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4.1 Introduction

The impact of Coronavirus disease-2019 (COVID-19) on global health is unmatched in recent
human history. This disease caused by severe acute respiratory syndrome Coronavirus 2
(SARS-CoV-2) has cornered the public, health care workers, and scientists across the globe
alike. COVID-19 started in December 2019 in Wuhan, China and within 4 months become a
global pandemic. As of July 13, 2021, SARS-CoV-2 has infected over 187 million people and
claimed closed to 40 million lives across the globe (WHO Coronavirus (COVID-19) Dashboard,
2021). Just as this human health challenge is unprecedented, the scientific response to it has
also been incredible. The concerted effort of researchers across the globe untangling the intri-
cate aspects of epidemiology, public health response, virus biology, and pathophysiology of
the disease has helped the rapid development of diagnostic, prognostic, and control measures.
Within a few months of its origin, the genome of SARS-CoV-2 was sequenced fueling the
development of multiplex real-time reverse transcriptase PCR (rRT-PCR) assays for diagnosis
(Mathew et al., 2021). Continued efforts to sequence genomes from diverse geographical loca-
tions are helping to keep track of the evolution of the virus and the effects of variations on
pathology and epidemiology (Kupferschmidt, 2020). Studies of SARS-CoV-2 protein structures
and functions have helped device immunodiagnostic methods and the development of
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therapeutics and vaccines. Efforts to understand the pathophysiology of SARS-CoV-2 infection
are further augmented by metabolomic profiling of serum samples from COVID-19 patients
(Doğan et al., 2021). In this chapter, we provide a comprehensive account of the genome and
proteome of SARS-CoV-2 in the context of epidemiology and management of the disease. We
further discuss SARS-CoV-2 induced metabolomic perturbations in the host to provide insight
into the pathophysiology of the disease.

4.2 Genomics of severe acute respiratory syndrome Coronavirus 2

4.2.1 Phylogenetic relationship of severe acute respiratory syndrome Coronavirus 2
with other Coronaviruses

SARS-CoV-2 belongs to the family Coronoviridae. Coronoviridae is further divided into two sub-
families namely Letovirinae and Orthocoronavirinae. Among these, Orthocoonovirinae is divided
into four genera: Alphacoronavirus, Betacoronavirus, Gammacoronavirus and Deltacoronavirus. SARS-
CoV-2 belongs to the subgenus Sarbecovirus of the genus Betacoronavirus. Betacoronaviruses are
primarily known to infect mammals. Phenotypically, Coronaviruses are spherical, about
100�20 nm in diameter, and the envelope of these viruses is made of host cell membranes. It
has projected spike proteins on its membrane which gives a crown-like appearance on the outer
surface of virus particle giving the virus its name “Coronavirus”.

Coronaviruses were mainly known to cause mild respiratory and gastrointestinal dis-
tress until the outbreak of severe acute respiratory syndrome Coronavirus 1 (SARS-CoV-1)
in 2003 and then the Middle East respiratory syndrome Coronavirus (MERS-CoV) in 2012.
Both these viruses were reported to have originated from bat Coronaviruses (Chan et al.,
2013; Lau et al., 2005). An infection from a novel virus, belonging to the same family was
reported in Wuhan City, China in December 2019 with pneumonia-like respiratory symp-
toms which gradually turned into a worldwide pandemic (Wu et al., 2020; Zhu et al.,
2020a,b). Because of the similarity in the symptoms caused by their infection on the human
body, this virus was initially thought to be closely related to SARS-CoV-1 and was named
SARS-CoV-2. However, whole-genome sequence analyses of SARS-CoV-2 revealed that
the virus is closer to two bat-derived SARS-like Coronaviruses, bat-SL-CoVZC45 and bat-
SL-CoVZXC21 found in China in 2018 with a sequence identity of 88%. Eventually, phylo-
genetic analyses showed that the genome of SARS-CoV-2 is more similar to bat
CoVRaTG13 (around 96.2% identical) rather than SARS CoV (around 79.5% identical) or
MERS-CoV (around 50% identical) (Guo et al., 2020). Moreover, the percent identity of
SARS-CoV2 with human Coronavirus strain HCoV-OC43 which causes the mild respira-
tory disease is found to be very low (40.2%) (Fig. 4.1).

4.2.2 Genetic organization of severe acute respiratory syndrome Coronavirus 2
and genome replication

SARS-CoV-2 has a positive-sense single-stranded RNA genome of 29.9 Kb. Its genome
has a 50 cap structure and a poly-A tailing at its 30 end which allows it to function as an
mRNA. It comprises 14 open reading frames (ORFs) coding for a total of 29 proteins.
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Almost two-thirds of the genome correspond to ORFs 1ab at the 50 end which encodes two
different polyproteins 1a and 1ab which are cleaved into 16 different nonstructural pro-
teins (NSPs). This part of the genome is also called the replicase polyprotein as it gives
rise to proteins required for replication of the virus. Other than the replicase polyproteins,
the viral genome encodes four structural proteins; spike protein (S), envelop protein (E),
membrane protein (M), and nucleocapsid protein (N) along with nine accessory proteins.
The accessory proteins are known to be mostly nonessential for replication in tissue cul-
tures although some have been shown to be very important for pathogenesis. The genome
organization of SARS-CoV-2 from 50 to 30 direction is 50UTR-replicase-S-E-M-N-30 poly-A
tail and it is interspersed with transcription regulatory proteins and other accessory pro-
teins. Another structural protein commonly found in other β-Coronaviruses, hemaggluti-
nin esterase is absent in SARS-CoV-2 (Naqvi et al., 2020) (Fig. 4.2).

Once the genome of the virus is released into the host cell, the positive sense RNA
directly acts as an mRNA and begins translation of proteins using host machinery. It trans-
lates all the structural and NSP which in turn help in viral replication and packaging
(V’kovski et al., 2021). Polyprotein (pp) 1a and 1ab release 16 NSPs out of which 15 are
involved in the replication of the viral genome. The main enzymatic function for RNA syn-
thesis is brought about by NSP12�16. RdRp (NSP12) is the polymerase responsible for the
RNA synthesis and NSP14 acts as a 30�50 exonuclease which takes care of the proofread-
ing during the RNA synthesis (Brian & Baric, 2005; Romano et al., 2020). The replication

FIGURE 4.1 Phylogenetic relationship of severe acute respiratory syndrome coronavirus-2 variants and other
relevant members of Coronaviridae. The phylogenetic tree was constructed using the FastaME tool available in
the VIPR database. FAST uses the principle of minimum evolution to calculate phylogenetic distance.
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complex proteins firstly synthesize a negative-sense RNA and use that as a template to
synthesize positive-sense genomic RNA and subgenomic RNAs. The subgenomic RNAs
are translated into structural, nonstructural, and accessory proteins. Genomic RNA forms
complex with nucleocapsid protein and the packaging of virion particles occurs in the
Golgi�endoplasmic reticulum intermediate compartment. Once assembly is completed
virions are released from the cell by budding and go on to infect other host cells (Brian &
Baric, 2005; Romano et al., 2020; Sawicki et al., 2007).

