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Abstract: Shewanella putrefaciens have a faster growth rate and strong spoilage potential at low
temperatures for aquatic products. This study developed a nondestructive method for predicting
the kinetic growth and spoilage of S. putrefaciens in bigeye tuna during cold storage at 4, 7 and
10 ◦C by electronic nose. According to the responses of electronic nose sensor P30/2, the fitted
primary kinetic models (Gompertz and logistic models) and secondary model (square root function
model) were able to better simulate the dynamic growth of S. putrefaciens, with high R2 and low
RMSE values in the range of 0.96–0.99 and 0.021–0.061, respectively. A partial least squares (PLS)
regression model based on both electronic nose sensor response values and electrical conductivity
(EC) values predicted spoilage of S. putrefaciens in bigeye tuna more accurately than the PLS model
based on sensor signal values only. In addition, SPME/GC-MS analysis suggested that 1-octen-3-ol,
2-nonanone, 2-heptanone, dimethyl disulfide and methylamine, N, N-dimethyl- are the key VOCs of
tuna inoculated with S. putrefaciens.

Keywords: electronic nose; Shewanella putrefaciens; dynamic growth; spoilage prediction; GC-MS

1. Introduction

Bigeye tuna (Thunnus obesus) is a widely distributed and commercially important
fish, favored by consumers because of its good taste and abundant nutrition [1]. How-
ever, bigeye tuna is an extremely perishable fish because of microbial spoilage and certain
biochemical reactions during processing and storage. Its superior nutritional value and
delicious meat make it important to preserve bigeye tuna [2]. Some methods have been
used for the preservation of tuna, such as gas packaging, cool store, freezing processing,
cryopreservation, etc. Refrigeration is currently an effective storage method used to slow
down fish deterioration [3]. The main factor contributing to seafood spoilage during the
refrigeration process is the activity of microorganisms. Many studies have reported that the
specific spoilage organisms in refrigerated seafood were Shewanella spp., Pseudomonas spp.,
Aeromonas spp., and Acinetobacter spp. [3,4]. S. putrefaciens is the main spoilage microor-
ganism of seafood in low-temperature storage, which has the potential for decomposing
proteins and trimethyl-amine-N-oxide (TMAO) into ammonia, trimethylamine (TMA), and
H2S, producing a fishy odor [5]. Shewanella and Pseudomonas species isolated from spoiled
tuna were considered as potential main contributors to spoilage in tuna during refrigerated
storage [6]. Many studies have reported that the growth of S. putrefaciens may cause tuna
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to deteriorate during refrigeration [7,8]. Therefore, evaluating the spoilage potential of
S. putrefaciens is crucial in the spoilage control of tuna at low temperatures.

Spoilage influences shelf life, marketing options, and safety of the product; no one
buys spoiled foods nor should spoiled foods be on the market. Researchers usually use
many conventional methods to identify fish spoilage, including sensory evaluation tech-
niques, chemical methods [9], and microbiological methods [10]. Although conventional
microbiological techniques are economical and simple to perform, these methods are time-
consuming and cannot be continuously monitored in real time. The odor is an important
indicator to evaluate the freshness of fish. Odors such as amines, ammonia, trimethylamine,
and volatile sulfides are produced in marine fish during spoilage [11]. These volatile com-
pounds can be potential indicators of spoilage in marine fish. Gas chromatography/mass
spectrometry (GC-MS) has become a standard instrument for quantitative analysis of
volatile substances in laboratories [12]. However, it is expensive, time-consuming, and
unsuitable for large-scale detection. Moreover, the electronic nose (E-nose), a gas sensor
array technology, has become an effective tool for predicting fish spoilage [13]. It can mimic
the human olfactory system with sensitive sensors that interact with multiple odors to gen-
erate different electrical signals [14]. The E-nose has many advantages in predicting food
spoilage, such as portability, non-destructive samples, low cost, short time consumption,
and high sensitivity. For example, Semeano et al. [15] developed a system based on a gas
sensing gel material coupled with an optical E-nose to detect tilapia deterioration, and the
system predicted microbial growth well. In addition to the rapid detection of fish spoilage
by the E-nose, fish spoilage can also be predicted using a simple physical index—electrical
conductivity (EC). The decomposition of tissues and the outflow of electrolytes during the
fish spoilage because of the catabolic activity of microorganisms and the oxidation of the
fish body eventually lead to the rise of EC [16]. Heising et al. [17] found that EC values
of aqueous solutions of volatile compounds produced by cod were positively correlated
with freshness. Other researchers have also found a strong correlation between fish con-
ductivity or electrical impedance and fish spoilage, and EC may be a good predictor of fish
spoilage [18,19]. However, few studies have involved the use of electronic noses to predict
the dynamic growth of spoilage bacteria in seafood and to predict the spoilage of seafood
inoculated with spoilage organisms.

