) = µ and Var(Y) = µ2σ2.
It should, however, be pointed out that living in separation of a partner (MAR2) has a highly

significant coefficient for σ, indicating variations beyond the expected value of the distribution. Similar
observations—to various degrees of significance—can be made for being unemployed, as well as for
having received a higher education (EDUC4). Last but not least, the household income (LOGINC)
features highly significant effects on parameters for both men and women, and will be considered in
more detail in the following.
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3.3. A Distributional Perspective on the Association between Mental Health and Income

In order to assess the relationship between mental health and income, while accounting for
the other variables, we followed Silbersdorff et al. [27] and employed the concept of “average
Joe” and “average Jane” representing an ideal-typical man and woman, respectively, with average
characteristics. In our case, the following variable combination was assumed: 52 years old, married,
living in West Germany, having standard secondary education, having German nationality, being
employed, and not living close to a city centre. In the first step, we consider the relationship between
three distribution measures and income at large, and subsequently consider the resultant differences
between 15,000e and 30,000e in more detail.

3.3.1. Visualizing the Mental Health and Income Relationship

Figure 3 shows the relation between income and the different distribution measures for “average
Joe” and “average Jane”.

The x-axis begins at 4700e, which roughly matches the income received on the basis of the German
Social Security. The regular level of social security for a single person was set at 391e per month in 2014.
Approximately one percent of the survey participants had an income below that threshold, and reaches
up to 100,000e to exclude the economic elite, which is not adequately represented in the SOEP [83].
Furthermore, the x-axis is plotted on the log scale. The dashed lines show 0.95%-pointwise confidence
intervals of the portrayed estimates. They were obtained by bootstrap sampling with 2500 bootstrap
samples. Details on the bootstrap procedure and recommendations are provided in Appendix A.5.

The graph at the left portrays the expected outcome with varied incomes. The y-axis displays
back-transformed MCS scores. It can be observed that the MCS scores increase with increasing income
for males and females, as one would expect.

The right column of Figure 3 shows the effect of income on the conditional probability that a
person will fall below specific threshold values T of the MCS scale. Specifically, we used the threshold
of having a MCS score below the lowest quintile (denoted by R0.2) and the lowest vingtile (denoted
by R0.05). Note that we used separate thresholds for men and women, with T♂

0.2 ≈ 45, T♀
0.2 ≈ 42,

T♂
0.05 ≈ 34 and T♀

0.05 ≈ 30. Ware et al. [8] found that among individuals with MCS scores between
30–34, 89% reported symptoms related to depression, while this was 59% for individuals with MCS
scores between 40–44. These risk measures are essential in our analysis that should take a perspective
that goes beyond the mean. Modeling the whole conditional response distribution gives the possibility
of deriving findings extracted from the resulting probability density functions. The idea of the chosen
risk measures is to portray the risk of minor or major mental health issues (with R0.2 entailing both,
and R0.05 only the latter).

Both risk measures show that the risk of falling below the respective thresholds decreases with
increasing income. In particular, one can observe that for R0.05, the individuals with very high incomes
can practically eliminate their risk of being in a very bad mental health condition, which mirrors the
finding from Silbersdorff et al. [27] on the PCS score. The association regarding the distributional
measures for the BCPE and GB2 model is very similar, and has been displayed in Appendix A.4.
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Figure 3. Effect of income on distribution measures for the GA model: Ga (µ = X, σ = X). Left: Effect
of income on the expectation. Right: Effect of income on risk of falling below the lowest quintile and
lowest vingtile.

3.3.2. Contrasting Mental Health for Two Income Levels

Let us now consider the difference between two income levels—15,000e, representing the 25th
percentile or the median of the poorer half of the population, and 30,000e, representing the 75th
percentile or the median of the better-off half of the population.

Figure 4 displays the estimated conditional probability density functions for average Joe (blue)
and Jane (red) at an income of 15,000€ (solid) and 30,000€ (dashed). Additionally, Table 2 shows the
corresponding distributional measures.

Table 2. Expectation and risk measures for average Joe and Jane at income levels of 15,000e and 30,000e.

15,000e 30,000e Relative Difference

male µ 51.86 [51.4 ; 52.31] 52.56 [52.14; 52.98] 0.013 [0.008 ; 0.02]
R0.2 0.222 [0.203 ; 0.241] 0.187 [0.168 ; 0.205] 0.158 [0.105 ; 0.216]
R0.05 0.034 [0.027 ; 0.042] 0.022 [0.017 ; 0.028] 0.358 [0.256 ; 0.456]

female µ 50.15 [49.72 ; 50.6] 51.16 [50.74 ; 51.57] 0.020 [0.014 ; 0.026]
R0.2 0.180 [0.165 ; 0.195] 0.141 [0.127 ; 0.156] 0.214 [0.161 ; 0.265]
R0.05 0.028 [0.023 ; 0.034] 0.017 [0.013 ; 0.021] 0.401 [0.311 ; 0.483]
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Figure 4. Estimated conditional density of average Joe (blue) and Jane (red) at income levels of
15,000e and 30,000e.

The portrayed densities reveal that differences are not equal across the distribution, but feature a
relocation of probability mass from the lower end of the distribution to the centre of the distribution
(when changing from 15,000e to 30,000e). In other words, the change in income mainly incurs a
depletion of the risk of having low or very low mental health scores, and changes only very little for
the upper spectrum of the distribution.

Depending on the distribution measure, we thus found relative differences of varying magnitudes.
The relative difference is the absolute difference of the measures for 15,000e and 30,000e, divided by
the measure for 15,000e. For males, the expected mental health outcome increased from 51.86 to 52.56,
a relative difference of only 1.3%. For females, the corresponding change was 50.15 to 51.16, yielding a
relative difference of 2.0%.

By contrast, considering the risk measure R0.2 which focuses precisely on the lower end of the
distribution, we saw a change from 0.222 to 0.187 for males, meaning that the average Joe with an
income of 15,000e with a risk of suffering from a minor or major mental health issue was expected to
be 15.8% higher than that of a comparable man with an income of 30,000e.

This difference becomes even more pronounced when focusing on the more extreme R0.05 measure
that is thought to focus on the major mental health issues alone, and features a 35.8% and 40.1% change
for men and women, respectively.

These results show that, like for PCS, the association between income and health is much more
pronounced at the lower end of the health spectrum than it is for expected health.

4. Conclusions

In this publication we have provided some general insights into the use of distributional regression
approaches on the issue of socioeconomic health inequality in general, and provided an application to
the relationship between mental health and income in detail.

This publication complements the findings related to physical health provided by
Silbersdorff et al. [27]. Taken together, both publications show that taking a distributional perspective
can reveal insights that otherwise would not have been revealed. While Silbersdorff et al. [27] utilised a
distributional regression approach within the bayesian framework, in this publication the frequentistic
framework was followed. Independent of the framework, the aim was to estimate complete conditional
(mental) health distributions rather than obtaining single estimates for the expected outcome. These
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provide more detailed information on the relationship between income and (mental) health, which
we made explicit by defining risk measures. Regarding this relationship between mental health and
income, the risk measures showed that income is more strongly related to the risk of being in a poor
mental health condition than to the expected mental health. Thus, this publication contributes to the
literature stated in Section 1.2, since it disentangles the effect of income on mental health and gives a
first indication that the expectation-based perspective may underestimate the importance of income,
not only for physical health, but also in mental health.