4.2.3 Mutations, genetic variants, and lineages of severe acute respiratory
syndrome coronavirus-2

RNA viruses are known for their fast mutation rates, but Coronaviruses are known to
be comparatively stable because of the proofreading ability of their replication complex
(Giovanetti et al., 2021). However, many variants of SARS-CoV-2 have come up since the
emergence of this virus in December 2019 as a result of substitutions, deletions, and
recombination (Giovanetti et al., 2021; Graham & Baric, 2010). Sequence analysis of differ-
ent SARS-CoV-2 genomes that are available in NCBI and the GISAID EpiCoVt database
revealed that RdRp, N protein, S protein, NSP3, and ORF8 genes are mutational hotspots
while ORF7a, ORF7b, ORF9b, ORF14, ORF6, and ORF10 are mutational cold spots (Badua
et al., 2021). Not all mutations in the circulating SARS-CoV-2 genome are of concern.
Many of them are neutral or deleterious because of which not many variants exist in high
frequencies in the community (Cagliani et al., 2020; Wang et al., 2021). However, muta-
tions like L84S in ORF8, D614G in S protein, and L3606F in ORF1ab are found in unusu-
ally high frequencies among the circulating variants of SARS-CoV-2 (Badua et al., 2021).
Based on the health threat posed, the different variants of the virus can broadly be
grouped into three categories: variant of Interest (VOI), variant of concern (VOC), and a
variant of high consequence (VOHC) (Table 4.1).

VOI is the variants that have some mutations compared to the reference genome and
are associated with a reduction in the efficacy of treatments, reduced protection from pre-
viously generated antibodies, or have a predicted increase in severity and transmissibility

FIGURE 4.2 Architecture of by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA genome. All
the 14 ORFs transcribed by the SARS-CoV-2 genome and their translation products are drawn to scale. ORF1a and
ORF1b produce polyproteins 1a and 1b (pp1a and pp1b) which are cleaved by viral proteases to produce 16 nonstruc-
tural proteins. Four structural proteins; spike (S), envelope (E), membrane (M), and nucleocapsid (N), and nine acces-
sory proteins are encoded by the rest of the ORFs, many of which overlap. ORFs, open reading frames.
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of the disease. So far WHO has recognized six VOIs one of which was recently recognized
as a VOC in May 2021 (B.1.617.2). VOC is proven to be associated with an increase in dis-
ease severity and transmissibility, reduction in the efficacy of treatments, significantly
poor neutralization effect from previously generated antibodies, and failure in the detec-
tion of the virus by available diagnostic methods. WHO has identified four such variants
in the past year. VOHC is the variants against which there is clear evidence that any previ-
ously available preventive measure or medical countermeasures have remarkably reduced
effect against them in comparison to the other circulating variants. So far, no such variants
have been identified.

As the mutations accumulate in the SARS-CoV-2 genome and the virus evolves, differ-
ent classification systems have been proposed to monitor its dynamics. Pango lineage clas-
sification is one of the most accepted classifications to identify the SARS-CoV-2 lineages,
classifying it into two main lineages namely A and B. These are further classified into sub-
lineages during the course of a pandemic, for example, lineages C and D are reassigned as
the alias of lineage B (Rambaut et al., 2020). Till March 2021, 266 lineages/sublineages
were identified worldwide based on the combination of mutations the variants

TABLE 4.1 Different severe acute respiratory syndrome Coronavirus 2 variants.

Group Variant

WHO

label Origin Spike protein mutations

Date of

declaration

VOC B.1.1.7 Alpha United Kingdom,
Sep-2020

69del, 70del, 144del, (E484K*), (S494P*), N501Y,
A570D, D614G, P681H, T716I, S982A, D1118H
(K1191N*)

18-Dec-20

VOC B.1.351 Beta South Africa,
May-2020

D80A, D215G, 241del, 242del, 243del, K417N,
E484K, N501Y, D614G, A701V

18-Dec-20

VOC P.1 Gamma Brazil, Nov-2020 L18F, T20N, P26S, D138Y, R190S, K417T, E484K,
N501Y, D614G, H655Y, T1027I

11-Jan-20

VOC B.1.617.2 Delta India, Oct-2020 T19R, (G142D), 156del, 157del, R158G, L452R,
T478K, D614G, P681R, D950N

VOI: 4
Apr-2021,
VOC:
11-May-20

VOI B.1.427/
B.1.429

Epsilon United States,
Mar-2020

D614G, S13I, W152C, L452R 5-Mar-21

VOI P.2 Zeta Brazil, Apr-2020 E484K, (F565L*), D614G, V1176F 17-Mar-21

VOI B.1.525 Eta Multiple, Dec-2020 A67V, 69del, 70del, 144del, E484K, D614G,
Q677H, F888L

17-Mar-21

VOI P.3 Theta Philippines,
Jan 2021

E484K, N501Y, D614G, P681H, E1092K, H1101Y,
V1176F

24-Mar-21

VOI B.1.526 Iota United States,
Nov-2020

(L5F*), T95I, D253G, (S477N*), (E484K*), D614G,
(A701V*)

24-Mar-21

VOI B.1.617.1 Kappa India, Oct-2020 (T95I), G142D, E154K, L452R, E484Q, D614G,
P681R, Q1071H

4-Apr-21
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accumulated (Cella et al., 2021). Some of these lineages harbor mutation which has an
effect on the therapeutic, prognostic, and prophylactic aspects of clinical management of
SARS-CoV-2.

