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Growing evidence has elucidated that long non-coding RNAs
(lncRNAs) are involved in a variety of complex diseases in hu-
man bodies. In recent years, it has become a hot topic to
develop effective computational models to identify potential
lncRNA-disease associations. In this article, a novel method
called ICLRBBN (Internal Confidence-Based Local Radial Ba-
sis Biological Network) is proposed to detect potential
lncRNA-disease associations by adopting an internal confi-
dence-based radial basis biological network. In ICLRBBN, a
novel internal confidence-based collaborative filtering recom-
mendation algorithm was designed first to mine hidden fea-
tures between lncRNAs and diseases, which guarantees that
ICLRBBN can be more effectively applied to predict new dis-
eases. Then, a unique three-layer local radial basis function
network consisting of diseases and lncRNAs was constructed,
based on which the association probability between diseases
and lncRNAs was calculated by combining different character-
istics of lncRNAs with local information of diseases. Finally, we
compared ICLRBBN with 6 state-of-the-art methods based on
two different validation frameworks. Simulation results
showed that area under the receiver operating characteristic
curve (AUC) values achieved by ICLRBBN outperformed all
competing methods. Furthermore, case studies illustrated
that ICLRBBN has a promising future as a powerful tool in
the practical application of lncRNA-disease association predic-
tion. A web service for prediction of potential lncRNA-disease
associations is available at http://leelab2997.cn/.

INTRODUCTION
Historically, the hypothesis that genetic information is stored in pro-
tein-coding genes has been commonly accepted as the unerring cen-
tral principle of molecular biology.1 However, with the continuous
development of sequencing technology and the completion of various
sequencing projects, researchers have found that more than 98% of
the human genome does not encode protein sequences but produces
a large number of non-coding RNAs (ncRNAs).2,3 Among them, long
non-coding RNAs (lncRNAs) are an important class of non-coding
transcripts with lengths longer than 200 nt.4,5 Specially, they are
also critical regulators involved in various important biological pro-
cesses such as cell proliferation, cell apoptosis, transcription, transla-
tion, cell cycle control, and epigenetic regulation.6,7 Therefore, it is
not surprising that a growing number of studies have corroborated
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the existence of a significant association between the mutations and
abnormalities of lncRNAs and various complex human diseases.8–10

It is obvious that disease-related lncRNAs can not only provide valu-
able insights into the research on the pathogenesis of complex
diseases at the lncRNA level but also contribute to the diagnosis, treat-
ment, and prognosis of diseases. However, considering that tradi-
tional biological experimental methods are time consuming and
expensive, it is necessary to develop computational models to infer
potential lncRNA-disease associations, since it can reduce costs and
save time in biological experiments.

In the past few years, some advanced computational models have been
proposed to predict potential lncRNA-disease associations successfully.
So far, according to the different strategies adopted, these models can
be roughly divided into three major categories. The first category is
composed of the network-based approaches, in which different kinds
of lncRNA-disease heterogeneous networks are constructed to discover
potential associations between lncRNAs and diseases based on known
lncRNA-disease associations. For instance, Li et al.11 presented a pre-
diction model called LRWHLDA by implementing the local random
walk method on a newly constructed lncRNA-disease heterogeneous
network.11 However, due to limited known lncRNA-disease associa-
tions, these network-based methods cannot be used to predict correla-
tions between new lncRNAs (lncRNAs without known associated dis-
eases) and new diseases (diseases without known associated lncRNAs).
Hence, in recent years, some computational models that do not rely on
known lncRNA-disease associations have been proposed. For example,
Wang et al.12 developed a tool called lncDisease to infer potential cor-
relations between lncRNAs and diseases based on disease enrichment
analysis of microRNAs (miRNAs) interacting with specific lncRNAs.
These models constitute the second category. Although these models
broke through the limitations of limited known lncRNA-disease asso-
ciation samples, they cannot be applied to infer potential associations
between diseases and lncRNAs without any known related genes or
miRNAs. Hence, the third category of computational models is pro-
posed based onmachine learning schemes in recent years. For example,
Fu et al.13 developed a generic data fusion model based on matrix
rapy: Nucleic Acids Vol. 23 March 2021 ª 2020 The Author(s). 501
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Figure 1. ROC curves and AUCs achieved by ICLRBBN under the

framework of LOOCV and the framework of 5-fold CV
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decomposition called MFLDA, which can explore and utilize the
intrinsic structure of heterogeneous data sources to apply to correlation
prediction between various types of entities. However, the performance
of these machine learning-based models depends on the selection of
optimal parameters, which have not been solved efficiently up to now.