Regarding methodological guidelines, we proposed to use simple distributional regression models
with linear predictors and distributions with few parameters, like the gamma distribution with two
parameters. Additionally, we proposed to use simple and intuitive measures to exploit the information
generated by estimating full conditional response distributions. Subsequently, we focused on risk
measures on the basis of this distribution, but other measures could also be considered. Looking also
at more complex models, we find that while these often provide better model fits, they also feature
problematic fits in the sparsely populated areas of the covariate space, as well as much wider confidence
intervals due to the higher model instability. Following Box [84] it should be noted that frequentist
models, as well as bayesian models suffer from under-accounting uncertainty due to the unconditional
assumption of the model specification. The wider confidence intervals of the more complex models
thus go some direction in correcting for this under-accounting, but do so only implicitly.).

Naturally, the proposed methods can be extended even further. For example, one could make
use of the longitudinal nature of the data, yielding a deeper data foundation to the analysis [14].
The GAMLSS framework theoretically provides the required statistical repertoire, as random effects can
be incorporated [81] and longitudinal approaches have been applied in other fields [85,86]. One could
overcome the rather questionable separation between physical and mental health [87] and model
them jointly by bivariate distributional regression, which is currently being developed [88]. While
these extensions may provide interesting research avenues for the methodologically minded health
inequalities researcher, we believe that for many applied researchers, a simple distributional regression
approach will suffice to gain sound and interesting insights into the matter.

Even if using a relatively simple predictor and distribution with few parameters, it must be
noted that the modelling of distributional regression is still a complex undertaking, yielding mostly
indicative and approximate, rather than robust and precise results. Further evidence from theory and
other modelling approaches is thus usually needed for any causal conclusions to be made.

Nonetheless, following Chalmers [89], new methods generating new empirical evidence on
persistent questions are sometimes needed to generate progress in science. The distributional regression
approach allows for looking at the full health distribution while conditioning on a set of variables,
and therefore provides additional perspectives that should be considered for any comprehensive
assessment on the much-discussed relationship between income and health.
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Appendix A

Appendix A.1. Variables

In the following it is explained which variables provided by the SOEP were used. Each variable
can be linked via its unique identifier to the data file containing it. The SOEP provides an online
search-engine which allows for further information on the variables to be easily obtained by searching
for the unique identifier: https://paneldata.org/soep-core (last access: 5 September 2019).

For the dependent variable, the Mental Component Scale (MCS) scores, contained in variable
MCS, from the HEALTH file were used. The MSC scale of the SF-12v2 provide self-rated measurements
of specific aspects of mental health. Using instruments based on self-reports are suited to measure
aspects of health, since mental and physical health are facets of the health-related quality of life,
which is a subjective matter [90]. Self-rated measurements are a standard tool in health research, and
experience growing importance [37]. They may reveal insights that might not be gained with objective
measurements—for example, according to Bährer-Kohler and Carod-Artal [91], many people state that
they suffer from poor mental health even though they may not reach thresholds for official diagnoses.
An observation’s score is computed as a weighted average of the answers given on six questions.
The weights are constructed with the help of factor loadings resulting from a factor analysis. The MCS
scores provided by the SOEP are based on a four-factor model. Information on the algorithm for their
computation is provided by Nübling et al. [64] and Andersen et al. [63]. The four factors provided
by the SOEP are labelled as mental health (two items), role emotional (two items), social functioning
(one item), and vitality (one item) [64]. Test-theoretical properties of the MCS scale are mentioned in
Section 2 (p. 3).

In some parts, the same explanatory variables as used by Silbersdorff et al. [27] were incorporated.
The authors used variables that are standard in the field of (physical) health research, such as annual
net equivalised household income, age, education, marital status, a variable indicating whether
an individual is a German national (or not), and a variable indicating whether an individuals
lives in former West or East Germany. These variables are also frequently used in mental health
research [14,34,37,92] and are in line with current academic textbooks ([93], pp. 76–77).

An individual’s income is operationalised as the annual net equivalised household income.
The annual net household income is given by i1110215. The variable is provided in the bfpequiv
file, from the survey of year 2015. It is a backdating question, and therefore refers to the income of
2014. The annual net household income is adjusted with the help of Modified OECD Equivalence
Weights to account for the number of individuals living in the household, as well as the children/adults
ratio [94]. The formula for the computation recommended by the SOEP is used ([95], p. 38). In order to
equivalise, the variables “Number of persons in household” (d1110614) and “Number of children in
household aged 0–13” (h1110114) are used. Both variables are taken from the bepequiv file. Following
Silbersdorff et al. [27] a log transformation (natural logarithm) on income is used. For simplification,
within this publication, the term LOGINC is used to refer to the variable.

While income is the main variable of interest, all other variables included in the models are used
to statistically control for their effects:

The variable age (AGE) is provided by d1110114 in the bepequiv file. Based on simple descriptive
analysis, (mean) PCS scores seem to decrease with increasing age, whereas (mean) MCS scores seem to
stay approximately equal ([8], pp. 815–816, Table 8.4). Westerhof and Keyes [50] disentangled the effect
of age on mental health (positive aspects) and mental illness with the help of four linear regression
models with differing dependent variables. The authors found negative significant effects for age and
age squared on mental illness, yet the effect of age squared vanished when control variables (e.g., age,
educational status, employment status, gender, income, migration) were introduced. For age and age
squared, positive significant effects were found on emotional well-being. Additionally, age—but not
age squared—was found to have positive significant effect on psychological well-being. On the other
hand, no effects were found for social well-being.

https://paneldata.org/soep-core
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Following Silbersdorff et al. [27], the individuals’ educational attainment was measured with the
International Standard Classification of Education—ISCED97 [82]. The variable can be found in the
bepgen file with the identifier isced97_14. The original six categories were reduced to four categories:
EDU1 includes all individuals with ISCED levels 0, 1, and 2, representing pre-primary, primary,
and lower secondary education; EDU2 includes all observations, with ISCED level 3 representing
upper secondary education; EDU3 includes all observations with ISCED levels 4 and 5; EDU4 includes
all observations with ISCED level 6. Related to Germany this means, that the first education level
(EDU1) contains the educational attainment of finishing Kindergarten and/or Haupt-, Realschule,
Gymnasium (ohne Oberstufe). The second education level (EDU2) contains the educational attainment
of finishing Berufsschule, Gymnasium (Oberstufe) or equivalent schooling-levels. The third education
level (EDU3) contains the educational attainment of being awarded a Bachelor’s or Master’s degree.
The fourth education level (EDU4) contains the educational attainment of being awarded a doctorate
or a habilitation.

As a dummy variable indicating whether an individual is a German national, the variable bep129
from the bep file was used.

For the marital status, the six categories of bep127 from the bep file were reduced to four categories.
The four categories are: MAR1, containing individuals who are married and are living together or
who are in a same-sex partnership and living with their partner; MAR2 contains all individuals being
married but living separately, who are divorced or having a dissolved registered partnership, or those
who have a registered same-sex partnership but are living separately; MAR3 contains all individuals
who are single; MAR4 contains all individuals who are widowed.

As a variable indicating whether an individual lives in former West or East Germany, a dummy
variable is built with the help of the variable state of residence (l1110114) from the bepequiv file.
Differences in the prevalence of mental disorders between former West and East Germany were present
in the past [96], but seem to have vanished nowadays [34].

To account for the well-known effects of being unemployed on mental health, a dummy variable
with two levels is used: UNEMPLOYED. Therefore, the variable bep09 from the bep file is used. Meta
analyses on the evidence of negative effects of being unemployed on mental illness [58], as well as
evidence of positive effects of being employed on mental health exist [61].

Differences in mental health when comparing individuals living in rural and and urban areas
are well-known. Mental health tend to be worse for individuals living in urban areas compared to
individuals living in rural areas [34,57,59,62]. Many different operationalisations of the degree of
rurality/urbanity in research exist—for example, self ratings [59], number of inhabitants [62], and the
degree of concentration of inhabitants [60]. In part, these effects may be grounded in special physical
characteristics of urban areas such as traffic, pollution, noise, artificial light at night, availability of
green areas, presence of crime, availability of drugs, and many more. In order to operationalise this
concept, the variable beh57 (from the beh file) is dichotomised to the variable CITY, indicating whether
an individual lives closer than ten kilometres to the nearest metropolis (reference group) or not.