4.3 Proteome of severe acute respiratory syndrome Coronavirus 2

Fourteen ORFs of SARS-CoV-2 collectively encode at least 29 proteins, consisting of
4 structural, 16 nonstructural, and 9 accessory proteins. Two overlapping ORFs on the
50 of the viral genome, ORF1a and ORF1ab encode poly protein pp1a and pp1ab which are
cleaved by viral proteases NSP3 and NSP5 into 16 NSPs. These proteins are involved in
viral replication and transcription. NSP12, the RNA-dependent RNA polymerase (RdRp)
the key protein involved in the replication/transcription along with the co-factor proteins,
NSP7 and NSP8. Another important NSP from the drug discovery point of view is NSP5
also called as main protease (Mpro). This 33.8 kDa protein is a 3C-like protease that has at
least 11 sites on pp1a including an autolytic site. The 30 end of the viral genome encodes
four structural proteins: spike (S) glycoprotein, envelope (E), membrane (M), and nucleo-
capsid (N) and the remaining accessory proteins, 3a, 3b, 6, 7a, 7b, 8, 9b, 9c, and 10
(Fig. 4.2). While structural proteins are required for the formation of infectious virion par-
ticles, the accessory proteins are involved in a variety of functions such as protection
against host immune response and viral replication (Kim et al., 2020; Wu et al., 2020a,b). A
comprehensive understanding of the molecular structures of various key viral proteins is
essential for developing effective therapeutic and prophylactic measures. Numerous stud-
ies have reported the structures of key SARS-CoV-2 proteins in pure and in complex with
small molecule inhibitors, peptides, or interacting partners using cryoelectron microscopy
and X-ray crystallography techniques. Along with this, structure-guided in silico screening
of potential inhibitors for SARS-CoV-2 have also been undertaken to find therapeutics for
COVID-19. Here we have provided a detailed account of the structure and function of key
nonstructural and structural proteins touted as important drug and/or vaccine targets for
SARS-CoV-2. A summary of the function and their potential inhibitors/drugs for the other
SARS-CoV-2 proteins can be found in Table 4.2.

4.3.1 Nonstructural proteins

4.3.1.1 Main protease (MPro, NSP5, or 3C-like proteinase)

The main protease (MPro) cleaves pp1a into at least 11 structural proteins including
itself by autocleavage. It is also called 3C-like proteinase (3CLpro) due to the similarity of
its cleavage site specificity with picornavirus 3C proteinases (3Cpro) albeit limited struc-
tural similarity between these proteinases (Anand et al., 2002). MPro is highly conserved
among Coronaviruses suggesting an essential role of this protein in the viral life cycle.
Because of its essential role in generating NSPs required for replication and transcription
of viral RNA, and the absence of a human orthologue this protein has been considered as
one of the key drug targets for SARS-CoV-2 as well as other Coronaviruses. MPro is
a homo-dimeric protein where each protomer consists of three domains, Domain I-III and
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TABLE 4.2 Severe acute respiratory syndrome Coronavirus 2 proteins: Function and their inhibitor(s).

SARS-

CoV-2
Protein Function

Host interacting
partner Inhibitor References

Nonstructural protein

NSP1 host shutoff factor; suppress
host innate immune
function by blocking host
mRNA translations

40s ribosome Tirilazad,
phthalocyanine, and
Zk-806,450

de Lima Menezes & da
Silva, (2021); Thoms et al.
(2020)

NSP2 Unknown function

NSP3 Papain like protease;
process viral replicase
polyprotein, cleaves
polyubiquitin and ISGylated
proteins thus preventing
host inflammatory response,
Modifies ER into double-
membrane vesicles

The endoplasmic
reticulum,
ISGylated
protein,
polyubiquitin
proteins

VIR250 and VIR251 Clementz et al. (2010);
Mariano et al. (2020); Rut
et al. (2020)

NSP4 Modifies ER into double
membrane vescicles

Endoplasmic
reticulum

� Mariano et al. (2020)

NSP5 Main protease; cleaves pp1a
into at least 11 structural
proteins

� N3, α-ketoamide,
peptidomimetics
inhibitors 11a, and 11b,
dipyridamole,
hydroxychloroquine

Li et al. (2020); Yang et al.
(2005); Zhang et al. (2020)

NSP6 Modifies ER into double
membrane vesicles

Endoplasmic
reticulum

� Mariano et al. (2020)

NSP7 Cofactor for NSP12 � � Zhai et al. (2005)

NSP8 Cofactor for NSP12 � � Zhai et al. (2005)

NSP9 Involved in viral replication
and important for virulence

� � Sutton et al. (2004)

NSP10 Cofactor for NSP14 and
NSP 16

� � Rogstam et al. (2020)

NSP11 Unknown function � � �
NSP12 RNA-dependent RNA

polymerase
� Remdesivir, Sofosbuvir,

Galidesivir, drugs-like
compounds
CID123624208 and
CID11687749

Aftab et al. (2020); Yin et al.
(2020)

NSP13 Helicase and NTPase Myricetin, scultellarein,
SSYA10�001, 1,2,4-
triazole, 3,5-
dihydroxychromone,
aryl diketoacids

Yu et al. (2012); Jang et al.
(2008)

(Continued)
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TABLE 4.2 (Continued)

SARS-

CoV-2
Protein Function

Host interacting
partner Inhibitor References

NSP14 N7-Methyltransferase and
exonuclease

Host translation
machinery

Patulin and
aurintricarboxylic acid

Canal et al. (2021); Hsu et al.
(2021)

NSP15 RNA uridylate2 specific
endoribonuclease

NSP16 20-O methyltransferase � Sinefungin, S-adenosyl-
l-homocysteine,
aurintricarboxylic acid

Decroly et al. (2011);
He et al. (2004)

Structural protein

S Spike protein: facilitates
binding and entry of the
virus

ACE2 receptor SARS-CoV2 HR2
derived peptide,
lipopeptide EK1C4,
nelfinavir mesylate

Musarrat et al. (2020); Xia,
Cao, et al. (2020); Xia, Zhu,
et al. (2020); Zhu, Wei, et al.
(2020); Zhu, Yu, et al. (2020);
Zhu, Zhang, et al. (2020);
Zhu, Zhu, et al. (2020)

E Envelope protein: forms a
cation-selective channel
across the ER-Golgi
intermediate compartment
(ERGIC)

ERGIC hexamethylene
amiloride (HMA),
amantadine (AMT)

Mandala et al. (2020)

M Membrane protein:
involved in virus packaging
and suppresses the
production of both type I
IFN and type III IFN

RIG-I, MAVS,
and TBK1

Caffeic acid and ferulic
acid

Alharbi & Alrefaei (2021);
Bhowmik et al. (2020);
Zheng et al. (2020)

N Nucleocapsid Protein: Binds
to viral genomic RNA to
constitute RNP and helps in
virion assembly

� (2)-catechin gallate,
(2)-gallocatechin gallate,
5-Benzyloxygramine
(p3)