Inspired by the above models, in this article, a novel method called
ICLRBBN (Internal Confidence-Based Local Radial Basis Biological
Network) was proposed to uncover potential lncRNA-disease associ-
ations. In ICLRBBN, considering the limited known lncRNA-disease
associations and the applicability of new diseases, a new measure for
estimating the similarities between diseases was designed first based
on the concept of internal confidence. Then, an internal confidence
collaborative filtering recommendation algorithm was developed to
extract features of diseases. Next, a novel three-layer complex radial
basis biological network was further constructed, based on which
the probability matrix of associations between lncRNAs and diseases
was calculated by integrating different characteristics of lncRNAs
with local information of diseases. Finally, in order to evaluate the
prediction performance of ICLRBBN, two different kinds of frame-
works, including the leave-one-out cross-validation (LOOCV) and
the 5-fold cross-validation (5-fold CV), were implemented separately.
Experimental results indicated that ICLRBBN achieved reliable area
under the receiver operating characteristic (ROC) curve (AUC)
values of 0.9510 and 0.9043 ± 0.0019, respectively. Furthermore,
case studies of two specific diseases, breast cancer and osteosarcoma,
demonstrated that ICLRBBN was an effective tool for predicting po-
tential lncRNA-disease associations as well.
RESULTS
Performance evaluation

Two common validation frameworks, LOOCV and 5-fold CV, were
adopted to evaluate model performance of ICLRBBN. Both LOOCV
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and 5-fold CV were performed on ICLRBBN based on 1,695 known
lncRNA-disease associations obtained from the lncRNADisease data-
base.14 First, in LOOCV, each known lncRNA-disease association
was taken as a test sample in turn, while the remaining 1,694 known
associations were taken as training samples. In addition, all lncRNA-
disease pairs with no known association in the dataset were consid-
ered as candidate samples. Subsequently, we ranked the test sample
together with all the candidate samples based on the scores predicted
by ICLRBBN. If the test sample ranked higher than a given threshold,
the prediction of the test sample was considered successful; other-
wise, the prediction was considered failed. Then, through the setting
of different thresholds, we calculated the corresponding true-positive
rates (TPRs or sensitivity) and false-positive rates (FPRs or 1-speci-
ficity). Here, TPR represented the ratio of test samples ranked above
a given threshold, and FPR represented the ratio of candidate sam-
ples ranked above a given threshold. Finally, the ROC curve was
drawn according to the TPRs and FPRs corresponding to these
different thresholds. The AUC was used as an evaluation indicator
to evaluate the prediction performance of the model, where an
AUC value of 1 indicated an ideal perfect prediction, while an
AUC value of 0.5 indicated a completely random prediction. The
closer the AUC value was to 1, the better the prediction performance
of the model. The simulation experiment result is illustrated in Fig-
ure 1. ICLRBBN obtained a reliable AUC of 0.9510 under the
LOOCV framework, which showed that our model had outstanding
prediction performance.

Additionally, unlike LOOCV, all 1,695 known lncRNA-disease asso-
ciations in the 5-fold CV were randomly and evenly divided into 5
groups, with each group taking a turn as the test set, with the re-
maining 4 groups as the training set. Considering that the random-
ness of dividing the groups may have led to deviation in the
experimental results, we performed 5-fold CV 100 times to obtain
the average AUC values. As illustrated in Figure 1, ICLRBBN
obtained a reliable AUC of 0.9043 ± 0.0019 under the 5-fold CV
framework.

Effects of parameters

In ICLRBBN, there are twomain parameters: the parameterK and the
overlap coefficient factor l. The parameterK determines the size of the
chum set of diseases, while the overlap coefficient factor l controls the
coverage of the basis function scope in the hidden layer. We consid-
ered l˛f0:1; 0:2; 0:3/1g and K˛f5; 10; 15; 20g and implemented
ICLRBBN several times in LOOCV and 5-fold CV based on the data-
set DS1 to evaluate their effects. Since the division of the test set and
the verification set in 5-fold CV was random, 5-fold CV was per-
formed 100 times under each group of parameters K and l to obtain
the average AUC values. As illustrated in Figure 2 below, we found
that for all values of K, the AUC values in LOOCV increased slightly
when l varied from 0.1 to 0.5, and the AUC values decreased signifi-
cantly when l varied from 0.6 to 1. Additionally, as shown in Table 1,
we demonstrated that when K = 15 and l = 0.4, ICLRBBN performed
best in 5-fold CV. Hence, K and l were set to 15 and 0.4 in ICLRBBN,
respectively.



Figure 2. Effects of parameters K and l under the framework of LOOCV
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Comparison with other state-of-the-art methods

In order to better demonstrate the superior performance of ICLRBBN,
we compared it with 6 state-of-the-art methods, including NBLDA,15

IIRWR,16 SIMCLDA,17 PMFILDA,18 KATZLDA,19 and LRLSLDA,20

based on the same two datasets obtained above. As a result, the compar-
ative experiment results under the LOOCV framework and the 5-fold
CV framework are illustrated in Figures 3 and 4 and Table 2. As shown
in Figure 3, we found that ICLRBBNachieved the optimal reliable AUC
of 0.9510 in LOOCVbased on datasetDS1, which considerably outper-
formed the AUCs of other methods (NBLDA: 0.8845; IIRWR: 0.8745;
PMFILDA: 0.8346; KATZLDA: 0.8257; and LRLSLDA: 0.7472). As
shown in Table 2, ICLRBBN achieved the optimal mean AUC of
0.9043 on dataset DS1 in 5-fold CV, which was still far superior to the
other five methods (PMFILDA: 0.8337; IIRWR:0.8082; KATZLDA:
0.7994; LRLSLDA: 0.7154; and NBLDA:0.5547). Moreover, the results
ofmultiplemetrics including theAreaUnder the Precision-Recall curve
(AUPR), F1 and Precision also demonstrated the superior performance
of ICLRBBN.As shown in Figure 4, on datasetDS2, ICLRBBNalso per-
formedmuch better than other methods, with a reliable AUC of 0.9050
(NBLDA: 0.8271; SIMCLDA: 0.8257; IIRWR: 0.8026; KATZLDA:
0.7640; and PMFILDA: 0.5636).