Only those individuals with full information on all variables are used. Individuals who reported
that their income is zero were removed from the analysis since the log-transformation could not be
applied (0.0008% of the sample). The sample for the analysis yields 22,678 individuals: 10,387 males
and 12,291 females. 80% of the data was used as training data (and therefore 20% was used as test data).

Appendix A.2. Choosing a Distribution for the Conditional Health Distribution

Table A1 lists all used distributions tested as response distributions within this publication.
Columns µ, σ, ν, τ indicate the used link functions, if the parameter is present in the respective
distribution. Rigby et al. [97] provide a publication in which all distributions available in the gamlss
package are described.
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Table A1. Distributions used for the analysis.

Distribution gamlss Name µ σ ν τ Page

Box–Cox power exponential (BCPE) BCPE ident. log ident. log p. 291
Box-Cox-Cole-Green (BCCG) BCCG ident. log ident. - p. 282
Box–Cox-t (BCT) BCT ident. log ident. log p. 290
Dagum (Da) GB2 log log log = 1 p. 294
Gamma (Ga) GA log log - - p. 271
Generalised Beta type 2 (GB2) GB2 log log log log p. 293
Generalised Gamma (GG) GG log log ident. - p. 285
Generalised Inverse Gaussian (GIG) GIG log log ident. - p. 287
Log Normal (LOGNo) LOGNO ident. log - - p. 275
Normal (No) NO ident. log - - p. 232
Pearson-Type-VI (PtVI) GB2 log = 1 log log p. 293
Singh-Maddala (SM) GB2 log log = 1 log p. 293
Weibull (WEI3) WEI3 log log - - p. 280

The column named page of Table A1 gives the page of the publication on which the distribution
is described. The probability density function, cumulative density function and, if defined,
the expectation, variance, skewness, and kurtosis are provided. The publication can be accessed
at: https://www.gamlss.com/distributions/; last access: 26 August 2019.

Tables A2 and A3 display information criteria of the models for the male and female sample. Both
tables are sorted by the AIC in ascending order. The smallest five values in each column are marked
by a dagger symbol (†). The notation can be understood as follows: BCT (µ = �, σ = �, ν = �, τ = –)
indicates that a model with BCT distribution as a response distribution is fitted. The BCT distribution
is fully described by four parameters, where the check symbols (�) indicate that only the first three
have been linked to the regression predictor, while τ is modelled only by an intercept.

Unfortunately, estimation routines fail when a GG distribution is used and all three parameters
are linked to the regression predictor. As a consequence, GG (µ = �, σ = �, ν = �) does not occur in the
respective tables.

https://www.gamlss.com/distributions/
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Table A2. Information criteria of estimated models with the male sample.

Model (Male) AIC BIC GAIC (κ = 4) TGDEV a

GB2 (µ = �, σ = �, ν = �, τ = �) 20,734 † 21,128 20,846 † 5166 †

GB2 (µ = �, σ = �, ν = –, τ = –) 20,760 † 20,971 † 20,820 † 5185 †

GB2 (µ = �, σ = �, ν = �, τ = –) 20,763 † 21,066 20,849 † 5188
Da (µ = �, σ = �, ν = –) 20,769 † 20,973 † 20,827 † 5189
BCT (µ = �, σ = �, ν = �, τ = –) 20,777 † 21,079 20,863 5184 †

Da (µ = �, σ = �, ν = �) 20,781 21,076 20,865 5189
BCT (µ = �, σ = �, ν = �, τ = �) 20,781 21,175 20,893 5187
BCCG (µ = �, σ = �, ν = �) 20,783 21,078 20,867 5181 †

BCPE (µ = �, σ = �, ν = �, τ = –) 20,784 21,086 20,870 5182 †

BCPE (µ = �, σ = �, ν = �, τ = �) 20,786 21,179 20,898 5187
BCT (µ = �, σ = �, ν = –, τ = –) 20,799 21,010 † 20,859 † 5197
GG (µ = �, σ = �, ν = –) 20,809 21,012 † 20,867 5190
BCCG (µ = �, σ = �, ν = –) 20,810 21,013 † 20,868 5192
BCPE (µ = �, σ = �, ν = –, τ = –) 20,810 21,021 20,870 5195
SM (µ = �, σ = �, τ = –) 20,848 21,052 20,906 5221
SM (µ = �, σ = �, τ = �) 20,851 21,146 20,935 5220
GIG (µ = �, σ = �, ν = �) 20,879 21,174 20,963 5233
PtVI (µ = �, ν = �, τ = �) 20,903 21,198 20,987 5240
GB2 (µ = �, σ = –, ν = –, τ = –) 20,915 21,034 20,949 5242
Da (µ = �, σ = –, ν = –) 20,918 21,031 20,950 5244
GIG (µ = �, σ = �, ν = –) 20,919 21,123 20,977 5248
PtVI (µ = �, ν = �, τ = –) 20,929 21,133 20,987 5248
BCT (µ = �, σ = –, ν = –, τ = –) 20,938 21,058 20,972 5249
BCPE (µ = �, σ = –, ν = –, τ = –) 20,952 21,072 20,986 5250
BCCG (µ = �, σ = –, ν = –) 20,956 21,069 20,988 5246
GG (µ = �, σ = –, ν = –) 20,958 21,070 20,990 5246
SM (µ = �, σ = –, τ = –) 20,979 21,092 21,011 5267
GIG (µ = �, σ = –, ν = –) 21,006 21,119 21,038 5277
LOGNo (µ = �, σ = �) 21,020 21,216 21,076 5281
PtVI (µ = �, ν = –, τ = –) 21,028 21,141 21,060 5286
LOGNo (µ = �, σ = –) 21,146 21,251 21,176 5328
Ga (µ = �, σ = �) 21,267 21,464 21,323 5357
Ga (µ = �, σ = –) 21,381 21,486 21,411 5400
No (µ = �, σ = �) 22,040 22,237 22,096 5574
No (µ = �, σ = –) 22,148 22,253 22,178 5613
WEI3 (µ = �, σ = �) 23,305 23,501 23,361 5894
WEI3 (µ = �, σ = –) 23,341 23,447 23,371 5909

Notes. a Test-Global-Deviance. † smallest five values in column. “θ = �” indicates that the parameter is linked
to the predictor. “θ = –” indicates that the parameter is modelled solely by an intercept.



Int. J. Environ. Res. Public Health 2019, 16, 4009 19 of 28

Table A3. Information criteria of estimated models with the female sample.