The dynamic growth of S. putrefaciens and the spoilage potential in aquatic products
are of great importance. It is necessary to find a quick and easy method to study the
spoilage of marine fish contaminated by S. putrefaciens. At present, there are few studies to
predict the spoilage as well as the dynamic growth of specific spoilage bacteria in marine
fish at different refrigeration temperatures. For this purpose, sterile tuna blocks were
inoculated with S. putrefaciens and the changes in the total number of S. putrefaciens (TNS),
total volatile basic nitrogen, EC, and volatiles at different refrigeration temperatures were
investigated. The sensor P30/2 of the E-nose was selected to simulate the primary and
secondary dynamic growth of S. putrefaciens in tuna. A partial least squares (PLS) regression
model based on both E-nose sensor response values and EC values was used to predict
the spoilage potential of S. putrefaciens in bigeye tuna. Finally, some key volatile organic
compounds (VOCs) of tuna inoculated with S. putrefaciens were identified by GC/MS, and
the correlation between VOCs and gas sensor signal values was analyzed.

2. Materials and Methods
2.1. Bacterial Strains and Cultural Conditions

S. putrefaciens was isolated and identified from spoiled bigeye tuna (Zhejiang Fenghui
Ocean Fishing Company Ltd., Zhoushan, Zhejiang, China) and was identified based on 16S
rRNA gene sequences, compared in GenBank using the BLAST function. Spoiled bigeye
tuna was evaluated by trained panelists from the College of Food Science and Technology,
Shanghai Ocean University, based on odor, color, and appearance. Bacteria were stored in
tryptone soya broth (TSB) containing 25% glycerin at −80 ◦C. Before use, S. putrefaciens
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was precultured in brain–heart perfusion infusion (BHI) at 30 ◦C for 18 h and then cultured
in TSB until the maximal concentration (108 CFU/mL).

2.2. Sample Preparation and Inoculation

The back muscle blocks of 20 kg tuna were purchased from Zhejiang Fenghui Ocean
Fishing Company Ltd., Zhoushan, Zhejiang, China, and divided into rectangular blocks
of about 30 g. Three replications were taken for TNS, pH, TVB-N, TMA, and VOC mea-
surements, with ten replications for EC and e-nose measurement. Then, the blocks were
sterilized by soaking in 0.5% (v/v) formalin solution for 40 s and washed in sterile water
2 times. Each sterile block was immersed in a bacterial suspension for 30 s of S. putrefaciens
inoculation to achieve an inoculum level of 3.0–4.0 log CFU/g. Non-inoculated blocks
immersed in sterile normal saline (0.85% NaCl) were used as the control check (CK) group.
All samples were packed in a clean tray in a sterile environment and stored at 4, 7, and
10 ◦C.

2.3. Physicochemical Analysis

The physicochemical analysis included the measurement of pH, EC, total volatile
basic nitrogen (TVB-N), and trimethylamine (TMA) values.

The EC of tuna blocks was measured using the method described by Yao et al. [19].
Briefly, tuna flesh (10 g) was homogenized and stirred for 30 min in 100 mL of distilled
water. The mixture was filtered, and the EC of the filtrate was measured using an EC meter
(Mettler Toledo FE20/EL20, Shanghai, China).

The pH value was determined by the method of [20]. The sample treatment was
consistent with EC measurement and the pH of the filtrate was measured using a digital
pH meter (Cyberscan Model 510; Eutech Instruments Pvt. Ltd., Singapore).

Total volatile basic nitrogen (TVB-N) was performed according to the method of [21].
Five grams of minced tuna flesh was accurately weighed. The TVB-N value was measured
by an Automatic Kjeldahl Apparatus (KjeltecTM8400; FOSS Quality Assurance Co., Ltd.,
Copenhagen, Denmark).

TMA content was determined by Colorimetric Picric Acid Method [22]. Briefly, fish
samples and trichloroacetic acid (TCA) were homogenized and mixed. After centrifugation,
the supernatant was mixed with formaldehyde, saturated potassium carbonate solution,
and toluene. The toluene layer solution and picric acid were mixed thoroughly, and
absorbance readings were taken at 410 nm.

Measurements of pH, EC, TVB-N, and TMA were taken every 2 days for 12 days for
samples stored at 4 ◦C, every 2 days for 10 days for samples stored at 7 ◦C, and every 1 day
for 6 days for samples stored at 10 ◦C.