Moreover, in order to evaluate the performance of ICLRBBN in pre-
dicting lncRNAs related to new diseases, we further compared it
with competing methods under the framework of leave-one-out
verification. During experiments, for any disease di, when calcu-
lating the association scores between it and each lncRNA, we
excluded all known associations of di and only relied on the remain-
ing known associations for prediction. As illustrated in Figure 5,
ICLRBBN still achieved a reliable AUC of 0.9104 for new disease-
related lncRNA prediction, which considerably outperformed
AUCs achieved by KATZLDA and NBLDA. That is to say,
ICLRBBN had much better performance on prediction of new dis-
ease-related lncRNAs. Overall, the performance of ICLRBBN was
significantly better than all these methods.
Case study

We selected two important cancers, breast cancer and osteosarcoma,
for case studies on the dataset DS1 to further evaluate the prediction
performance of ICLRBBN. During simulation, all known associations
in the dataset were treated as training sets. In addition, for any given
disease, all lncRNAs that have no known association with the disease
were considered candidate-related lncRNAs for the disease. Then, ac-
cording to the correlation probability score calculated by ICLRBBN,
all candidate lncRNAs for the given disease were ranked. As a result,
we list the top 15 candidate lncRNAs and some relevant evidence
found in the PubMed literature.

Breast cancer is a malignant tumor developed from the epithelial tissue
cells of the breast. Its signs include breast lumps, changes in breast shape,
nipple depression, nipple discharge, etc. Breast cancer is the most com-
monmalignant tumor inwomen, which seriously threatens the health of
women worldwide.21 However, breast cancer is a very heterogeneous
disease; thus, its pathogenesis is still unclear, and the treatment is still
incomplete. In recent years, more and more studies have demonstrated
that lncRNAs are involved in the biological process of breast cancer’s
generation and development.22 Therefore, we implemented ICLRBBN
to predict lncRNAs associated with breast cancer. As a result, as illus-
trated in Table 3 below, 8 of the top 10 candidate lncRNAs related to
breast cancer predicted by ICLRBBN have been experimentally
confirmed recently, while 13 of the top 15 candidate lncRNAs have
been confirmed. For instance, Shi et al.23 utilized western blot to discover
that HULC is highly expressed in triple-negative breast cancer (TNBC)
tissues and is closely related to the poor prognosis of TNBC patients.
Through a series of experiments in vivo and in vitro, it was found that
the expression ofHOTTIPwas significantly upregulated in breast cancer
cell lines, and HOTTIP could participate in breast cancer cell prolifera-
tion, migration, and apoptosis processes by regulatingHOXA11 to some
extent.24 It was proved that BANCR was overexpressed in breast cancer
cell lines, and the proliferation, invasion, and migration ability of breast
cancer cells could be reduced by BANCR knockdown.25,26

Osteosarcoma is the most common type of bone malignancy, usually
occurring during adolescence. Although chemotherapy can greatly
improve the survival rate of patients with osteosarcoma, about 40%
of patients will experience tumor recurrence and tumor metastasis.27

Hence, it is particularly important to thoroughly study the pathogen-
esis of osteosarcoma so as to explore more effective treatment strate-
gies. As a result, as illustrated in Table 4, 9 of the top 10 candidate
lncRNAs related to osteosarcoma predicted by ICLRBBN have been
confirmed by recent experiments, while 13 of the top 15 candidate
lncRNAs related to osteosarcoma have been confirmed. For example,
it was found that the expression level of GAS5 was significantly
reduced in osteosarcoma tissue cells and GAS5 could act as an inhib-
itor of osteosarcoma, which can inhibit the growth and migration of
osteosarcoma by sponging miR-203a or regulating miR-22.28,29 Ruan
et al.30 adopted Kaplan-Meier survival analysis and log rank testing to
demonstrated that the expression of CCAT2 in osteosarcoma tissue
was significantly increased compared to normal bone tissues and
related to the TNM stage of tumors in osteosarcoma patients. Some
Molecular Therapy: Nucleic Acids Vol. 23 March 2021 503
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Table 1. Effects of parameters K and l under the framework of 5-fold CV