Model (Female) AIC BIC GAIC (κ = 4) TGDEV a

BCPE (µ = �, σ = �, ν = �, τ = �) 26,475 † 26,878 26,587 † 6617
BCPE (µ = �, σ = �, ν = �, τ = –) 26,487 † 26,796 † 26,573 † 6603 †

GB2 (µ = �, σ = �, ν = �, τ = �) 26,547 † 26,950 26,659 6622
BCCG (µ = �, σ = �, ν = �) 26,555 † 26,857 26,639 † 6612 †

BCT (µ = �, σ = �, ν = �, τ = –) 26,557 † 26,866 26,643 † 6612 †

BCPE (µ = �, σ = �, ν = –, τ = –) 26,569 26,785 † 26,629 † 6623
BCT (µ = �, σ = �, ν = �, τ = �) 26,576 26,979 26,688 6612 †

GB2 (µ = �, σ = �, ν = �, τ = –) 26,595 26,904 26,681 6613 †

GB2 (µ = �, σ = �, ν = –, τ = –) 26,605 26,821 † 26,665 6624
GG (µ = �, σ = �, ν = –) 26,615 26,824 † 26,673 6627
BCCG (µ = �, σ = �, ν = –) 26,621 26,829 † 26,679 6629
BCT (µ = �, σ = �, ν = –, τ = –) 26,623 26,839 26,683 6629
GIG (µ = �, σ = �, ν = �) 26,626 26,928 26,710 6634
PtVI (µ = �, ν = �, τ = �) 26,658 26,960 26,742 6639
PtVI (µ = �, ν = �, τ = –) 26,659 26,867 26,717 6643
GIG (µ = �, σ = �, ν = –) 26,668 26,877 26,726 6634
LOGNo (µ = �, σ = �) 26,723 26,924 26,779 6658
Da (µ = �, σ = �, ν = �) 26,753 27,056 26,837 6643
Da (µ = �, σ = �, ν = –) 26,764 26,973 26,822 6652
BCPE (µ = �, σ = –, ν = –, τ = –) 26,800 26,922 26,834 6650
GG (µ = �, σ = –, ν = –) 26,824 26,939 26,856 6651
BCCG (µ = �, σ = –, ν = –) 26,827 26,942 26,859 6653
GIG (µ = �, σ = –, ν = –) 26,828 26,943 26,860 6653
BCT (µ = �, σ = –, ν = –, τ = –) 26,829 26,952 26,863 6653
GB2 (µ = �, σ = –, ν = –, τ = –) 26,837 26,960 26,871 6651
PtVI (µ = �, ν = –, τ = –) 26,847 26,962 26,879 6659
LOGNo (µ = �, σ = –) 26,902 27,009 26,932 6676
SM (µ = �, σ = �, τ = �) 26,903 27,205 26,987 6684
Ga (µ = �, σ = �) 26,921 27,123 26,977 6712
SM (µ = �, σ = �, τ = –) 26,941 27,150 26,999 6694
Da (µ = �, σ = –, ν = –) 26,980 27,095 27,012 6674
Ga (µ = �, σ = –) 27,077 27,185 27,107 6727
SM (µ = �, σ = –, τ = –) 27,122 27,237 27,154 6711
No (µ = �, σ = �) 27,637 27,838 27,693 6902
No (µ = �, σ = –) 27,799 27,907 27,829 6920
WEI3 (µ = �, σ = �) 28,755 28,957 28,811 7190
WEI3 (µ = �, σ = –) 28,798 28,906 28,828 7198

Notes. a Test-Global-Deviance. † smallest five values in column. “θ = �” indicates that the
parameter is linked to the predictor. “θ = –” indicates that the parameter is modelled solely by an
intercept.

Appendix A.3. Residual Diagnostics

Stasinopoulos et al. [81] (pp. 417–422) recommend to use diagnostic plots of normalised quantile
residuals to assess the adequacy of estimated models. According to Stasinopoulos et al. [81] (p. 418),
the “[...] main advantage of normalized (randomized) quantile residuals is that, whatever the
distribution of the response variable, the true residuals always have standard normal distribution
when the assumed model is correct”. Hereafter, we refer to normalised quantile residuals simply
as residuals.

The top row of Figure A1 shows kernel density estimates of the residuals from the models
estimated with the male training data (red), as well as a standard normal distribution (blue). The bottom
row shows corresponding quantile–quantile plots. The residuals of the GA model deviate most
from a standard normal distribution. The residuals are positively skewed (skew(ε̂)GA

male = 0.594)
and the kernel density estimate reveals a tail too thin for small residuals and a tail too fat for large
residuals. Additionally, the distribution of residuals is leptokurtic kurt(ε̂)GA

male = 3.43 (the curtosis
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of a standard normal distribution is 3). This is also resembled by deviations from the red diagonal
shown in the quantile–quantile plots. Using BCPE and GB2 distributions led to residuals with a
skewness close to 0 (skew(ε̂)BCPE

male = −0.003, skew(ε̂)GB2
male = −0.019). Furthermore, the distribution

of residuals is less leptokurtic for the BCPE model (kurt(ε̂)BCPE
male = 3.12) and slightly platykurtic

for the GB2 model (kurt(ε̂)GB2
male = 2.907). Even though the tails of the kernel density estimates for

the BCPE and GB2 model look close to optimal, the quantile–quantile plots show that there is a
remaining deviation from a standard normal distribution in the tails. Figure A2 shows the same
type of plot for models estimated with the female training data. The general observable patterns are
comparable to the models estimated with the male training data. The residuals resulting from the GA
model are positively skewed (skew(ε̂)GA

f emale = 0.413) and slightly platykurtic (kurt(ε̂)GA
f emale = 2.888).

The quantile–quantile plots reveal that there are deviations from the optimal in the lower tail. Using a
BCPE or GB2 distribution instead again leads to distributions of residuals with a skewness close to
0 (skew(ε̂)BCPE

f emale = −0.002, skew(ε̂)GB2
f emale = −0.022). While the curtosis of the residuals of the BCPE

model is very close to its ideal value of three (kurt(ε̂)BCPE
f emale = 3.062), the residuals of the GB2 model

are platykurtic (kurt(ε̂)GB2
f emale = 2.621). Again, the tails of the kernel density estimates for the BCPE

and GB2 model look close to optimal. Yet, the quantile–quantile plots show that there is a remaining
deviation from a standard normal distribution in the tails. As a conclusion, it can be said that none of
the used response distributions leads to residuals that clearly outperform the other. For all models,
it holds that deviations of the distribution of residuals from a standard normal distribution are not of
such magnitude that the models must be discarded.

Figure A1. Residuals of models estimated with the male training data. Top: Histogram and
kernel density estimate of normalised quantile residuals with standard normal distribution (blue).
Bottom: Quantile–quantile plots.
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Figure A2. Residuals of models estimated with the female training data. Top: histogram and kernel
density estimate of normalised quantile residuals with standard normal distribution (blue). Bottom:
Quantile–quantile plots.

Appendix A.4. Distributional Measures of BCPE and GB2 Models

Figures A3 and A4 display the effect of income on different distributional measures for the BCPE
and GB2 models. The general pattern is very similar to the GA model presented in Section 3.3.1.
The expected mental health increases with increasing income, while the risks of falling below the
discussed thresholds decreases. One can observe that the width of the bootstrap confidence intervals
are wider for the BCPE and GB2 model compared to the GA model, which is a result of the increased
model complexity.
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Figure A3. Effect of income on distribution measures for the BCPE-model: BCPE (µ = X, σ = X, ν = X,
τ = −). Left: Effect of income on the expectation; right: Effect of income on risk of falling below the
lowest quintile and lowest vingtile.

Figure A4. Effect of income on distribution measures for the GB2 model: GB2 (µ = X, σ = X, ν = X,
τ = X). Left: Effect of income on the expectation; right: Effect of income on risk of falling below the
lowest quintile and lowest vingtile.
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Appendix A.5. Bootstrap Confidence Intervals

Bootstrap 0.95 confidence intervals (CI) were calculated within this publication in the following
manner: Let θ be the estimate for which a 95%-bootstrap CI should be obtained. θ may be any kind of
distributional measure, that is, the expectation or a risk measure, obtained from a prediction based on
an estimated GAMLSS model with the training data. Let the training data have N observations.

1. Create a bootstrap sample: Sample with replacement N observations from the training data.
2. Estimate a GAMLSS model with the bootstrap sample.
3. Calculate θ.
4. Repeat steps one to three 2500 times to obtain B = 2500 estimates.
5. Calculate the empirical 2.5% and 97.5% quantiles from the distribution of θ resulting from the

2500 bootstrap samples.