2.4. Microbiological Analysis and Growth Curve Fitting

The total number of S. putrefaciens (TNS) was determined by a basic method as
described by Qian et al. [23] using iron agar. Briefly, 25 g of tuna flesh were put in 225 mL
of sterilized saline water (NaCl, 0.85%, w/v) and homogenized for 2 min. Then, 0.1 mL of
the dilution was spread on iron agar (IA) plates after serial dilution and incubated at 30 ◦C
for 48 h. Black colonies were enumerated in IA plates. Plate counting agar was used to
count the total viable count (TVC) in the CK group at 30 ◦C for 48 h. The measurement
cycle of TNS and TVC was the same as the above physicochemical indexes.

2.4.1. Primary Models

The primary models, namely, Gompertz and logistic models, were used to simulate the
growth curves of S. putrefaciens in tuna. They are represented by the following equations
according to Gibson et al. [24]:

N = N0 + (Nmax − N0)× exp
(
− exp

(
µmax ×

e
Nmax − N0

× (λ− t) + 1
))

, (1)



Foods 2021, 10, 2132 4 of 17

N = N0 + (Nmax − N0)/(1 + exp(µmax×(λ− t)) (2)

where N is the cell concentration (log CFU/g) at time t, N0 and Nmax represent the initial
and maximum cell numbers (log CFU/g) of S. putrefaciens, respectively. λ is the lag time
(h), t is real time, and µmax represents the maximum growth rate (per h).

2.4.2. Secondary Models

To describe the temperature effect on µmax and λ, a second model (square root model)
was used as follows: √

1/λ = a1 × (T − Tmin1), (3)
√

µmax = a2 × (T − Tmin2) (4)

where a1 and a2 are regression coefficients; T is the real temperature in ◦C; Tmin1 and Tmin2
are the theoretical minimum growth limits in ◦C.

2.5. E-Nose Analysis

Detection of the volatile compounds of the tuna flesh was performed by an electronic
nose (E-nose, Fox 4000 Alpha-MOS, France). The 18 sensors are designed as follows:
LY2/LG “Chlorine, fluoride, nitrogen oxide”, LY2/G “Ammonia, amines, carbon oxides”,
LY2/AA “Alcohol”, LY2/gCTL “Hydrogen sulphide”, LY2/gCT “Propane and butane”,
T30/1 “Polar compounds, hydrogen chloride”, P10/1 “Hydrocarbon, ammonia, chlorine”,
P10/2 “Methane and ethane”, P40/1 “Fluoride and chlorine”, T70/2 “Toluene and xylene”,
PA/2 “Ethanol, ammonia, amines”, P30/1 “Hydrocarbon”, P40/2 “Chlorine and fluoride”,
P30/2 “Hydrogen sulfide and ketones” T40/2 “chlorine”, T40/1 “Fluoride”, TA/2 “Alco-
hol”. A total of 2.0 g of flesh was placed in a 10 mL vial for 10 min at 50 ◦C to generate
balanced headspace samples. The gas flow rate was 2.5 mL/min, and the sensor cleaning
time was 8 min. Then, the sensor response of the E-nose was determined as G/G0 (G0 and
G represent the conductivity of the sensor exposed to the zero gas and sample gas). The
measurement cycle of the E-nose of the sample was the same as above.

2.6. Headspace Solid Phase Microextraction Gas Chromatography/Mass Spectrometry
(SPME-GC/MS) Analysis

According to the method of Li et al. [25] with minor modifications, 2 g of the minced
sample was placed into a 20 mL glass vial and equilibrated at 40 ◦C for 20 min. The SPME
extraction fiber was exposed to headspace for 30 min. Gas chromatography coupled with
mass spectrometry (GC-MS) was used to measure the volatiles in bigeye tuna. The carrier
gas was helium (high purity 99.999%), with a constant flow rate of 1 mL/min. The oven
temperature program was as follows: initial temperature of 40 ◦C for 5 min, 5 ◦C/min to
120 ◦C, then 10 ◦C/min to 250 ◦C, and held for 5 min. Next, the volatiles were transferred
to the MS system, MS source and quadrupole: 230 and 150 ◦C, respectively. Mass spectra
were obtained within the mass range of 20–400 m/z at 70 eV. The VOCs of samples stored
at 4 and 10 ◦C were measured. The samples at 4 ◦C were measured on days 4, 8 and 12,
and the samples at 10 ◦C were measured on days 2, 4 and 6.