Peng et al. (2020); Roh (2012)

Accessory protein

3a Forms viroporins, helps in
virus egress via lysosomal
trafficking, induces apoptosis

� Ghosh et al. (2020); Miao
et al. (2021); Ren et al. (2020)

3b Suppress IFN-I activity- � Konno et al. (2020)

6 Disrupts cell nuclear import
complex formation and
suppresses IFN-beta
production

Nup98-Rae1 at
nuclear pore
complex

� Miorin et al. (2020); Xia,
Cao, et al. (2020); Xia, Zhu,
et al. (2020)

7a Immunoglobulin-like
protein

can bind to
CD141
monocytes

� Zhou et al. (2021)

(Continued)
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long loop region connecting domains II and III. Domains I and II are composed of antipar-
allel β-sheet and the cleft between them makes the active site of the enzyme. Domain III
on the other hand is composed primarily of α helices forming the interface of protomer
(Anand et al., 2002). Specific inhibitors of MPro such as N3 have been shown to inhibit viral
replication without showing any toxicity to human cells (Hayden et al., 2003; Kim et al.,
2016; Pillaiyar et al., 2016; Yang et al., 2005). Consequently, several groups took up the
challenge of solving the structure of MPro almost immediately after COVID-19 was
declared a pandemic by WHO, and several structures of this protein in native form as
well as with inhibitors were available (Dai et al., 2020; Zhang et al., 2020).

Several inhibitors of Mpro have been identified using protein structure and/or in silico
methods. MPro is a cysteine protease which unlike human proteases cleaves peptides after
a glutamine residue (Muramatsu et al., 2016). Moderate size peptidomimetic scaffolds
with glutamine or an isostere and a branched lipophilic group such as N3 have been
shown to inhibit the activity of SARS-CoV and MERS-CoVMPro (Yang et al., 2005; Ren
et al., 2013; Wang et al., 2016; Xue et al., 2008). Jin and co-workers solved the crystal struc-
ture of SARS-CoV-2 MPro in complex with N3 and showed that N3 is an irreversible inhib-
itor of this protein. Using structure-based in silico screening they further identified six
more putative inhibitors (Jin et al., 2020). Zang et al. solved the structure of MPro in com-
plex with an α-ketoamide inhibitor. They were successful in developing a derivative of
this inhibitor with increased potency and lung tropism (Zhang et al., 2020). In another
study using artificial intelligence-assisted computer virtual screening, Wu and coworkers
identified several approved drugs, and natural products with known antimicrobial and
antiinflammatory activities which showed high affinity to SARS-CoV-2 MPro. These com-
pounds can be evaluated for their therapeutic potential against COVID-19 (Wu, Liu, et al.,
2020). Dai et al. synthesized two peptidomimetics inhibitors of MPro, 11a, and 11b. These
compounds not only strongly inhibited the activity of MPro but also showed antiviral activ-
ity in vitro and had low toxicity in vivo (Dai et al., 2020). Li et al. used a virtual screening
approach with accelerated free energy perturbation-based absolute binding free energy
(FEP-ABFE) predictions to identify 15 existing drugs including dipyridamole and hydro-
xychloroquine which showed potent in silico inhibitory activity against MPro and can be

TABLE 4.2 (Continued)

SARS-

CoV-2
Protein Function

Host interacting
partner Inhibitor References

7b Unknown function � � �
8 Mediates immune evasion by

downregulation of MHC I
MHC I � Zhang et al. (2021)

9b Mediates immune evasion
by targeting mitochondria

TOM70 � Gordon et al. (2020)

9c Nonprotein coding � � Jungreis et al. (2020)

10 Nonprotein coding � � Jungreis et al. (2020)
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repurposed as COVID-19 drugs (Li et al., 2020). However, the usefulness of hydroxychlor-
oquine in managing COVID-19 is now debatable. This finding reiterates that while
structure-based virtual screening and/or in vitro activity is a good start, in vivo studies
are still the mainstay of drug development.

4.3.1.2 RNA-dependent RNA polymerase (RdRp) or NSP12

NSP12 or RNA-dependent RNA polymerase (RdRp) is a core component of the replica-
tion/transcription machinery with NSP7 and NSP8 acting as cofactors to enhance its activ-
ity (Ahn et al., 2012; te Velthuis et al., 2010; Ziebuhr, 2005). RdRp, therefore is considered
an important drug target. Nucleotide analog remdesivir has been shown to inhibit viral
replication by inhibiting RdRp function and was recommended for the management of
COVID-19 in the initial phases of the pandemic (Holshue et al., 2020; Siegel et al., 2017;
Wang et al., 2020; Warren et al., 2016). A cryoelectron microscope assisted three-
dimensional structure of SARS-CoV-2 RdRp in complex with NSP7 and NSP8, first solved
by Gao et al. is very similar to the SARS-CoV RdRp-NSP7-NSP8 complex and comprises
an RdRp monomer, one NSP8 monomer, and one NSP7-NSP8 pair (Gao et al., 2020;
Kirchdoerfer & Ward, 2019). SARS-CoV-2 RdRp consists of three domains; RdRp, a
norovirus-unique N-terminal extension domain, also called NiRAN, and an interface
domain (Gao et al., 2020). The RdRp domain has a canonical viral polymerase architecture
and consists of three subdomains, the finger, the palm, and the thumb (McDonald, 2013).
With eight helices and a five-stranded β-sheet, the NiRAN domain adopts a nidovirus
RdRp-associated nucleotidyltransferase (NiRAN) configuration whereas the interface
domain is composed of three helices and five β-strands connects the other two domains.
Yin et al. solved the structure of RdRp-NSP7-NSP-8 complex with 50 bases template-
primer RNA and monophosphate form of remdesivir (Lehmann et al., 2015; Yin et al.,
2020). While the structure of SARS-CoV-2 RdRp was highly similar to the one solved by
Gao et al., this structure provides a molecular explanation of why the RdRp complex
recognizes RNA and not DNA as the template. This structure also showed remdesivir
monophosphate covalently incorporated at the 30 end of the primer in the center of the cat-
alytic active site providing molecular detail of the mechanism of action of this antiviral
drug (Yin et al., 2020).