One important quantity to discuss is the chosen number of bootstrap samples, B. In general,
it holds that the larger the number of bootstrap samples, the more certain one can be to find stable
boundaries. The term stable hereby means that the boundaries of the confidence intervals do not
change remarkably when the number of bootstrap samples is further increased. Figure A5 displays the
boundaries of the confidence intervals in dependence of the number of generated bootstrap samples
for two exemplarily selected distributional measures resulting from GA models. The graphs on the
left of Figure A5 display the boundaries of the confidence intervals for the conditional expectation of
average Joe with an annual household net income of 15,000e (blue) and 30,000e (red). The graphs
on the right display pendants for the risk measure R0.05 for average Jane. One can observe that with
B = 1000 the boundaries have stabilized, and therefore may be sufficient. As a recommendation,
B = 1000 may serve as rough indication for the minimum amount of bootstrap samples to start with.
Since a suitable choice of B is unique to each estimate—and the data and model by which the estimate
is produced—bootstrap diagnostics should be applied.

Figure A5. Boundaries of bootstrap confidence intervals for two distributional measures resulting from
the GA model with an increasing number of bootstrap samples. Right: Expectation of MCS scores;
left: Risk measure R0.05.



Int. J. Environ. Res. Public Health 2019, 16, 4009 24 of 28

References

1. Chetty, R.; Stepner, M.; Abraham, S.; Lin, S.; Scuderi, B.; Turner, N.; Bergeron, A.; Cutler, D. The association
between income and life expectancy in the United States, 2001–2014. JAMA 2016, 315, 1750–1766. [CrossRef]
[PubMed]

2. Bird, Y.; Lemstra, M.; Rogers, M.; Moraros, J. The relationship between socioeconomic status/income and
prevalence of diabetes and associated conditions: A cross-sectional population-based study in Saskatchewan,
Canada. Int. J. Equity Health 2015, 14, 93. [CrossRef] [PubMed]

3. Kaplan, M.S.; Huguet, N.; Feeny, D.H.; McFarland, B.H. Self-reported hypertension prevalence and income
among older adults in Canada and the United States. Soc. Sci. Med. 2010, 70, 844–849. [CrossRef] [PubMed]

4. Chandola, T.; Jenkinson, C. Validating self-rated health in different ethnic groups. Ethn. Health 2000,
5, 151–159. [CrossRef]

5. DeSalvo, K.B.; Bloser, N.; Reynolds, K.; He, J.; Muntner, P. Mortality prediction with a single general
self-rated health question: A meta-analysis. J. Gen. Intern. Med. 2006, 21, 267–275. [CrossRef]

6. König, H.H.; Heider, D.; Lehnert, T.; Riedel-Heller, S.G.; Angermeyer, M.C.; Matschinger, H.; Vilagut, G.;
Bruffaerts, R.; Haro, J.M.; de Girolamo, G.; et al. Health status of the advanced elderly in six European countries:
Results from a representative survey using EQ-5D and SF-12. Health Qual. Life Outcomes 2010, 8, 143.

7. Ware, J.E., Jr.; Kosinski, M.; Keller, S.D. A 12-Item Short-Form Health Survey: Construction of Scales and
Preliminary Tests of Reliability and Validity. Med. Care 1996, 34, 220–233. [CrossRef]

8. Ware, J.E.; Keller, S.D.; Kosinski, M. SF-36 Physical and Mental Health Summary Scales; Health Assessment
Lab: Boston, MA, USA, 1994.

9. Elgar, F.J.; McKinnon, B.; Torsheim, T.; Schnohr, C.W.; Mazur, J.; Cavallo, F.; Currie, C. Patterns of
socioeconomic inequality in adolescent health differ according to the measure of socioeconomic position.
Soc. Indic. Res. 2016, 127, 1169–1180. [CrossRef]

10. Erreygers, G.; van Ourti, T. Measuring socioeconomic Inequality in Health, Health Care and Health
Financing by Means of Rank-dependent Indices: A Recipe for Good Practice. J. Health Econ. 2011, 30, 685–694.
[CrossRef]

11. Fleurbaey, M.; Schokkaert, E. Unfair Inequalities in Health and Health Care. J. Health Econ. 2009, 28, 73–90.
[CrossRef]

12. Siegel, M.; Mielck, A.; Maier, W. Individual Income, Area Deprivation, and Health: Do Income-Related
Health Inequalities Vary by Small Area Deprivation? Health Econ. 2015, 24, 1523–1530. [CrossRef] [PubMed]

13. Jacobi, F.; Höfler, M.; Strehle, J.; Mack, S.; Gerschler, A.; Scholl, L.; Busch, M.; Maske, U.; Hapke, U.;
Gaebel, W.; et al. Psychische Störungen in der Allgemeinbevölkerung. Der Nervenarzt 2014, 85, 77–87.
[CrossRef] [PubMed]

14. Sareen, J.; Afifi, T.O.; McMillan, K.A.; Asmundson, G.J. Relationship between household income and mental
disorders: Findings from a population-based longitudinal study. Arch. Gen. Psychiatry 2011, 68, 419–427.
[CrossRef] [PubMed]

15. Kahneman, D.; Deaton, A. High income improves evaluation of life but not emotional well-being. Proc. Natl.
Acad. Sci. USA 2010, 107, 16489–16493. [CrossRef]

16. Kushlev, K.; Dunn, E.W.; Lucas, R.E. Higher income is associated with less daily sadness but not more daily
happiness. Soc. Psychol. Personal. Sci. 2015, 6, 483–489. [CrossRef]

17. Erreygers, G.; Kessels, R. socioeconomic Status and Health: A New Approach to the Measurement of
Bivariate Inequality. Int. J. Environ. Res. Public Health 2017, 14, 673. [CrossRef]

18. Koenker, R.; Bassett, G. Regression Quantiles. Econometrica 1978, 46, 33–50. [CrossRef]
19. Sobotka, F.; Kneib, T. Geoadditive Expectile Regression. Comput. Stat. Data Anal. 2012, 56, 755–767.

[CrossRef]
20. Hothorn, T.; Kneib, T.; Bühlmann, P. Conditional Transformation Models. J. R. Stat. Soc. Ser. B (Stat. Methodol.)

2014, 76, 3–27. [CrossRef]
21. Chernozhukov, V.; Fernandez-Val, I.; Melly, B. Inference on Counterfactual Distributions. Econometrica 2013,

81, 2205–2268. [CrossRef]
22. Firpo, S.; Fortin, N.M.; Lemieux, T. Unconditional Quantile Regressions. Econometrica 2009, 77, 953–973.

[CrossRef]

http://dx.doi.org/10.1001/jama.2016.4226
http://www.ncbi.nlm.nih.gov/pubmed/27063997
http://dx.doi.org/10.1186/s12939-015-0237-0
http://www.ncbi.nlm.nih.gov/pubmed/26458543
http://dx.doi.org/10.1016/j.socscimed.2009.11.019
http://www.ncbi.nlm.nih.gov/pubmed/20079563
http://dx.doi.org/10.1080/713667451
http://dx.doi.org/10.1111/j.1525-1497.2005.00291.x
http://dx.doi.org/10.1097/00005650-199603000-00003
http://dx.doi.org/10.1007/s11205-015-0994-6
http://dx.doi.org/10.1016/j.jhealeco.2011.04.004
http://dx.doi.org/10.1016/j.jhealeco.2008.07.016
http://dx.doi.org/10.1002/hec.3102
http://www.ncbi.nlm.nih.gov/pubmed/25294413
http://dx.doi.org/10.1007/s00115-013-3961-y
http://www.ncbi.nlm.nih.gov/pubmed/24441882
http://dx.doi.org/10.1001/archgenpsychiatry.2011.15
http://www.ncbi.nlm.nih.gov/pubmed/21464366
http://dx.doi.org/10.1073/pnas.1011492107
http://dx.doi.org/10.1177/1948550614568161
http://dx.doi.org/10.3390/ijerph14070673
http://dx.doi.org/10.2307/1913643
http://dx.doi.org/10.1016/j.csda.2010.11.015
http://dx.doi.org/10.1111/rssb.12017
http://dx.doi.org/10.2139/ssrn.1235529
http://dx.doi.org/10.3982/ECTA6822


