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ABSTRACT

Gene regulatory networks (GRNs) formed by tran-
scription factors (TFs) and their downstream target
genes play essential roles in gene expression reg-
ulation. Moreover, GRNs can be dynamic changing
across different conditions, which are crucial for un-
derstanding the underlying mechanisms of disease
pathogenesis. However, no existing database pro-
vides comprehensive GRN information for various
human and mouse normal tissues and diseases at
the single-cell level. Based on the known TF-target
relationships and the large-scale single-cell RNA-
seq data collected from public databases as well as
the bulk data of The Cancer Genome Atlas and the
Genotype-Tissue Expression project, we systemati-
cally predicted the GRNs of 184 different physiologi-
cal and pathological conditions of human and mouse
involving >633 000 cells and >27 700 bulk samples.
We further developed GRNdb, a freely accessible
and user-friendly database (http://www.grndb.com/)
for searching, comparing, browsing, visualizing, and
downloading the predicted information of 77 746
GRNs, 19 687 841 TF-target pairs, and related bind-
ing motifs at single-cell/bulk resolution. GRNdb also
allows users to explore the gene expression profile,
correlations, and the associations between expres-
sion levels and the patient survival of diverse can-
cers. Overall, GRNdb provides a valuable and timely
resource to the scientific community to elucidate the
functions and mechanisms of gene expression reg-
ulation in various conditions.

INTRODUCTION

Gene expression is largely controlled by upstream tran-
scription factors (TFs) and usually exhibits spatiotemporal
specificity. Specifically, each cell has a particular combina-
tion of active TFs and their downstream target genes, which
form intricate gene regulatory networks (GRNs, termed
regulons) (1,2). Thus, GRN profiling is important to under-
stand the mechanisms of gene expression regulation and cel-
lular heterogeneity (3). Dysregulation of GRNs can result
in abnormal expression changes of the involved genes and
contribute to the development of diseases especially can-
cers (4). Several databases have provided the known or pre-
dicted TF-target pairs for different organisms, such as An-
imalTFDB 3.0 (5), TRRUST v2 (6) and RegNetwork (7),
which mainly focus on the potential binary regulatory re-
lationships between TFs and target genes that without the
information of GRN activity and related gene expression
profile (see Supplementary Table S1). Since TFs may regu-
late distinct sets of downstream target genes under disparate
conditions (2), it is crucial to take the spatiotemporal speci-
ficity of gene expression regulation into account. However,
no existing database has provided the activity of GRNs as
well as the expression profiles of TFs and corresponding tar-
get genes for a variety of human and mouse conditions.
The development of bulk and single-cell RNA-
sequencing (scRNA-seq) technologies and related
computational methods has brought unprecedented
opportunities to unravel the expression dynamics and
cellular heterogeneity (8,9). In particular, scRNA-seq also
enables the reconstruction of GRNs at the single-cell level
and gain insights into the cell-type-specific expression
regulation (2,10). For example, we recently found that TFs
could regulate different gene sets across distinct subtypes
of human pancreatic islets and the dynamics of GRNSs is
one main factor influencing the expression heterogeneity
of pancreatic cells (11). Moreover, functional decay of
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cell-type-specific redox GRNs was revealed in primate
ovarian aging, which provided potential novel biomarkers
and therapeutic targets for clinical diagnosis and treatment
of age-related human ovarian diseases (12). Rambow et al.
found that GRN architecture reprogramming could play
an important role in the progression and therapy resistance
of melanoma (13). Additionally, enhanced expression of
cell-type-specific TFs was revealed in the bronchoalveolar
immune cells of the patients with Coronavirus Disease
2019 (COVID-19) through single-cell GRN analysis,
suggesting that the lungs of severe COVID-19 patients had
a highly proinflammatory macrophage microenvironment
(14). Therefore, the activity of GRNs and the expression
profiles of TFs and downstream target genes are essen-
tial to fully understand the underlying mechanisms of
expression heterogeneity and the pathogenesis of diverse
diseases.