4.3.1.3 Helicase (NSP13)

NSP13 of SARS-CoV-2 is a multifunctional protein. It acts as helicase which catalyzes
the unwinding of duplex oligonucleotides (RNA or DNA) in 50�30 direction and also func-
tions as an NTPase which hydrolyzes nucleotide triphosphates (NTPs) to derive the
energy required for unwinding (Shu et al., 2020). NSP13 is known to have the highest
sequence conservation amongst the Coronavirus family and thus could be a potential tar-
get for anti-CoV drugs (Adedeji et al., 2014; Jang et al., 2008; Shum & Tanner, 2008).
Various groups have demonstrated that this helicase can unwind both double-stranded
DNA and RNA (Ivanov et al., 2004; Lee et al., 2010; Tanner et al., 2003). The N-terminus of
this protein is highly conserved which is postulated to form a Zn21 binding cluster. This
cluster was demonstrated to be very crucial for helicase activity in vitro (Seybert et al.,
2005). NSP13 can unwind double-stranded oligonucleotide with a minimum of five
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single-stranded nucleotides as overhang at the 50 end of the oligonucleotide and is esti-
mated to unwind them at the rate of 280 base pairs per second (Adedeji et al., 2012).

The overall structure of the protein takes a triangular pyramid shape which has five
domains; domain 1A, domain 2A, domain 1B, N-terminal zinc-binding domain (ZBD) and
stalk domain. The two RecA-like domains, 1A and 2A, along with domain 1B form the tri-
angular base of the pyramidal protein while the ZBD and the stalk domain point toward
the peak of the pyramid. Out of all the domains of the helicase protein, domain 1A has
been suggested to have oligonucleotide unwinding properties (Jia et al., 2019).

Molecules like flavonoids, myricetin, and scutellarin are known to inhibit the NTPase activ-
ity and thus can be used to inhibit NSP13 (Mirza & Froeyen, 2020; Yu et al., 2012). In SARS-
CoV-1, the use of a compound 3-[(2-nitrophenyl)sulphanylmethyl]-4prop-2-enyl-1H-1,2,4-tria-
zole-5-thione inhibited the helicase activity of NSP13 (Adedeji et al., 2012). Among the pat-
ented inhibitors of NSP13, SSYA10�001, 1,2,4-triazole compound, is the most characterized
inhibitor. It noncompetitively inhibits the helicase and the NTPAse activity of NSP13 and has
been shown to inhibit viral propagation of multiple Coronaviruses like SRAS-CoV-1, MERS-
CoV, etc making it a pan-Coronavirus (pan-CoV) inhibitor (Spratt et al., 2021). Two com-
pounds, 3,5-Dihydroxychromone and aryl diketoacids, are also patented inhibitors of NTPase
activity of NSP13. Although patented inhibitors are available, the complete pharmacokinetics
data is not available and also some of them contain chemical moieties that can inhibit other
cellular functions (Spratt et al., 2021). Other known NSP13 inhibitors include adamantane-
derived bananins, bismuth complexes, thioxopyrimidine derivatives, an acrylamide derivative
[(E)-3-(furan-2-yl)-N-(4-sulfamoylphenyl)acrylamide], a purine derivative (7-ethyl-8-mercapto-
3-methyl-3,7-dihydro-1 H-purine-2,6-dione), and RNA aptamers (Jang et al., 2008).

4.3.1.4 20O-methyltransferase (NSP16)

NSP16 codes for an enzyme 20O-methyltransferase (20O-MTase). 20O-MTase or NSP16
forms a protein complex with NSP10, a cofactor for the activation of NSP14 and NSP16, and
adds a methyl group to the 20 hydroxy position of the ribose sugar on the penultimate nucleo-
tide of the viral RNA cap. This process is dependent on the methyl donor S-adenosyl-L-
methionine (SAM) (Chen et al., 2011). Viral RNA cap is methylated first by NSP14 at guanosine
N7 to form cap0 and then methylated by NSP10/16 complex at 20O group of ribose forming
cap1. This viral RNA cap1 mimics the 50 cap of eukaryotic mRNA due to which the host
becomes unable to recognize self/nonself mRNA and fails to activate the innate immune
system (Menachery et al., 2014). SARS-CoV-2 20O-MTase belongs to the RrmJ/fibrillarin
superfamily of 20O methyltransferases and is highly conserved among other
Coronaviruses and also among viral orthologues in Flaviviruses, Alphaviruses, and
Nidoviruses (Feder et al., 2003).

Upon solving the crystal structure of the NSP10/16 protein complex, it was revealed
that the heterocomplex can be viewed as one molecule of NSP16 placed on top of one mol-
ecule of NSP10. NSP16 monomer comprises twelve β-strands, five 310 helices, and seven
α-helices. The core of the folded protein comprises seven β strands (β1- β7) which is sur-
rounded by α-helices and loops. The N terminus of the central core comprises η1 310-helix,
β8-strand, and αf-helix, η2 310-helix, and helix αD while the C terminus is decorated by
three β strands (β 10�β12), 2 α-helices (αg and αh) and 310-helices (η4 and η5). NSP10
comprises three β-strands which forms the central β-sheet, three α-helices and two 310
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helices (α-helices α20�α40 and 310-helices η10 and η20) which covers one side of the central
sheet (Chen et al., 2011; Lin et al., 2020).

NSP16 is thought to be a very promising target for drug designing against CoVs as it
has been shown that 20O-Mtase is crucial for viral propagation and replication (Daffis
et al., 2010; Decroly et al., 2008). Sinefungin, a pan-MTase inhibitor, inhibits the protein by
binding to the substrate (SAM) binding pocket of the heterocomplex. If the protein is not
bound to SAM, it cannot methylate the cap and hence will evoke host innate immunity.
Other molecules that can inhibit 20O-MTase activity by interfering with SAM binding are
S-adenosyl-l-homocysteine, and aurintricarboxylic acid (Bouvet et al., 2010; Wang et al.,
2020; Decroly et al., 2011; He et al., 2004). One limitation with using inhibitors against
20O-MTase substrate binding is that it may also interfere with host 20O-MTsae thereby dis-
turbing host activities. Another strategy to inhibit viral 20O-MTase activity is targeting the
association between NSP10 and NSP16. Ke et al. showed that two peptides derived from
SARS CoV-1 NSP10-NSP16 interaction domains can ablate NSP16 20O-MTase activity
(Ke et al., 2012). Another approach for inhibition is targeting N7 methylation of the 50 cap
by targeting NSP14. It is to be noted that the induction of host interferon-stimulated genes
response is important for the effectiveness of the above-mentioned inhibitors and the
efficacy of each inhibitor may vary depending on the interferon antagonists encoded by
different Coronaviruses (Menachery et al., 2014).