Int. J. Environ. Res. Public Health 2019, 16, 4009 25 of 28

23. Stasinopoulos, D.M.; Rigby, R.A. Generalized Additive Models for Location, Scale and Shape (GAMLSS) in
R. J. Stat. Softw. 2007, 23, 1–46. [CrossRef]

24. Klein, N.; Kneib, T.; Lang, S.; Sohn, A. Bayesian Structured Additive Distributional Regression with an
Application to Regional Income Inequality in Germany. Ann. Appl. Stat. 2015, 9, 1024–1052. [CrossRef]

25. Carrieri, V.; Jones, A.M. The Income-Health Relationship ‘Beyond the Mean’: New Evidence from Biomarkers.
Health Econ. 2017, 26, 937–956. [CrossRef]

26. Heckley, G.; Gerdtham, U.G.; Kjellsson, G. A General Method for Decomposing the Causes of socioeconomic
Inequality in Health. J. Health Econ. 2016, 48, 89–106. [CrossRef]

27. Silbersdorff, A.; Lynch, J.; Klasen, S.; Kneib, T. Reconsidering the Income-Health Relationship using
Distributional Regression. Health Econ. 2018, 27, 1074–1088. [CrossRef]

28. Kessels, R.; Erreygers, G. A Direct Regression Approach to Decomposing socioeconomic Inequality of Health.
Health Econ. 2019, 28, 884–905. [CrossRef]

29. Allen, J.; Balfour, R.; Bell, R.; Marmot, M. Social determinants of mental health. Int. Rev. Psychiatry 2014,
26, 392–407. [CrossRef]

30. McManus, S.; Meltzer, H.; Brugha, T.; Bebbington, P.; Jenkins, R. Adult Psychiatric Morbidity in England, 2007:
Results of a Household Survey; The NHS Information Centre for Health and Social Care: Leeds, UK, 2009.

31. Fryers, T.; Melzer, D.; Jenkins, R. Social inequalities and the common mental disorders. Soc. Psychiatry
Psychiatr. Epidemiol. 2003, 38, 229–237. [CrossRef]

32. Lorant, V.; Deliège, D.; Eaton, W.; Robert, A.; Philippot, P.; Ansseau, M. socioeconomic inequalities in
depression: A meta-analysis. Am. J. Epidemiol. 2003, 157, 98–112. [CrossRef]

33. Müters, S.; Hoebel, J.; Lange, C. Diagnose Depression: Unterschiede bei Frauen und Männern. 2013. Available
online: https://edoc.rki.de/bitstream/handle/176904/3112/2.pdf?sequence=1&isAllowed=y (accessed on
5 September 2019)

34. Jacobi, F.; Höfler, M.; Siegert, J.; Mack, S.; Gerschler, A.; Scholl, L.; Busch, M.A.; Hapke, U.; Maske, U.;
Seiffert, I.; et al. Twelve-month prevalence, comorbidity and correlates of mental disorders in Germany: The
Mental Health Module of the German Health Interview and Examination Survey for Adults (DEGS1-MH).
Int. J. Methods Psychiatr. Res. 2014, 23, 304–319. [CrossRef] [PubMed]

35. Jacobi, F.; Höfler, M.; Strehle, J.; Mack, S.; Gerschler, A.; Scholl, L.; Busch, M.A.; Hapke, U.; Maske, U.;
Seiffert, I.; et al. Twelve-months prevalence of mental disorders in the German Health Interview and
Examination Survey for Adults–Mental Health Module (DEGS1-MH): A methodological addendum and
correction. Int. J. Methods Psychiatr. Res. 2015, 24, 305–313. [CrossRef] [PubMed]

36. Lampert, T.; Kroll, L.E.; Hapke, U.; Jacobi, F. Sozioökonomischer Status und psychische Gesundheit. In Public
Health Forum; Elsevier: Berlin, Germany, 2014; Volume 22, pp. 6–8.

37. Wirtz, M.A.; Morfeld, M.; Glaesmer, H.; Brähler, E. Normierung des SF-12 Version 2.0 zur Messung
der gesundheitsbezogenen Lebensqualität in einer deutschen bevölkerungsrepräsentativen Stichprobe.
Diagnostica 2018, 64, 215–226. [CrossRef]

38. Wood, A.M.; Boyce, C.J.; Moore, S.C.; Brown, G.D. An evolutionary based social rank explanation of why low
income predicts mental distress: A 17 year cohort study of 30,000 people. J. Affect. Disord. 2012, 136, 882–888.
[CrossRef]

39. McMillan, K.A.; Enns, M.W.; Asmundson, G.; Sareen, J. The association between income and distress, mental
disorders, and suicidal ideation and attempts: Findings from the Collaborative Psychiatric Epidemiology
Surveys. J. Clin. Psychiatry 2010, 71, 1168–1175. [CrossRef]

40. Lee, S.U.; Oh, I.H.; Jeon, H.J.; Roh, S. Suicide rates across income levels: Retrospective cohort data on
1 million participants collected between 2003 and 2013 in South Korea. J. Epidemiol. 2017, 27, 258–264.
[CrossRef]

41. Sareen, J.; Jagdeo, A.; Cox, B.J.; Clara, I.; ten Have, M.; Belik, S.L.; de Graaf, R.; Stein, M.B. Perceived barriers
to mental health service utilization in the United States, Ontario, and the Netherlands. Psychiatr. Serv. 2007,
58, 357–364. [CrossRef]

42. Weich, S.; Lewis, G. Poverty, unemployment, and common mental disorders: Population based cohort study.
BMJ 1998, 317, 115–119. [CrossRef]

43. Lorant, V.; Croux, C.; Weich, S.; Deliège, D.; Mackenbach, J.; Ansseau, M. Depression and socioeconomic risk
factors: 7-year longitudinal population study. Br. J. Psychiatry 2007, 190, 293–298. [CrossRef]

http://dx.doi.org/10.18637/jss.v023.i07
http://dx.doi.org/10.1214/15-AOAS823
http://dx.doi.org/10.1002/hec.3372
http://dx.doi.org/10.1016/j.jhealeco.2016.03.006
http://dx.doi.org/10.1002/hec.3656
http://dx.doi.org/10.1002/hec.3891
http://dx.doi.org/10.3109/09540261.2014.928270
http://dx.doi.org/10.1007/s00127-003-0627-2
http://dx.doi.org/10.1093/aje/kwf182
https://edoc.rki.de/bitstream/handle/176904/3112/2.pdf?sequence=1&isAllowed=y
http://dx.doi.org/10.1002/mpr.1439
http://www.ncbi.nlm.nih.gov/pubmed/24729411
http://dx.doi.org/10.1002/mpr.1479
http://www.ncbi.nlm.nih.gov/pubmed/26184561
http://dx.doi.org/10.1026/0012-1924/a000205
http://dx.doi.org/10.1016/j.jad.2011.09.014
http://dx.doi.org/10.4088/JCP.08m04986gry
http://dx.doi.org/10.1016/j.je.2016.06.008
http://dx.doi.org/10.1176/ps.2007.58.3.357
http://dx.doi.org/10.1136/bmj.317.7151.115
http://dx.doi.org/10.1192/bjp.bp.105.020040


Int. J. Environ. Res. Public Health 2019, 16, 4009 26 of 28

44. Pickett, K.E.; Wilkinson, R.G. Income inequality and health: A causal review. Soc. Sci. Med. 2015, 128, 316–326.
[CrossRef]