GRN reconstruction on a multitude of cells/samples
is time-consuming and resource-consuming, which is dif-
ficult for non-bioinformatics users to do such analysis.
Furthermore, there is still lacking a database to provide
the GRN activities and related gene expression profiles
for a variety of physiological and pathological conditions.
To address these challenges, we comprehensively inferred
the GRNs and characterized the expression profiles of
involved TFs and target genes based on the large-scale
single-cell data of 184 human and mouse conditions as
well as the bulk data of 33 cancers from The Cancer
Genome Atlas (TCGA) (15) and 27 normal tissues from the
Genotype-Tissue Expression (GTEx) project (16). Specifi-
cally, we developed GRNdb, a user-friendly and freely ac-
cessible database to catalog the rich information of a to-
tal of 77 746 regulons and 19 687 841 TF-target pairs,
allowing users to easily explore the landscape of gene
expression regulation under diverse normal tissues and
diseases.

DATA COLLECTION AND PROCESSING
Single-cell and bulk RNA-seq data collection and processing

We collected the scRNA-seq datasets of diverse hu-
man and mouse conditions from public databases of
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.
nih.gov/geo/) (17) and ArrayExpress (https://www.ebi.ac.
uk/arrayexpress/) (18). At present, GRNdb contains 72
single-cell human conditions (332,920 cells) of various nor-
mal tissues and diseases/cancers, and 41 single-cell mouse
conditions (300 150 cells) of different tissues. Moreover,
we also downloaded the bulk RNA-seq expression datasets
of diverse TCGA cancers (15) from UCSC Xena (https:
/Ixena.ucsc.edu/) (19) as well as the RNA-seq expression
data of various normal human tissues from GTEx (https:
/Iwww.gtexportal.org/home/) (16). To ensure the accuracy
of gene regulatory network inference, we removed those
datasets containing <30 samples. A total of 10,415 samples
for 33 different cancers of TCGA and 17 333 samples of
27 distinct normal tissues of GTEx were retained. All the
accession IDs of the original data for diverse human and
mouse conditions are available on the ‘Statistics’ page of
GRNdb.

Cell cluster identification for scRNA-seq datasets

For the single-cell datasets that have available cell-
type/cluster annotation information in the original stud-
ies, we used the known annotations of cells directly. If the
scRNA-seq datasets were without available cell type/cluster
annotations, we employed Seurat (version 3.1.5) (20) to de-
fine the cell clusters with the standard pipeline. Then, the
maker genes with significantly enriched expression in each
cell cluster of a given dataset were identified using the func-
tion of FindAllMarkers in Seurat (adjusted P-value < 0.05).

Gene regulatory network reconstruction

We predicted the gene regulatory networks in various hu-
man and mouse conditions using the SCENIC pipeline
(version 1.1.0.1) (10) based on the gene expression ma-
trix of each dataset and the known TF-motif annota-
tions. First, SCENIC employs GENIE3 (21) to detect the
gene sets co-expressed with TFs, which has been demon-
strated to be superior to other tools for GRN inference
(22). Then, RcisTarget (10) (version 1.2.1, https://resources.
aertslab.org/cistarget/) was used to infer the putative direct-
binding targets of TFs based on the motif-TF annotations
of cisTarget databases. Finally, the regulons were identi-
fied with the standard pipeline of SCENIC (https://github.
com/aertslab/SCENIC) step-by-step. Each of the identified
active regulons contains one TF and its downstream tar-
get genes. Only the best TF binding motifs that are over-
represented in a given gene set were used in GRNdb. For
this analysis, SCENIC utilized two different databases: (i)
the database scoring the motifs in the 500 bp upstream re-
gion of the TSS and (ii) the database scoring 10 kb space
around the TSS. By default, Normalized Enrichment Score
(NES) > 3.0 was utilized as the threshold to define the sig-
nificantly enriched motifs of corresponding TF modules in
the SCENIC pipeline, which corresponds to a False Discov-
ery Rate (FDR) between 3% and 9%.

DATABASE CONTENT AND USAGE

GRN landscape and statistics across various human and
mouse conditions

Currently, GRNdb provides the detailed regulon informa-
tion for 143 different human physiological and pathological
conditions and 41 single-cell mouse conditions of various
normal tissues, involving a total of >633 070 single cells and
>27 700 bulk samples (Figure 1A). Specifically, the human
datasets contain 72 single-cell conditions of diverse normal
tissues of adult and fetus, and the ecosystems and immune
microenvironments of different tumors/diseases, as well as
71 bulk datasets covering 33 TCGA cancers and 27 normal
tissues of GTEx. The robustness of GRN inference pipeline
for GRNdb construction has been further validated in our
recent study (11). In total, 70 651 regulons (mean: 494 and
median: 585 per condition) involving 16 915 901 TF-target
pairs (mean: 118 293 and median: 121 228 per condition)
were detected for human, while 7095 regulons (mean: 173
and median: 179 per condition) involving 2 771 940 TF-
target pairs (mean: 67 608 and median: 54 120 per tissue)
were identified for mouse (Figure 1B and C). In the result-
ing table of database query, we provided the best TF binding
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Figure 1. A schematic view of the GRNdb database. (A) Overview of data content and user interface of GRNdb. (B) Barplot showing the number of active
regulons detected in diverse conditions of humans and mice. (C) Barplot displaying the number of TF-target pairs detected in various human and mouse
conditions.
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motif that significantly enriched in relevant TF module for
each TF-target pair (NES value > 3, equals to 0.03 < FDR
< 0.09).