4.3.2 Structural proteins

4.3.2.1 Spike (S) glycoprotein

Spike protein or simply S protein facilitates binding and entry of virus to the host cells
making it the most important virulence factor, hence a key target for the development of
prophylactics and therapeutics against COVID-19 (Walls et al., 2020). S protein exists as
homotrimer forming a bulbous structure. These characteristic bulbous structures cover the
virus particle giving the appearance of a halo around it, thus the name Coronavirus. Each
monomer of spike protein consists of an N-terminal S1 subunit (head) mediating binding
to cell surface receptor, angiotensin-converting enzyme 2 (ACE2), and a C-terminal S2 sub-
unit (stalk) facilitating viral fusion to host and entry (Bosch et al., 2003; Li, 2016; Walls
et al., 2017). S protein-mediated binding and entry of virus to host cell is an intricate pro-
cess. A host protease, Transmembrane Serine Protease 2 (TMPRSS2) upon binding of S1 sub-
unit to ACE2 receptors cleaves S protein which brings about substantial irreversible changes
in the conformation of S2 subunit leading to membrane fusion and entry (Belouzard et al.,
2009; Heald-Sargent & Gallagher, 2012; Walls et al., 2017). The structure of the SARS-CoV-2S
protein trimer was solved by two different research teams using cryoelectron microscopy and
demonstrates high similarity with SARS-CoV S protein (Walls et al., 2020; Wrapp et al., 2020).

The S1 subunit comprises an N-terminal domain (NTD) and a receptor-binding domain
(RBD). In the prefusion state, the S1 subunit helps maintain the stability of the entire tri-
mer and prevents conformational changes in S2 before activation (Walls et al., 2020). The
RBD in S1 subunit has a core and receptor binding motif (RBM) which directly interacts
with the peptidase domain of ACE2 (Kirchdoerfer et al., 2018; Song et al., 2018). The RBD
in S1 subunit can shuffle between an “up” or “down” states in a hinge-like conformational

60 4. Genomic, proteomic and metabolomic profiling of severe acute respiratory syndrome-Coronavirus-2

Computational Approaches for Novel Therapeutic and Diagnostic Designing

to Mitigate SARS-CoV-2 Infection



movement as in other Coronaviruses (Gui et al., 2017; Pallesen et al., 2017; Wrapp &
McLellan, 2019). This movement could be asymmetrical where RBD in one S1 subunit
could be in “up” confirmation while other two could be in “down.” RBD in the “up” con-
formation is accessible to the receptor while the “down” remains inaccessible (Walls et al.,
2020). Atomic structures of RBD in complex with ACE2 have been solved using cryoelec-
tron microscopy and crystallography to provide molecular details of S1-ACE2 interaction
(Lan et al., 2020; Yan et al., 2020). These structures show that RBM forms a shallow con-
cave surface with a ridge on one side and which allows it to make contact with the arch-
shaped outer surface of ACE2. While the structure of the SARS-CoV-2 RBD/ACE2 com-
plex is very similar to the SARS-CoV RBD/ACE2 complex, biochemical studies demon-
strated that SARS-CoV-2 has a significantly higher binding affinity for ACE2 receptors
(Wrapp et al., 2020). Closer examination of binding interfaces of these structures provides
the explanation for the higher affinity of SARS-CoV-2 RBD, where 21 residues of it directly
interact with ACE2 as opposed to only 17 in the case of SARS-CoV RBD. Furthermore,
mutations of key residues changing the nature of the interaction between RBD and ACE2
enhances the strength of binding in the case of SARS-CoV-2 (Lan et al., 2020; Walls et al.,
2020; Wrapp et al., 2020; Wang et al., 2020).

While the binding of SARS-CoV-2 to host cell receptor ACE2 is mediated by the S1 sub-
unit of S protein, it is the S2 subunit that brings about the fusion and entry of virus parti-
cles to the host cells. The S2 subunit is composed of a hydrophobic fusion peptide (FP),
two heptad repeat regions, HR1 and HR2, a transmembrane domain (TM), and a cyto-
plasmic domain (Walls et al., 2020). Once the S1 subunit binds the ACE2 receptor, the S2
subunit undergoes conformational changes, FP inserts into the target cell membrane, HR1
trimer interacts with HR2 to form a 6-helical bundle. These events bring viral envelopes in
proximity for viral fusion and entry (Xia et al., 2018). SARS-CoV-2 and SARS-CoV-S2 sub-
units are highly similar in structure as well as sequence. HR1 and HR2 domains between
these two viruses share sequence identities of 92.6% and 100%, respectively, and the HR1
domain from one virus can form the 6-helical bundle with HR2 domain from the other
virus (Xia et al., 2019, 2020).

Due to its role in viral fusion and entry, the essential steps in viral pathogenesis, S pro-
tein has been considered an important target for developing small molecule inhibitors of
viral binding and entry. Furthermore, S protein unlike other SARS-CoV-2 proteins is anti-
genic and induces host immune response, and neutralizing antibodies (nAbs) against S
protein can provide a protective immune response making it an excellent candidate for
developing vaccines and neutralizing antibodies targeting RBD, or NTD in S1 or S2 sub-
unit. Several human monoclonal antibodies (311mab-31B5, 311mab-32D4, 47D11, n3130,
n3088, S309, P2C-1F11, P2B) have been cloned from a single memory B cell from COVID-
19 recovered patient which neutralizes SARS-CoV-2 and prevents infection in vitro (Chi
et al., 2020; Ju et al., 2020; Pinto et al., 2020; Wu et al., 2020; Chen et al., 2020; Wang et al.,
2020). A SARS-CoV specific mAb C3022 binds SARS-CoV-2 with high affinity suggesting
this can be developed into a therapeutic for COVID-19. Apart from these biologicals, sev-
eral inhibitors of S protein-mediated fusion have been developed and tested for their abil-
ity to prevent SARS-CoV-2 infection. HR1 and HR2 domains are involved in viral fusion
and entry to host cells. A peptide designed from SARS-CoV-2 HR2 (1168�1203 residues)
was shown to inhibit viral fusion and entry (Xia et al., 2020). A pan-CoV fusion inhibitor
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peptide EK1 was developed which showed an inhibitory effect against various human
CoVs but in the micromolar range making it less desirable (Xia et al., 2019). Zhu et al.
designed a lipopeptide derivative of EK1 called EK1C4 which was shown to inhibit SARS-
CoV-2 with an IC50 of 15.8 nM, an improvement of approximately 149-fold over IC50 of
EK1. They also developed another lipopeptide fusion inhibitor, IPB02 capable of potently
inhibiting SARS-CoV-2 S protein-mediated cell�cell fusion and pseudovirus infection
(Zhu, Yu, et al., 2020). Proteolytic cleavage by host proteases is required for the activation
of S protein, making this step another important drug target. A protease inhibitor, nelfina-
vir mesylate (Viracept), currently used as an anti-HIV drug has been shown to inhibit S
protein-mediated cell fusion in SARS-CoV-2 as well SARS-CoV suggesting that similar
drugs can be designed or the available protease inhibitors can be repurposed for treatment
of COVID-19 (Musarrat et al., 2020).