2.7. Statistical Analysis

The measurement experiments of pH, TVB-N, TMA, TNS, and SPME-GC/MS were
repeated three times, and the EC and E-nose experiments were repeated ten times. The
data of VOCs were expressed as the mean ± standard deviation. The growth kinetic
model of S. putrefaciens was fitted using MATLAB 2017b (Math Works Inc., Natick, MA,
USA). Pearson correlation analysis was used to evaluate the correlation between sensor
response values and TNS to select appropriate sensors for predicting the dynamic growth
of S. putrefaciens. Duncan’s test and Pearson correlation coefficient were performed using
SPSS 19.0 (SPSS Inc., Chicago, IL, USA). PLS regression was used to predict the spoilage
potential of S. putrefaciens in tuna including TVB-N, TMA, and TNS. It is well known
that the predictive performance of the calibration model cannot be determined merely by



Foods 2021, 10, 2132 5 of 17

the internal validation but should also be externally validated based on predictions for
samples not included in the calibration test. Data measured by the E-nose and electric
conductivity meter were randomly divided into a training set (developing fitted models)
and a testing set (validating models) in the ratio of 7:3. The training set of response values
of the E-nose sensors was used as the data for building models, and the testing set was used
as independent data to verify the accuracy of models. The data of pH, TVB-N, TMA, TNS,
and SPME-GC/MS were not divided into training and validation sets. This was mainly
because the data obtained from the E-nose and EC meter were used as source data of rapid
detection to predict spoilage indicators (including TVB-N, TMA, TNS, and SPME-GC/MS)
in the samples. Therefore, the spoilage indicators were used as a predicted object without
being divided into training and validation sets (each indicator was considered as a whole).
In addition, TNS was also one of the predicted indicators and was not divided into training
and validation sets for the growth curve fitting. The model accuracy was evaluated by
determination coefficient (R2) and root-mean-square error (RMSE). RMSE was calculated
as follows:

RMSE =

√
1
n

n

∑
i=1

(
ym − yp

)2 (5)

where ym and yp are measured and predicted values.

3. Results and Discussion
3.1. TVB-N and TMA

Changes in the TVB-N content of bigeye tuna blocks are shown in Figure 1A. The TVB-
N values increased in inoculated tuna blocks throughout the storage period at different
temperatures. TVB-N values of all groups showed a slow increase followed by a rapid
increase. This result was consistent with Li et al. [26], who reported that when S. putrefaciens
was inoculated into blunt snout bream flesh stored at 4 ◦C for 14 days, TVB-N values of
samples were slow on the first 8 days, but increased rapidly on the last 4 days.

Figure 1. Changes in total volatile base nitrogen (TVB-N) (A), trimethylamine (TMA) (B), pH (C), Electrical conductivity
(EC) (D), and total number of S. putrefaciens (TNS) of inoculation groups and total viable count (TVC) of control check (CK)
groups (E) in bigeye tuna stored at different temperatures (each point is the mean value of three determinations). CK4, CK7,
and CK10 are CK groups stored at 4, 7, and 10 ◦C. a–g in the same column with different superscripts are significantly
different (p < 0.05). The arrow indicates that the viable count was below 2.0 log CFU/g.
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The TMA value increased gradually during storage at 4, 7, and 10 ◦C (Figure 1B).
Similar to the variation pattern of TVB-N values, the TMA values of inoculated tuna
samples stored at 10 ◦C for 6 days were higher than those stored at 4 and 7 ◦C. This result
indicated that temperature is a vital factor for microbial activity. The possible reason for
the significant difference between the results for the CK and inoculated group may be that
the production of TMA was promoted by S. putrefaciens in the inoculated samples, and the
type of bacteria determined the ability to produce TMA. The TMA of samples increased
exponentially with storage time, which was in agreement with [27], who reported that the
change in TMA of yellowfin tuna fitted an exponential growth during the refrigeration.

3.2. pH and EC

The changes in the pH of aquatic products were closely associated with a series of
chemical reactions caused by endogenous enzymes and microorganisms [28]. Changes in
pH values in tuna samples at different temperatures are presented in Figure 1C. The initial
pH value was 6.21 with a decreasing and then an increasing trend. A decrease in pH of the
samples was due to the generation of lactic acid and the release of inorganic phosphate
by decomposition of ATP [1], while the increase in the pH value was related to the release
of alkaline decomposition products, such as histamine and TMA produced by spoilage
microorganisms [29]. The pH of the sterile fish blocks (CK) stored at 4 ◦C fluctuated around
6.21, while those stored at 7 and 10 ◦C increased slowly. This may be due to the growth
and metabolism of residual microorganisms in the CK group, and a similar phenomenon
was observed in TVB-N and TMA.