45. Ribeiro, W.S.; Bauer, A.; Andrade, M.C.R.; York-Smith, M.; Pan, P.M.; Pingani, L.; Knapp, M.; Coutinho, E.S.F.;
Evans-Lacko, S. Income inequality and mental illness-related morbidity and resilience: A systematic review
and meta-analysis. Lancet Psychiatry 2017, 4, 554–562. [CrossRef]

46. Daly, M.C.; Oswald, A.J.; Wilson, D.; Wu, S. Dark contrasts: The paradox of high rates of suicide in happy
places. J. Econ. Behav. Organ. 2011, 80, 435–442. [CrossRef]

47. Lucas, R.E.; Schimmack, U. Income and well-being: How big is the gap between the rich and the poor?
J. Res. Personal. 2009, 43, 75–78. [CrossRef]

48. Matz, S.C.; Gladstone, J.J.; Stillwell, D. Money buys happiness when spending fits our personality. Psychol. Sci.
2016, 27, 715–725. [CrossRef]

49. Boyce, C.J.; Daly, M.; Hounkpatin, H.O.; Wood, A.M. Money may buy happiness, but often so little that it
doesn’t matter. Psychol. Sci. 2017, 28, 544–546. [CrossRef] [PubMed]

50. Westerhof, G.J.; Keyes, C.L. Mental illness and mental health: The two continua model across the lifespan.
J. Adult Dev. 2010, 17, 110–119. [CrossRef] [PubMed]

51. Boyce, C.J.; Brown, G.D.; Moore, S.C. Money and happiness: Rank of income, not income, affects life
satisfaction. Psychol. Sci. 2010, 21, 471–475. [CrossRef]

52. Yu, Z.; Chen, L. Income and well-being: Relative income and absolute income weaken negative emotion,
but only relative income improves positive emotion. Front. Psychol. 2016, 7, 2012. [CrossRef]

53. Sacks, D.W.; Stevenson, B.; Wolfers, J. The new stylized facts about income and subjective well-being.
Emotion 2012, 12, 1181. [CrossRef]

54. Silbersdorff, A. Analysing Inequalities in Germany; Springer: Berlin, Germany, 2017.
55. Wagner, G.; Frick, J.; Schupp, J. The German socioeconomic Panel study (SOEP)—Scope, evolution and

enhancements. Schmollers Jahrb. 2007, 127, 139–169.
56. Glemser, A.; Huber, S.; Bohlender, A. SOEP 2014-TNS Report of SOEP Fieldwork in 2014; Technical Report,

SOEP Survey Papers; SOEP: Berlin, Germany, 2015.
57. Gruebner, O.; Rapp, M.A.; Adli, M.; Kluge, U.; Galea, S.; Heinz, A. Risiko für psychische Erkrankungen in

Städten. Dtsch Arztebl Int. 2017, 114, 121–127. [CrossRef] [PubMed]
58. Paul, K.I.; Moser, K. Unemployment impairs mental health: Meta-analyses. J. Vocat. Behav. 2009, 74, 264–282.

[CrossRef]
59. Paykel, E.; Abbott, R.; Jenkins, R.; Brugha, T.; Meltzer, H. Urban-rural mental health differences in Great

Britain: Findings from the National Morbidity Survey. Psychol. Med. 2000, 30, 269–280. [CrossRef] [PubMed]
60. Peen, J.; Dekker, J.; Schoevers, R.A.; Ten Have, M.; de Graaf, R.; Beekman, A.T. Is the prevalence of psychiatric

disorders associated with urbanization? Soc. Psychiatry Psychiatr. Epidemiol. 2007, 42, 984–989. [CrossRef]
61. Modini, M.; Joyce, S.; Mykletun, A.; Christensen, H.; Bryant, R.A.; Mitchell, P.B.; Harvey, S.B. The mental

health benefits of employment: Results of a systematic meta-review. Australas. Psychiatry 2016, 24, 331–336.
[CrossRef]

62. Okulicz-Kozaryn, A. Unhappy metropolis (when American city is too big). Cities 2017, 61, 144–155.
[CrossRef]

63. Andersen, H.H.; Mühlbacher, A.; Nübling, M.; Schupp, J.; Wagner, G.G. Computation of standard values for
physical and mental health scale scores using the SOEP version of SF-12v2. Schmollers Jahrb. 2007, 127, 171–182.

64. Nübling, M.; Andersen, H.H.; Mühlbacher, A. Entwicklung eines Verfahrens zur Berechnung der körperlichen
und psychischen Summenskalen auf Basis der SOEP-Version des SF 12 (Algorithmus); Technical Report, Data
Documentation; German Institute for Economic Research: Berlin, Germany, 2006.

65. Cunillera, O.; Tresserras, R.; Rajmil, L.; Vilagut, G.; Brugulat, P.; Herdman, M.; Mompart, A.; Medina, A.;
Pardo, Y.; Alonso, J.; et al. Discriminative capacity of the EQ-5D, SF-6D, and SF-12 as measures of health
status in population health survey. Qual. Life Res. 2010, 19, 853–864. [CrossRef]

66. Maurischat, C.; Morfeld, M.; Kohlmann, T.; Bullinger, M. Lebensqualität: Nützlichkeit und Psychometrie des
Health Survey SF-36/SF-12 in der Medizinischen Rehabilitation; Pabst Science Publ.: Lengerich, Germany, 2004.

67. Fernando, S. Mental Health, Race and Culture; Macmillan International Higher Education: London, UK, 2010.
68. Fernando, S. Mental Health Worldwide: Culture, Globalization and Development; Springer: Berlin/Heidelberg,

Germany, 2014.
69. Heinz, A. Psychische Gesundheit: Begriff und Konzepte; Kohlhammer Verlag: Stuttgart, Germany, 2016.

http://dx.doi.org/10.1016/j.socscimed.2014.12.031
http://dx.doi.org/10.1016/S2215-0366(17)30159-1
http://dx.doi.org/10.1016/j.jebo.2011.04.007
http://dx.doi.org/10.1016/j.jrp.2008.09.004
http://dx.doi.org/10.1177/0956797616635200
http://dx.doi.org/10.1177/0956797616672271
http://www.ncbi.nlm.nih.gov/pubmed/28406374
http://dx.doi.org/10.1007/s10804-009-9082-y
http://www.ncbi.nlm.nih.gov/pubmed/20502508
http://dx.doi.org/10.1177/0956797610362671
http://dx.doi.org/10.3389/fpsyg.2016.02012
http://dx.doi.org/10.1037/a0029873
http://dx.doi.org/10.3238/arztebl.2017.0121
http://www.ncbi.nlm.nih.gov/pubmed/28302261
http://dx.doi.org/10.1016/j.jvb.2009.01.001
http://dx.doi.org/10.1017/S003329179900183X
http://www.ncbi.nlm.nih.gov/pubmed/10824648
http://dx.doi.org/10.1007/s00127-007-0256-2
http://dx.doi.org/10.1177/1039856215618523
http://dx.doi.org/10.1016/j.cities.2016.04.011
http://dx.doi.org/10.1007/s11136-010-9639-z


Int. J. Environ. Res. Public Health 2019, 16, 4009 27 of 28

70. Horwitz, A.V. An overview of sociological perspectives on the definitions, causes, and responses to mental
health and illness. In A Handbook for the Study of Mental Health; Cambridge University Press: New York, NY,
USA, 2010; pp. 6–19.