GRN search, browse and visualization

On the ‘Search’ page of GRNdb, users can explore the reg-
ulatory networks of their interested TFs or target genes
in diverse single-cell/bulk conditions of humans and mice.
We provided three types of commonly used gene formats
as input, including gene symbol, Entrez ID and Ensembl
(23) gene ID. For TF querying, the returned results include
the t-distributed Stochastic Neighbor Embedding (t-SNE)
plot based on all the significant regulons identified in a spe-
cific condition, maker expression heatmap and annotations
for different cell types/clusters (not available for bulk con-
ditions), the regulatory network formed by the query TF
and downstream target genes, regulon activity of this TF in
each cell/sample, t-SNE plot of TF expression profile, vi-
olin plot of TF expression for each cell type/cluster (not
available for bulk conditions), and the table of detailed in-
formation for involved TF-target pairs (Figure 2A-QG). For
target gene searching, it will return the results of upstream
regulating TFs that were activated in a given condition.
In the resulting table of gene query, all the TFs and tar-
get genes have been linked to GeneCards (24) for human
and MGI database (25) for mouse, which enables users to
conveniently get the detailed function and information of
relevant genes. Users can dissect the expression profile of
each TF and target gene in the table by simply clicking re-
lated links, which will automatically analyze the gene ex-
pression on the ‘Expression’ page. Moreover, the link of au-
tomatic expression correlation analysis for each TF-target
pair is also provided. Users can also sort the column con-
taining NES values to explore the TF-target pairs. Addi-
tionally, we annotated the TF-target pairs identified with
the known annotations of cisTarget database (10) or in-
ferred by orthology as high-confidence in GRNdb, whereas
the TF-target pairs detected by motif similarity were an-
notated as low-confidence. Besides, the ‘Comparison’ func-
tion on the Search page enables users to conveniently com-
pare the GRNs between any two conditions of human and
mouse, which may help users to gain more insights into gene
regulation.

On the ‘Browse’ page, users can browse the detailed in-
formation of all active TF—target pairs for 184 different hu-
man and mouse conditions. The browsing results of a par-
ticular condition include the t-SNE plot based on all signif-
icant regulons detected in the selected condition, the statis-
tics barplot of the numbers for cells/samples, regulons, TFs,
target genes, and TF-target pairs, as well as the detailed ta-
ble of all identified TF—target pairs (Figure 2A, H and G).

Gene expression and correlation investigation of multiple
genes simultaneously

To facilitate gene expression exploration, GRNdDb enables
users to interrogate the expression profiles of an array of
genes simultaneously on the ‘Expression’ page. The number
of query genes is without limitation and the input gene for-
mat can be gene symbols, Entrez IDs or Ensembl gene IDs.

This function is very useful if users want to dissect the ex-
pression profiles of many genes, which does not need to in-
vestigate the genes one by one. Expression search will return
the t-SNE plot of gene expression in each cell/sample and
the violin plot of gene expression in each cell type/cluster
(not available for bulk conditions) (Figure 2E and F).
Moreover, ‘Expression’ page also allows the pairwise ex-
pression correlation analysis for the input gene set. This
function is turned on by default, but users can disable it if
they do not need to calculate the correlations. In the case of
more than three input genes, a heatmap showing the pair-
wise Spearman’s correlations of the query gene set, as well
as the scatterplots of expression correlation between each
pair of input genes will be displayed (Figure 2I and J). Oth-
erwise, only one scatterplot of the Spearman’s correlation
between two query genes will be returned, and the correla-
tion analysis will be inactivated if only one gene is available.