K (AUC) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

5 0.8249 0.8561 0.8922 0.9025 0.8911 0.8177 0.7346 0.6656 0.6253 0.6046

10 0.8326 0.8562 0.8908 0.9036 0.8919 0.8196 0.7456 0.6784 0.6378 0.6175

15 0.8224 0.8566 0.8909 0.9043 0.8922 0.8208 0.7499 0.6837 0.6431 0.6232

20 0.8227 0.8565 0.8899 0.9040 0.8924 0.8206 0.7523 0.6872 0.6440 0.6246
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studies have indicated thatNEAT1 is an oncogene, and its overexpres-
sion will downregulate the osteosarcoma inhibitor miR-34c and
enhance cisplatin (DDP)-based chemotherapy resistance.31
DISCUSSION
In recent years, it has become increasingly clear that lncRNAs are
involved in various biological processes in the human body and
have an inseparable connection with many major diseases. The iden-
tification of potential lncRNA-disease association pairs has become a
hot research topic in bioinformatics, which can deepen people’s un-
derstanding of the pathogenesis of various diseases at the molecular
level and promote the research progress of treatment and prognosis
strategies for complex diseases.

In this article, we developed a novel prediction model called
ICLRBBN to infer potential lncRNA-disease associations. First, we
designed an internal confidence collaborative filtering recommenda-
tion algorithm by introducing two confidence factors, which solved
the problem that the known lncRNA-disease association information
is too sparse and reduced the dependence of our model on the known
association information. Second, by combining the radial basis func-
tion network with the information of lncRNAs and diseases and
assigning biological significance to each node in the radial basis func-
tion network, we constructed a unique local radial basis function
network, based on which we could predict the association probabili-
ties between lncRNAs and the diseases according to the characteris-
tics of lncRNAs and the local information of diseases. In addition,
various experiments have been done, and experimental results have
demonstrated the reliability and superiority of the prediction perfor-
mance of ICLRBBN as well. Meanwhile, a web server that implements
the method of ICLRBBN is available at http://leelab2997.cn/.

Of course, there are still certain limitations in ICLRBBN that need to
be improved and optimized in future work. For instance, ICLRBBN
still has a certain dependence on known lncRNA-disease associations.
However, we believe that integrating a variety of biological indicators
may solve this problem to a great extent and can further improve the
prediction performance of the model to make it better applicable to
the case of sparse known associations. Therefore, this problem will
be the focus of discussion and study in the future.
MATERIALS AND METHODS
We first downloaded two different datasets of known lncRNA-disease
associations from two versions of the lncRNADisease database
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(http://www.cuilab.cn/lncrnadisease).14 After removing non-human
data and redundant association records, we finally obtain a dataset
containing 1,695 distinct experimentally verified human lncRNA-dis-
ease associations between 314 diseases and 828 lncRNAs, and a data-
set containing 621 distinct lncRNA-disease associations between 226
diseases and 285 lncRNAs. For convenience, we denote these two da-
tasets as DS1 and DS2, respectively. Next, for any given dataset of
known lncRNA-disease associations, we further converted it into an
original incidence matrix A, where A(i,j) = 1 if and only if there is a
known association between the i-th disease and the j-th lncRNA;
otherwise A(i,j) = 0. In addition, for simplicity, we defined ND and
NL as the number of diseases and the number of lncRNAs in the given
dataset, respectively.

The flow chart of ICLRBBN is illustrated in Figure 6. In ICLRBBN,
based on known lncRNA-disease associations, an original incidence
matrix A was obtained first. To overcome the effect of limited known
lncRNA-disease associations, a novel internal confidence-based
collaborative filtering recommendation algorithm was designed to
mine potential associations between lncRNAs and diseases without
known related lncRNAs, and thus a new target output matrix A*
and a new feature matrix T were constructed based on the original
incidence matrix A. Finally, a novel three-layered local radial basis
biological network was designed to infer potential lncRNA-disease
associations.
Internal confidence-based collaborative filtering

recommendation algorithm

Considering that known lncRNA-disease associations are quite
limited, the association matrix A was very sparse. Hence, to
make ICLRBBN applicable to detect potential associations between
lncRNAs and new diseases (i.e., diseases without any known
related lncRNAs), an internal confidence-based collaborative
filtering recommendation algorithm was proposed first to excavate
potential indirect features between lncRNAs and diseases. As
shown below, the recommendation algorithm consists of three ma-
jor parts.
Part 1: calculation of similarities between diseases

Internal confidence-based similarity for diseases

The concept of internal confidence and two factors of internal con-
fidence, including reliability and heat, were introduced first to
measure the similarities between diseases. For any given two
different diseases du and dv , let LðduÞ and LðdvÞ represent the
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Figure 3. ROC curves and AUCs achieved by ICLRBBN, NBLDA, IIRWR,

PMFILDA, KATZLDA, and LRLSLDA under the framework of LOOCV based

on DS1
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two sets of all lncRNAs with known associations with du and dv ,
respectively, and | LðduÞ| denote the number of elements in
LðduÞ. We define two different diseases as “close friends” if and
only if these two diseases have known associations with at least
one common lncRNA. Based on the concept of close friends, it
is reasonable to assume that: (1) the larger the number of elements
in LðduÞXLðdvÞ, the more similar these two different diseases du
and dv will be; and (2) supposing that there is LðduÞXLðdvÞ =
LðduÞXLðdwÞ, then the similarity between du and dv will be higher
than the similarity between du and dw, if the number of elements
in LðdvÞ is less than that in LðdwÞ. Thereafter, based on the above
two assumptions, we can calculate the similarity between du and dv
as follows:

ICS1ðdu; dvÞ = jLðduÞXLðdvÞj
jLðduÞWLðdvÞj: (Equation 1)

Next, for a given lncRNA lk, letDðlkÞ denote the set of all diseases that
have known associations with lk. Then we defineHEATðlkÞ as the heat
score of lncRNA lk, which can be obtained as follows:

HEATðlkÞ = log
ND

jDðlkÞj: (Equation 2)

According to Equation 2, it is obvious that the lncRNAs with higher
heat scores will have known associations with fewer diseases. More-
over, based on the concept of heat score for lncRNAs, for any two
given lncRNAs lp and lq, where lp˛ LðduÞXLðdvÞ and lq˛ LðduÞW
LðdvÞ, it is reasonable that Equation 1 can be modified as follows:

ICSðdu; dvÞ =
P

lp˛LðduÞXLðdvÞHAET
�
lp
�

P
lq˛LðduÞWLðdvÞHAET

�
lq
�: (Equation 3)
In addition, taking the situation in Figure 7 as an example, if the sim-
ilarity calculation is performed according to Equations 2 and 3, the sim-
ilarity between d1 and d2 and the similarity between d3 and d4 will both
be 1. However, the lncRNA l1 is associated with two different diseases,
while the lncRNA l2 is associated with four different diseases.
Obviously, it is reasonable to assume that the similarity between d1
and d2 shall be higher than that between d3 and d4. Hence, we further
introduced another confidence factor called RELIAB for different
lncRNAs, which represents the average heat reliability of those
lncRNAs with known association with both du and dv and can be
obtained as follows:

RELIAB =
HEAT

�
lp
�

log ND
2

=

P
lp˛LðduÞXLðdvÞlog

ND

jDðlpÞj
jLðduÞXLðdvÞj � log ND

2

: (Equation 4)

Here,HEATðlpÞ denotes the average heat score of those lncRNAs with
known association with both du and dv .

According to Equation 4, the final internal confidence-based similarity
between any two given diseases du and dv can be calculated as follows:

ICSðdu; dvÞ =
P

lp˛LðduÞXLðdvÞHEAT
�
lp
�

P
lq˛LðduÞWLðdvÞHEAT

�
lp
� � RELIAB: (Equation 5)

Semantic similarity for diseases

For each disease in a given dataset, we downloaded its corresponding
MeSH descriptor from the MeSH database of the National Medical
Library (https://www.nlm.nih.gov/). According to the strict classifica-
tion information provided by theMeSH descriptor and the concept of
directed acyclic graph (DAG) between different diseases, we can
obtain the semantic similarity32 between diseases as follows.

First, any disease di can be represented in the form of a
graph:DAGðdiÞ= ðdi; DðdiÞ; EðdiÞÞ. Among them, DðdiÞ represents
a set of nodes composed of di itself and its ancestor nodes, and
EðdiÞ represents the corresponding set of directed edges from the
parent nodes to the child nodes. Thereafter, for any node t in the
graph DAGðdiÞ, its semantic contribution to the disease di can be
calculated as follows:

Ddi tð Þ=
�
1 if t = di
max D � Ddi t

0ð Þjt0˛children of tf g if tsdi
:

(Equation 6)

where D is a semantic contribution factor whose value is between
0 and 1, and previous experimental results have indicated that its
value is set to 0.5 optimal.32

Furthermore, for any disease di, its semantic value can be calculated as
follows:

DðdiÞ =
X

t˛DðdiÞ
DdiðtÞ: (Equation 7)
Molecular Therapy: Nucleic Acids Vol. 23 March 2021 505
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Figure 4. ROC curves and AUCs achieved by ICLRBBN, NBLDA, SIMCLDA,

IIRWR, KATZLDA, and PMFILDA under the framework of LOOCV based on

DS2
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Finally, based on the assumption that two diseases that share more
structure in the DAG tend to have higher semantic similarity, the se-
mantic similarity of any two different diseases di and dj can be calcu-
lated as follows:

SSði; jÞ =
P

t˛DðdiÞXDðdjÞ
�
DdiðtÞ+DdjðtÞ

�
DðdiÞ+D

�
dj
� : (Equation 8)

Integrated similarity for diseases

According to Equations 5 and 8, for any two given diseases du and dv ,
we can obtain the integrated similarity between them as follows:

SIMðdu; dvÞ = SSðdu; dvÞ+ ICSðdu; dvÞ
2

: (Equation 9)