4.3.2.2 Nucleocapsid (N) protein

Nucleocapsid (N) protein is essential for viral replication and transmission (Zhu, Zhu,
et al., 2020). It is a multivalent RNA binding protein that packages the positive-sense RNA
genome into a helical ribonucleoprotein (RNP) structure and also assists in virion assem-
bly by interacting with the viral genome and M protein (Cong et al., 2020; Masters &
Sturman, 1990; Stertz et al., 2007). It shares 91% sequence homology and structural homol-
ogy with the N protein of SARS-CoV-1 (Zeng et al., 2020). In comparison to S protein,
which is an obvious drug target against SARS-CoV-2, the N gene sequence was found to
be more stable among Coronaviruses with a fairly low mutation rate (Marra et al., 2003;
Zhu et al., 2005). Among all Coronaviruses, N protein has been demonstrated to be highly
immunogenic and is responsible for early antibody response in CoV infected patients
(Ahmed et al., 2020; Cong et al., 2020; Liu et al., 2006). All these characteristics make this
protein a very promising drug target against SARS-CoV-2.

Nucleocapsid protein of beta Coronaviruses, in general, exists in dimers and comprise
mainly three highly conserved domains. The N terminal domain N1b, responsible for
RNA binding, a C terminal domain N2b, responsible for dimerization and a central Ser/
Arg rich disordered linker, B/N3 responsible for phosphorylation (Chang et al., 2006; Lo
et al., 2013; Saikatendu et al., 2007; Wootton et al., 2002). Gao et al. reported that the sec-
ondary structure of SARS-CoV-2 N protein consists of 21.24% alpha-helix,16.71% beta
folds, 6.92% beta turns, and 55.13% random coils (Gao et al., 2021). The crystal structure of
the N1b domain of SARS-CoV-2 revealed is made up of a beta-sheet core that has a short
alpha-helix with five antiparallel beta-strands resembling a palm, a long beta-hairpin that
protrudes between β2 and β5 resembling a protruding finger and finally a long loop region
that resembles a wrist. Thus the N1b protein overall resembles a right hand (Kang et al.,
2020). The N2b domain is composed of a total of four-stranded beta-sheets at the dimer
interface of the compactly intertwined dimerized protein. Each protomer extends two
beta-strands and a short alpha-helix toward each other and packs against their hydropho-
bic core of the protein (Ye et al., 2020).

Because of its importance in RNA packaging, inhibition of N protein is a potential tar-
get for inhibiting viral replication. One of the strategies is to block the NTD mediated
RNA binding of N protein. In HCoV-Oc34, small compounds like pJ34 and H3 have
been demonstrated to reduce RNA binding at NTD of N protein (Chang et al., 2016).
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The residues at the RNA binding sites of N proteins in SARS Cov2 are the same thus indi-
cating that these compounds could also be used against SARS-CoV-2 (Peng et al., 2020).
Changhyun Roh screened various polyphenolic compounds as an inhibitor against N pro-
tein in SARS CoV and found (2)-catechin gallate and (2)-gallocatechin gallate to remark-
ably inhibit the activity of N protein (Roh, 2012). Another strategy to inhibit N protein
activity is manipulating its oligomerization. In MERS CoV, 5-Benzyloxygramine (p3)
induced nonnative dimerization of N protein thus causing its aggregation. This makes it
unavailable for RNP complex formation and ultimately block RNA packaging (Lin et al.,
2020; Peng et al., 2020). The use of competitive peptides in HCoV 229E N protein is also
known to interfere with dimer formation at the C-terminal end (Lo et al., 2013).

4.4 Alteration of host metabolome during severe acute respiratory syndrome-
Coronavirus-2 infection

In the system biology approach of studying infectious disease, genomics and proteo-
mics analyses are suggestive of the consequences of the infection. On the contrary, metabo-
lomics provides the actual phenotypic snapshot of the disease making it arguably the most
suitable approach for disease prognosis. Several comparative metabolomics studies have
been conducted on blood serum samples from COVID-19 patients displaying varying
degree severity to characterize the host immune and metabolic responses underlying the
disease progression using nuclear magnetic resonance (NMR) spectroscopy or mass spec-
trometry techniques (Segers et al., 2019). A survey of available literature suggests major
changes in amino acid metabolism, carbohydrate/central energy metabolism, lipid metab-
olism, and change in levels of metabolites linked to host immune responses.

4.4.1 Energy metabolism

Danlos et al. performed targeted and untargeted metabolomic profiling of 72 COVID-19
patients presented with varying degrees of disease severity using gas chromatography-
mass spectrometry (GC-Ms) and ultra-high-pressure liquid chromatography-mass
spectrometry (UHPLC-Ms). They observed that sugars such as arabinose, ribose, ribitol,
mannose, maltose, raffinose, and sugar alcohols (arabitol, erythritol, and xylitol) were
increased in critical patients (Danlos et al., 2021). They further demonstrated that increased
levels of pyruvate and 3-hydroxybutyrate, along with the significant decrease in citrate
and free amino acids such as alanine, glycine, glutamine, and histidine in COVID-19
patients indicated an impairment of energy metabolism in these patients (Danlos et al.,
2021). MeoniI and coworkers made similar observations using 1H NMR spectroscopy
where they observed an increase in levels of sugars such3-hydroxybutyrate, mannose,
glucose, pyruvate, and amino acids like isoleucine, leucine, phenylalanine, creatinine, and
valine in severe patients. These patients had lower levels of many amino acids such as
tyrosine, histidine, glutamine, alanine, and glycine and small fatty acid molecule
such as formate, acetate, and citrate, indicative of impaired energy metabolism further
supporting the findings of Danlos and coworkers (Danlos et al., 2021; Meoni et al., 2021).
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A meta-analysis of metabolome datasets by Pang et al. also revealed perturbation in several
amino acid synthesis pathways and energy metabolism including the mannose metabolism
pathway. Glyoxylate and dicarboxylate metabolism pathway was found to be downregu-
lated in severe COVID-19 patients compared to mild or moderate cases (Pang et al., 2021).