Association analysis between gene expression and the patient
survival of cancers

Considering that an important analysis in cancer studies is
to check whether the expression levels of relevant genes are
significantly associated with the patient survival of certain
cancer, we developed the function of survival analysis for 33
different TCGA cancers on the ‘Survival’ page. For conve-
nience, no limit is set to the number of query genes and three
input formats of gene symbol, Entrez ID, and Ensembl gene
ID are selectable. We implemented the Python package of
lifelines (26) to conduct survival analysis and used the me-
dian expression level as the cutoff to divide the cancer pa-
tients into two different groups. A P-value is calculated for
each gene using the Logrank test, which indicates whether
the gene expression can stratify the patients into two groups
with significantly distinct survival time (Figure 2K). Users
can utilize the common threshold of P-value <0.05 to define
the significance. Besides survival analysis, we also provide
the TF—target regulatory network detected in related can-
cer for the query genes, which enables users to gain insights
into the expression regulation of their interested genes.

Download of figures, tables, and data

All the figures generated on the pages of ‘Search’, ‘Browse’,
‘Expression’ and ‘Survival’ can be downloaded by clicking
the download sign on the top right corner of corresponding
plot. Moreover, the resulting tables that contain the details
of conditions, data types (single-cell or bulk), TFs, target
genes, TF binding motifs, NES values, and confidence can
also be obtained in Excel format by clicking the ‘Download’
link below the table. Additionally, on the ‘Download’ page
of GRNdDb, users can get the matrices containing the de-
tailed information of all active TF-target pairs identified
in diverse conditions of human and mouse. Each matrix
is in plain text format with TAB separators for different
columns. Users can freely utilize the plots and explore the
tables they downloaded in their research.

SYSTEM DESIGN AND IMPLEMENTATION

GRNdb was written in Python (version 3.6.8) based on the
micro web framework of Flask (version 1.1.1), and its in-
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teractive interface was developed using Bootstrap (version
3.3.7) and JQuery (version 3.3.1). All the data in GRNdb
are stored in a MySQL (version 8.0.20) relational database.
The Echart (https://echarts.apache.org/zh/index.html) and
DataTables (https://www.datatables.net/) are applied to dis-
play graphs and tables, respectively. Currently, GRNdD is
deployed on a CentOS Linux server by employing Docker
(version 19.03.11), an open platform for developing and
running applications.

DISCUSSION

Since genes usually exhibit spatial and temporal-specific ex-
pression, the GRNs formed by TFs and downstream target
genes are also dynamically changing across different con-
ditions or cell types/states (11,27,28). Moreover, the gene
expression profiles of cells are regulated by the active regu-
lons, which is closely related to the expression heterogene-
ity and phenotypes of individual cells (29). Bulk and single-
cell RNA-seq technologies greatly facilitated the GRN ex-
ploration in large-scale samples/cells, providing great op-
portunities to characterize the underlying mechanisms of
gene expression regulation and disease development (22).
However, currently available TF—target regulation informa-
tion for human and mouse in existing databases are gen-
erally without the information of regulon activity and ex-
pression of TFs and target genes. Thus, we developed the
user-friendly database of GRNdD for users to freely access
the detailed information of active regulons in diverse human
and mouse conditions

At present, GRNdb provides the GRN landscape for 184
distinct physiological and pathological conditions, involv-
ing 633,070 cells and 27,748 bulk samples. A total of 70
651 regulons (16 915 901 TF-target pairs) and 7095 regu-
lons (2 771 940 TF-target pairs) are available in GRNdb
for human and mouse, respectively. All the regulations in
GRNdb are predicted from the omics data, which are valu-
able for future experimental validations. Users can easily
explore and visualize the GRNs and related gene expres-
sion profiles in various conditions. For instance, the Search
page enables the GRN investigation and expression profil-
ing of TFs and target genes (e.g. TF HSPAS in head and
neck cancer, Figure 2), while the Browse page allows ex-
amining the detailed information of all identified GRNs in
each condition (Figure 2). Moreover, users can interrogate
the expression profile and cancer survival of their interested
genes on the pages of Expression and Survival (Figure 2),
respectively. Collectively, GRNdD constitutes an abundant
and valuable resource to the research community to better
understand the TF-target regulations in various normal tis-
sues and diseases. We believe GRNdb will aid users to un-
ravel the underlying mechanisms of gene expression dynam-
ics and disease pathogenesis. We will continue to maintain
GRNdb and update it to include more human and mouse
datasets.
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The GRNdb database is freely accessible for non-
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the database.
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