Part 2: construction of the feature matrix T

According to the integrated disease similarity matrix SIM obtained
above, for any given disease du, we can obtain “the circle of K-closest
friends” of du, that is, a set of K diseases with the highest integrated
similarities to du. Let ChumðduÞ represent the “circle of K-closest
friends” of du; then for any given lncRNA lp, we can calculate a
possible score of association between du and lp, even if there is no
known association between du and lp. Thereafter, we can obtain a
feature matrix T as follows:

T du; lp
� �

=

8>><
>>:

1 : if du is known to be associated with lp

X
dv˛Chum duð Þ

SIM du; dvð Þ � SIM du; dvð ÞX
dv˛Chum duð Þ

SIM du; dvð Þ � cvp : otherwise :

(Equation 10)
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Here, cvp denotes the score of known association between the disease
dv and lncRNA lp, where cvp = 1 if and only if there is known associ-
ation between dv and lp. Otherwise, cvp = 0.
Part 3: construction of the target output matrix A*

For new diseases, since there are no known association between these
diseases and lncRNAs, we cannot extract any useful information about
these new diseases from the original incidence matrix A to make effec-
tive predictions. Therefore, for any given new disease du, we utilize the
“circle of K-closest friends” of du to recommend the most likely
associations for it first and then construct a new target output matrix
A* from the original incidence matrix A according to the following
steps:

Step 1: letA* = A, and then for any given new disease du, we obtain
a new association score vector C1

du based on the “circle ofK-closest
friends” of du as follows:

C1
du
=

X
dv˛Chum duð Þ

A dv; :ð Þ: (Equation 11)

Step 2: let C1
du = ðcdu ;l1; cdu ;l2; cdu ;l3/cdu;lt/cdu ;lNLÞ, and

T1ðduÞ= flk
��cdu ;lk =maximumfcdu;l1; cdu ;l2; cdu ;l3/cdu ;lt/cdu ;lNLg^c

du ;lk s0g. If the set is not empty (i.e., T1ðduÞsB), then these
lncRNAs in T1ðduÞwill be recommended to du as the most likely
candidates.

Step 3: if T1ðduÞ =B, then we will traverse each of these lncRNAs in
the “circle of K-closest friends” of du and further obtain another
new association score vector C2

du based on the “circle of K-closest
friends” of each lncRNA in the “circle of K-closest friends” of du
as follows:

C2
du

=
X

dv˛ChumðduÞ
dp˛ChumðdvÞ

A
�
dp; :

�
: (Equation 12)

Similar to above step 2, let T2ðduÞ denote the set of lncRNAs with the
maximum score in C2

du , and at the same time, the scores of these
lncRNAs are greater than 0. Then if T2ðduÞsB, all the lncRNAs in
T2ðduÞ will be recommended to du as the most likely candidates as
well.

Hence, according to the above steps, we can obtain a new matrix A*
from the original incidence matrix A as follows:
A�ðdu; lkÞ =

8>><
>>:

1 : if Aðdu; lkÞ= 1
1 : else if lk˛T1ðduÞand T1ðduÞsB
1 : else if lk˛T2ðduÞand T2ðduÞsB
0 : Otherwise

:

(Equation 13)



Table 2. Performance of ICLRBBN, PMFILDA, IIRWR, KATZLDA, LRLSLDA

and NBLDA under the framework of 5-fold CV

Metrics
and
methods ICLRBBN PMFILDA IIRWR KATZLDA LRLSLDA NBLDA

AUC 0.9043 0.8337 0.8082 0. 7994 0.7154 0.5547

AUPR 0.1355 0.0641 0.0473 0.0868 0.0822 0.1807

F1 0.0016 0.0009 0.0007 0.0013 0.0010 0.0013

PRE 0.1268 0.0660 0.0483 0.0764 0.0742 0.1816
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Construction of the local radial basis function network

The radial basis function network (RBF network) is an artificial neural
network utilizing radial basis functions as activation functions. It was
first proposed by Broomhead and Lowe in 1988.33 At present, the
radial basis function network has been widely used in many fields,
such as time series prediction, system control, and classification prob-
lems. Inspired by the superior performance of the radial basis func-
tion network, we designed a novel local radial basis function network
for lncRNA-disease association prediction.

As illustrated in Figure 6, the local radial basis function network is
divided into three layers: the input layer, the hidden layer, and the
output layer. Among them, there are NL nodes in the input layer,
representing NL lncRNAs, and each node will accept a ND-dimen-
sional vector (i.e., the eigenvector between the lncRNA and dis-
eases) as the input. The hidden layer consists of H nodes corre-
sponding to H distinct feature vectors in the input matrix. In
addition, the output layer consists of ND nodes representing ND

diseases, and the output of each node in the output layer is an
NL-dimensional vector, which consists of probabilities of NL asso-
ciations between this disease and NL lncRNAs. In ICLRBBN, the
hidden layer adopts the nonlinear optimization strategy, which
maps the low-dimensional eigenvectors of the input layer to the
Figure 5. The performance of ICLRBBN, KATZLDA and NBLDA on

prediction of new disease-related lncRNAs
high-dimensional space through the nonlinear function. After-
ward, in this high-dimensional space, the output layer adopts the
linear optimization strategy, which makes linear weighted adjust-
ment to the hidden layer’s output information to approximate
the target output.