4.4.2 Immunomodulatory metabolism

Comparative metabolomics study of plasma from healthy controls, mild and severe
COVID-19 patients revealed the signature of immune-suppressive metabolism in severe
patients. Danlos et al. found that while tryptophan levels were down, products of trypto-
phan catabolism, kynurenic acid, and anthranilic acid levels were elevated in severe
COVID-19 patients (Danlos et al., 2021). In a separate study, Cai et al. attributed increased
propensity of human males for severe COVID-19 as compared to females to perturbation
in kynurenine pathway metabolites, kynurenine, and kynurenic acid. They found that
severely ill male patients had high kynurenic acid and high kynurenic acid to kynurenine
ratio correlated with immune responses (Cai et al., 2021). Kynurenic acid is a competitive
inhibitor of glutamate receptors and consequently, glutamate levels were found to be low
in severe COVID-19 patients (Schwarcz et al., 2012; Cai et al., 2021). The kynurenine path-
way has been shown to play role in neurological disorders, depression, and inflammation
(Platten et al., 2005). This pathway starts with the conversion of tryptophan to kynurenine
by tryptophan dioxygenase or indoleamine dioxygenase, which is then converted to
kynurenic acid by kynurenine hydroxylase (Davis & Liu, 2015). Anthranilic acid is a
downstream metabolite of the kynurenine pathway and has been shown to have an immu-
nosuppressive effect (Davis & Liu, 2015; Platten et al., 2005). Diminished levels of trypto-
phan in mild and severe COVID-19 patients along with increased kynurenic acid and high
kynurenic acid to kynurenine ratio suggest over activation of rate-limiting enzymes, tryp-
tophan dioxygenase, or indoleamine dioxygenase. It is worthwhile to explore the thera-
peutic potential of the inhibitors of these enzymes for severe COVID-19 patients.

4.4.3 Lipid metabolism

Bruzzone et al. conducted a study to measure the lipidomic and metabolomic changes
in the serum of symptomatic, asymptomatic COVID-19 patients and healthy controls.
Their study revealed that the composition and particle sizes of lipoproteins in the SARS-
CoV-2 infected patients varied greatly from healthy controls thus increasing their risk of
atherosclerosis. A triglyceride-rich lipid profile is seen in COVID-19 patients with a
remarkable increase in low-density cholesterol (Bruzzone et al., 2020). Such acute dysregu-
lation, obviously pathogenic, when found in nonacute conditions like metabolic syndrome
or nonalcoholic fatty liver disease fits well with increased atherosclerotic risk. Moolamalla
et al. did an extensive study to see the changes in metabolism in COVID-19 patients and
found major dysregulations in lipid metabolism. They found that genes for fatty acid deg-
radation and elongation are down-regulated. Genes and enzymes involved in fatty acid
synthesis like fatty acid synthase (FASN) are down-regulated in COVID-19 patients. Genes
involved in steroid synthesis from cholesterol are upregulated but the genes involved in
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cholesterol synthesis, HMGCS1, and HMGCR, are down-regulated in comparison to healthy con-
trols. De novo synthesis of sphingolipids, synthesis of glycerophospholipids, and glycosphingoli-
pids are significantly upregulated in COVID-19 patients (Moolamalla et al., 2020). To avoid
recognition by the host, it has been observed that RNA viruses hijack the exosomal pathway. In
line with this fact, a study conducted by Song et al. revealed that the overall lipid signatures in
the CVID infected patients’ serum mirrors that of the exosomal membrane lipid composition.
They correlated the presence of monosialodihexosyl ganglioside (GM3) enriched exosomes with
the pathogenesis of COVID-19 (Song et al., 2020).

Bioactive lipids such especially eicosanoids (20 carbon) and docosanoids (22 carbon) are
known to modulate the immune response. While eicosanoids likely exacerbate inflamma-
tion by promoting leukocyte recruitment/activation, exudate formation, stimulating plate-
let aggregation, and thrombus formation, docosanoids are known to resolve inflammation
by damping it. Archambault and coworkers compared the levels of bioactive lipids in the
bronchoalveolar lavage (BAL) samples of healthy and severe COVID-19 patients and
found that the levels of all the eicosanoids and docosanoids except Maresin-1 and -2 were
elevated in severe COVID-19 patients. Some notable lipids found elevated in these patients
were arachidonic acid, COX metabolites such as thromboxane, prostaglandin E2, prosta-
glandin D2, leukotrienes such LTB4 and its metabolite 20-COOH-LTB4. It is notable that
levels of these lipids in the blood did not mirror their BAL levels suggesting a lung-
specific bioactive lipid storm in severe COVID-19 patients (Archambault et al., 2021).

This gross perturbation of bioactive lipids in the lung of severe COVID-19 patients pro-
vides an argument for the use of lipid modulators as therapeutics for treating severe
patients. Dexamethasone decreases COX-2 expression limiting the production of COX
metabolites. This may in part explain the beneficial effect of this drug in managing severe
COVID-19 patients (Tomazini et al., 2020). Other COX inhibitors such as aspirin may be
explored for their use in subverting inflammatory lipid storms (Archambault et al., 2021).
Fact that Aspirin has been shown to be beneficial in acute respiratory distress syndrome
patients furthers the argument of evaluating this drug for treating COVID-19 patients
(Abdulnour et al., 2018; Archambault et al., 2021; Chow et al., 2021; Merzon et al., 2021).

4.5 Conclusion

The multiomics-based approach of studying COVID-19 has helped understand SARS-
CoV-2 transmission, evolution, virulence, and pathophysiology of infection enabling the
design of diagnostic assays, formulation of public health policies for the containment of
infection, development of vaccines and drugs as well patients management strategies.
Genomics and proteomics analyses of SARS-CoV-2 have helped develop, assess and/or
predict the course of the disease, diagnostic tools, and control measures. Metabolomic pro-
filing of samples from COVID-19 patients has provided a phenotypic snapshot of the dis-
ease furthering our understanding of the pathophysiology of the disease aiding in the
development of better care and management of the disease. Although the policymakers,
scientists, and clinicians have risen to the occasion and responded to the pandemic bril-
liantly, the threat of COVID-19 is far from over. While constantly evolving virus impacting
transmission dynamics and efficacy of control measures warrant the development of
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pan-CoV strategies infallible to genetic variation of the virus, changing disease prognosis
and post-COVID-19 complications calls for better understanding of pathophysiology to the
disease. It is, therefore imperative that the efforts to better understand the virus and the
disease it causes, are continued.
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