71. Huber, M.; Knottnerus, J.A.; Green, L.; van der Horst, H.; Jadad, A.R.; Kromhout, D.; Leonard, B.; Lorig, K.;
Loureiro, M.I.; van der Meer, J.W.; et al. How should we define health? BMJ 2011, 343, d4163. [CrossRef]

72. Vaillant, G.E. Positive mental health: Is there a cross-cultural definition? World Psychiatry 2012, 11, 93–99.
[CrossRef]

73. WHO. Mental Health: A State of Well-Being. 2014. Available online: http://www.who.int/features/
factfiles/mental_health/en/ (accessed on 5th September 2019).

74. Fleishman, J.A.; Lawrence, W.F. Demographic Variation in SF-12 scores: True Differences or Differential Item
Functioning? Med. Care 2003, 41, III75–III86. [CrossRef] [PubMed]

75. Bourion-Bédès, S.; Schwan, R.; Laprevote, V.; Bédès, A.; Bonnet, J.L.; Baumann, C. Differential Item
Functioning (DIF) of SF-12 and Q-LES-Q-SF Items among French Substance Users. Health Qual. Life Outcomes
2015, 13, 172. [CrossRef] [PubMed]

76. Benjamini, Y. Simultaneous and selective inference: Current successes and future challenges. Biom. J. 2010,
52, 708–721. [CrossRef] [PubMed]

77. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2017.

78. Silbersdorff, A. Assessing the Fit of Conditional Distributions Derived by Bayesian Structured Additive Distributional
Regression; ZfS Working Paper, 03/2016; Georg-August-Universität: Göttingen, Germany, 2017.

79. Box, G.E.P. Science and Statistics. J. Am. Stat. Assoc. 1976, 71, 791–799. [CrossRef]
80. Rigby, R.A.; Stasinopoulos, D.M. Generalized additive models for location, scale and shape. J. R. Stat. Soc.

Ser. C (Appl. Stat.) 2005, 54, 507–554. [CrossRef]
81. Stasinopoulos, M.D.; Rigby, R.A.; Heller, G.Z.; Voudouris, V.; De Bastiani, F. Flexible Regression and Smoothing:

Using GAMLSS in R; Chapman and Hall/CRC: Boca Raton, 2017.
82. OECD. Classifying Educational Programmes: Manual for ISCED-97 Implementation in OECD Countries;

Technical Report; Organisation for Economic Co-operation and Development: Paris, France, 1999.
83. Bach, S.; Corneo, G.; Steiner, V. From Bottom to Top: The Entire Income Distribution in Germany, 1992–2003.

Rev. Income Wealth 2009, 55, 303–330. [CrossRef]
84. Box, G.E.P. Sampling and Bayes’ Inference in Scientific Modelling and Robustness. J. R. Stat. Soc. A 1980,

143, 383–430. [CrossRef]
85. Fenske, N.; Fahrmeir, L.; Rzehak, P.; Höhle, M. Detection of Risk Factors for Obesity in Early Childhood with

Quantile Regression Methods for Longitudinal Data; Department of Statistics, University of Munich: Munich,
Germany, 2008.

86. Thomas, G.; Pereira, A.I.d.A.; Lobos, C.M.V. Analysis of a longitudinal multilevel experiment using
GAMLSSs. arXiv 2018, arXiv:1810.03085.

87. Manwell, L.A.; Barbic, S.P.; Roberts, K.; Durisko, Z.; Lee, C.; Ware, E.; McKenzie, K. What is mental health?
Evidence towards a new definition from a mixed methods multidisciplinary international survey. BMJ Open
2015, 5, e007079. [CrossRef]

88. Klein, N.; Kneib, T.; Klasen, S.; Lang, S. Bayesian Structured Additive Distributional Regression for
Multivariate Responses. J. R. Stat. Soc. Ser. C (Appl. Stat.) 2015, 64, 569–591. [CrossRef]

89. Chalmers, A.F. Wege der Wissenschaft: Einführung in die Wissenschaftstheorie; Springer: Berlin/Heidelberg,
Germany, 2007

90. Morfeld, M.; Bullinger, M. Der SF-36 Health Survey zur Erhebung und Dokumentation gesundheitsbezogener
Lebensqualität. Phys. Med. Rehabil. Kurortmed. 2008, 18, 250–255. [CrossRef]

91. Bährer-Kohler, S.; Carod-Artal, F.J. Global Mental Health: Prevention and Promotion; Springer: Cham,
Switzerland, 2017.

92. Diener, E.; Suh, E.M.; Lucas, R.E.; Smith, H.L. Subjective weil-being: Three decades of progress. Psychol. Bull.
1999, 125, 276–302. [CrossRef]

93. Wittchen, H.U.; Hoyer, J. Klinische Psychologie & Psychotherapie; Springer: Berlin/Heidelberg, Germany; New
York, NY, USA, 2011; Volume 2.

94. Hagenaars, A.J.; De Vos, K.; Asghar Zaidi, M.Poverty Statistics in the Late 1980s: Research Based on Micro-Data;
Office for Official Publications of the European: Luxembourg, 1994.

http://dx.doi.org/10.1136/bmj.d4163
http://dx.doi.org/10.1016/j.wpsyc.2012.05.006
http://www.who.int/features/factfiles/mental_health/en/
http://www.who.int/features/factfiles/mental_health/en/
http://dx.doi.org/10.1097/00005650-200307007-00009
http://www.ncbi.nlm.nih.gov/pubmed/12865729
http://dx.doi.org/10.1186/s12955-015-0365-7
http://www.ncbi.nlm.nih.gov/pubmed/26499191
http://dx.doi.org/10.1002/bimj.200900299
http://www.ncbi.nlm.nih.gov/pubmed/21154895
http://dx.doi.org/10.1080/01621459.1976.10480949
http://dx.doi.org/10.1111/j.1467-9876.2005.00510.x
http://dx.doi.org/10.1111/j.1475-4991.2009.00317.x
http://dx.doi.org/10.2307/2982063
http://dx.doi.org/10.1136/bmjopen-2014-007079
http://dx.doi.org/10.1111/rssc.12090
http://dx.doi.org/10.1055/s-0028-1082318
http://dx.doi.org/10.1037/0033-2909.125.2.276


Int. J. Environ. Res. Public Health 2019, 16, 4009 28 of 28

95. Grabka, M.M. Codebook for the $PEQUIV File 1984–2016: CNEF Variables with Extended Income Information for
the SOEP; Technical Report, Data Documentation; SOEP: Berlin, Germany, 2016.

96. Jacobi, F.; Wittchen, H.U.; Hölting, C.; Höfler, M.; Pfister, H.; Müller, N.; Lieb, R. Prevalence, co-morbidity
and correlates of mental disorders in the general population: Results from the German Health Interview and
Examination Survey (GHS). Psychol. Med. 2004, 34, 597–611. [CrossRef] [PubMed]

97. Rigby, R.A.; Stasinopoulos, M.D.; Heller, G.; De Bastiani, F. Distributions for Modelling Location,
Scale and Shape: Using GAMLSS in R. 2017. Available online: http://www.gamlss.com (accessed on
5 September 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1017/S0033291703001399
http://www.ncbi.nlm.nih.gov/pubmed/15099415
http://www.gamlss.com
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	A Review of the Methodological Literature
	A Review of the Literature on Income and Mental Health
	Aims and Structure of the Paper

	Materials and Methods
	Data
	Conditional Health Assessment beyond the Mean
	Considering the Conditional Distribution Set-Up
	The Conditional Health Distribution
	The Predictor Specification
	The Link Function and Other Technical Aspects


	Results
	The Predictor
	The Regression Coefficients
	A Distributional Perspective on the Association between Mental Health and Income
	Visualizing the Mental Health and Income Relationship
	Contrasting Mental Health for Two Income Levels


	Conclusions
	
	Variables
	Choosing a Distribution for the Conditional Health Distribution
	Residual Diagnostics
	Distributional Measures of BCPE and GB2 Models
	Bootstrap Confidence Intervals

	References