In addition, the local radial basis function network is input twice,
where the original incidence matrix A will be regarded as the
initial eigenmatrix to be used as the input matrix for the first input
of the local radial basis biological network, and the feature matrix
T obtained in Equation 10 will be utilized for the second input of
the local radial basis biological network. Furthermore, the target
output matrix A* will be adopted as the first output target matrix
of the local radial basis biological network, while the second output
matrix of the local radial basis biological network will be regarded
as the predicted lncRNA-disease association probability score
matrix.

Particularly, before adopting them as the inputs of the local radial
basis biological network, we will normalize these two feature
matrices A and T with the cross-channel normalization scheme as
follows:

A di; lj
� �

=

8>><
>>:

A di; lj
� �

XND

i= 1
A di; lj
� � if

XND

i= 1

A di; lj
� �

s0

A di; lj
� �

otherwise

: (Equation 14)

T
�
di; lj

�
=

8>><
>>:

T
�
di; lj

�
XND

i= 1
T
�
di; lj

� if
XND

i= 1

T
�
di; lj

�
s0

T
�
di; lj

�
otherwise

: (Equation 15)

Based on above descriptions, the prediction process based on the
newly constructed local radial basis function network can be mainly
divided into the following steps.
Step 1: determining the number of nodes for the hidden layer

The normalized incidence matrix A is a ND*NL-dimensional matrix,
which will be used as the initial input matrix of the local radial basis
biological network. In the local radial basis biological network, these
NL nodes in the input layer representNL lncRNAs, and each node will
accept a corresponding ND-dimensional feature vector as the input.
In addition, supposing that after removing duplicated columns in
the normalized incidence matrix A, a unique ND*H-dimensional
feature matrix containingH different ND-dimensional feature vectors
will be obtained; then we will assignH nodes to form the hidden layer
of the local radial basis biological network, which correspond to these
H different ND-dimensional feature vectors separately.

Step 2: calculating the first output of the hidden layer

After determining the number of nodes for the hidden layer, the
output matrix of the hidden layer can be calculated. The role of
Molecular Therapy: Nucleic Acids Vol. 23 March 2021 507
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Table 3. The top 15 potential breast cancer-related lncRNAs predicted by

ICLRBBN and relevant evidence for these predicted associations

Rank lncRNA Evidence Expression pattern

1 HOTTIP 29415429 upregulated

2 BANCR 29565494, 29805676 upregulated

3 HULC 27986124 upregulated

4 AFAP1-AS1 29439313, 29974352 upregulated

5 MIAT
29100300, 29345338,
29792859

upregulated

6 DRAIC 25288503 regulation

7 HNF1A-AS1 unconfirmed unconfirmed

8 PCAT1 28989584 upregulated

9 PCAT29 unconfirmed unconfirmed

10 TUSC7 23558749 differential expression

11 CASC2 29523222 downregulated

12 CRNDE 28469804 upregulated

13 PTENP1 29085464, 29212574 downregulated

14 TINCR 29614984 upregulated

15 HIF1A-AS1 26339353 upregulated

Molecular Therapy: Nucleic Acids
the hidden layer is to take kernel function as the basis function and
map each feature vector of the input layer from low dimension to
high dimension to make it linearly separable. In ICLRBBN, we
adopt the Gaussian kernel function as the basis function, and for
each node in the hidden layer, its output will be a NL-dimensional
vector. Let the output vector of the k-th node in the hidden layer
Table 4. The top 15 potential osteosarcoma-related lncRNAs predicted by

ICLRBBN and relevant evidence for these predicted associations

Rank lncRNA Evidence Expression pattern

1 GAS5 29414815, 28519068 downregulated

2 PVT1 28602700 upregulated

3 NEAT1 28295289, 29654165 upregulated

4 SPRY4-IT1 28078006 upregulated

5 CCAT1 28549102 upregulated

6 CCAT2 29863240 upregulated

7 XIST
29384226, 28409547,
28682435, 29254174

upregulated

8 PANDAR 28011477 upregulated

9 AFAP1-AS1 31002124 upregulated

10 LINC-ROR unconfirmed unconfirmed

11 BCYRN1 unconfirmed unconfirmed

12 SOX2-OT 28960757 upregulated

13 MIAT 32196573 downregulated

14 PCAT1 29430187 upregulated

15 ATB 28469952 upregulated
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be h½1�k = ðhk1; hk2;/; hkNLÞT ; then each element hkj in h½1�k can be
calculated according to the Euclidean distance as follows:

hkj = exp

�
� 1
2sk

kCk � X ½1�
j k 2

�
: (Equation 16)

Here, Ck represents the center of the k-th basis function (i.e.,
ND-dimensional feature vector corresponding to the k-th node
in the hidden layer). X½1�

j represents the feature vector input by
the j-th node in the input layer for the first time. Additionally,
s is the bandwidth parameter of the basis function, which con-
trols the radial range of the basis function. sk represents the
bandwidth of the k-th basis function, and its value can be ob-
tained as follows:

sk = l � min
1%j%Nl

kCk �X½2�
j k : (Equation 17)

Here, X½2�
j represents the j-th column of the eigenmatrix T, and l is an

overlap coefficient factor with value ranging from 0 to 1. Obviously,
the larger the value of l is, the more the scope of each basis function
will overlap.

According to above Equations 16 and 17, for each node in the hidden
layer, an NL-dimensional output vector can be obtained. Thereafter,
considering all the nodes of the hidden layer, we will obtain an output
matrix HO½1� as follows:

HO½1��lj;Ck

�
= exp

�
� 1
2sk

kCk � X ½1�
j k 2

�
: (Equation 18)

Step 3: obtaining the weight matrix W

From the above steps, we obtained theNL*H-dimensional output ma-

trix HO½1� of the hidden layer. For convenience, let

HO½1� =

0
BB@

h1 1 h1 2 / h1 H

h2 1 h2 2 / h2 H

« « 1 «
hNL 1 hNL 2 / hNL H

1
CCA. It is obvious that the j-th

row of HO½1� represents the output vector of the j-th node in the hid-
den layer. In addition, let LðdiÞ= fl1;l2;/lxg. Then, for any given dis-
ease di, a system of equations can be locally generated according to the
lncRNAs that are known to be related to it as follows:

0
BBBB@

hl1 1 hl1 2 / hl1 H

hl2 1 hl2 2 / hl2 H

hl3 1 hl3 2 / hl3 H

« « 1 «
hlx 1 hlx 2 / hlx H

1
CCCCA �

0
BB@

w1 i

w2 i

«
wH i

1
CCA=

0
BBBB@

A�ði; l1Þ
A�ði; l2Þ
A�ði; l3Þ
«
A�ði; lxÞ

1
CCCCA :

(Equation 19)

For convenience, Equation 19 can be rewritten as follows:

HO’i � wi =Oi: (Equation 20)



Figure 6. The flowchart of ICLRBBN
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In Equation 20, the right side in the system of equations is a lx
dimensional column vector. Therefore, we can solve the system of
equations based on the pseudo-inverse to obtain the weight vector
as follows:

wi = w1 i ; w2 i/wH ið ÞT = pinv HO’ið Þ � Oi: (Equation 21)

Here, pinv represents the function to solve the pseudoinverse.

According to Equation 21, for any given disease di, it is easy to see that
the corresponding weight vector wi can be calculated out. Moreover,
considering the weight vectors of all diseases, then it is obvious that
we can obtain a weight matrix W as follows:
W = ðw1;w2;w3/wNDÞ=

0
BB@

w1 1 w1 2 / w1 ND

w2 1 w2 2 / w2 ND

« « 1 «
wH 1 wH 2 / wH ND

1
CCA:

(Equation 22)
Step 4: calculating the second output of the hidden layer

In ICLRBBN, the feature matrix T obtained by the internal confi-
dence-based collaborative filtering recommendation algorithm will
be used as the input matrix for the second input of the local radial ba-
sis biological network. Similar to the first input, the NL nodes in the
input layer will accept the feature vectors corresponding to the NL

lncRNAs in the feature matrix as their inputs. For convenience, for
any node k in the hidden layer, let the output vector of its second
output be h½2�k = ðh0k1; h0k2;/; h0kNL

ÞT . Then, considering all the nodes
of the hidden layer, we will obtain another output matrix HO½2� as
follows:

HO½2��lj;Ck

�
= exp

�
� 1
2sk

kCk � X ½2�
j k 2

�
: (Equation 23)

Step 5: calculating the output matrix of the output layer

Let lj denote the j-th node in the input layer andHO½2�ðjÞ denote the j-
th row in the output matrix HO½2� of the hidden layer. It is obvious
that HO½2�ðjÞ represents the output vector of lj in the hidden layer,
Molecular Therapy: Nucleic Acids Vol. 23 March 2021 509

http://www.moleculartherapy.org


Figure 7. The example of similarity calculation
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which can be express as ðhj 1;hj 2;hj 3/hj HÞ. Thereafter, for any given
lncRNA lj, we can obtain the association probabilities between lj and
diseases as follows:

�
fj 1; fj 2/fj ND

	
=
�
hj 1; hj 2/hj H

� �
0
BB@

w1 1 w1 2 / w1 ND

w2 1 w2 2 / w2 ND

« « 1 «
wH 1 wH 2 / wH ND

1
CCA:

(Equation 24)

Moreover, based on Equation 24, taking all lncRNAs into account, we
can obtain a matrix F as follows:

F
�
di; lj

�
=
�
HO½2� �W�T

=

0
BBBB@

f1 1 f1 2 / f1 NL

f2 1 f2 2 / f2 NL

f3 1 f3 2 / f3 NL

« « 1 «
fND 1 fND 2 / fND NL

1
CCCCA:

(Equation 25)

Here, the matrix F is the final association probability matrix between
lncRNAs and diseases, and Fðdi; ljÞ represents the association proba-
bility score between the i-th disease di and the j-th lncRNA lj.
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