EC can be used to detect meat quality from the efflux and excessive breakdown of
body fluids from fish tissue during storage. Variations in EC value during cold storage are
presented in Figure 1D. Initially, the EC in samples was 1057 µS/cm, and the EC of each
group of samples increased significantly during storage. The change rate of EC values was
higher for samples stored at higher temperatures. The significant increase in EC may be
due to the autolysis of tuna cells after death and the decomposition of various nutrients in
the cells into ions and small molecule metabolites with electrical conductivity under the
action of enzymes and microorganisms, which enhances the electrical conductivity of the
cell leachate [30]. Similar to the TVB-N and TMA curves, EC values increased slowly in the
CK groups stored at 4, 7, and 10 ◦C.

3.3. Results of the E-Nose Analysis

As shown in Figure 2, odor maps were obtained with the E-nose from samples
stored at 4, 7 and 10 ◦C. Response values from each sensor represent the average of
10 measurements. The E-nose responses of bigeye tuna samples stored at different storage
temperatures showed a similar trend. Furthermore, sensors T70/2, PA/2, P30/1, and
P30/2, which were sensitive to aromatic compounds, amines, hydrocarbons, and hydrogen
sulfide, increased significantly at all storage temperatures. However, the signal values of
sensors PA/2 and P30/2 increased more remarkably at 7 and 10 ◦C than those at 4 ◦C,
indicating that storage temperature was an essential factor affecting the production of
some compounds of tuna in storage. This finding was consistent with other studies that
found temperature to be an important factor influencing the production of metamorphic
substances in fish during refrigeration [31]. Changes in sensor signal values over time at
different temperatures may be due to an increase in volatile gas concentrations and the
production of new gas species [32], which may be related to the growth temperature and
the number of S. putrefaciens.
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Figure 2. Average responses of 18 sensors in tuna samples inoculated with S. Putrefaciens at different temperatures
during storage.

The corresponding values from the sensor arrays were explored to determine the
differences in volatilization patterns of tuna during different cold storage periods using
principal component analysis (PCA). To test whether the electronic nose could distinguish
samples with different storage times, PCA was employed to investigate the feasibility of
distinguishing tuna inoculated with S. putrefaciens sampled at different times and tem-
peratures based on E-nose signals. As shown in Figure 3, the differences in tuna with
different storage times can be represented using two main principal components (PCs),
which accounted for 88.95% (4 ◦C), 93.78% (7 ◦C), and 80.8% (10 ◦C) of the total variance
in PC1 and 5.22%, 4.71%, and 14.38% in PC2. Regarding the samples stored at 4 ◦C, the
data points of groups 0, 2 and 4 d were placed in the first cluster, whereas the other groups
were separated into another three clusters (6, 8 and 10–12 d). The data points of groups
at 0, 2, and 4 d were similar, indicating that the odor profiles of the early contaminated
samples were relatively similar. But the samples at 6, 8, 10, 12 d were clearly classified
by PCA. For the samples stored at 7 ◦C, groups at 0 and 2 d were mixed in a cluster, and
groups at 4 and 6 d had a clear right downshift along the ordinate (PC 1), located into the
second cluster. Groups at 8 h were separated into another cluster along the abscissa (PC2),
located away from other clusters. In 10 ◦C groups, the data of groups at 0–2 d located
into the first cluster, and another two clusters contained 3–5 d and 6 d, respectively. For
samples stored at 7 and 10 ◦C, PCA analysis indicated that the data points of the samples
at the beginning of storage (0 and 2 d for 7 ◦C, 0 and 1 d for 10 ◦C) overlapped and were
initially difficult to distinguish but could be distinguished at later time points. The samples
stored at 4, 7, and 10 ◦C showed that the E-nose based on PCA analysis poorly identified
very early contaminated samples but had good overall resolution for tuna inoculated with
S. putrefaciens. Therefore, E-nose could be employed as a promising approach to realize the
prediction of dynamics and spoilage of Shewanella putrefaciens.
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ciens with different incubation times.

3.4. Dynamic Growth of S. putrefaciens in Tuna

The changes in the viable count of bigeye tuna are shown in Figure 1E. Gompertz
and logistic models were fitted to the dynamic growth of S. putrefaciens. As shown in
Table 1, the high R2 and low RMSE values indicated a good fit of models, with ranges
of 0.985–0.999 and 0.0654–0.283, respectively. The lag time of the lag phase (λ) and the
maximum specific growth rate (µmax) were two vital parameters for predicting the growth
of microorganisms [33]. λ is especially vital to monitor food microorganisms and ensure
food safety [34]. In our work, it was clear that the value of λ for S. putrefaciens decreased
with increasing temperature, while µmaxe was the opposite (Table 1). We observed that
the storage temperature had a significant effect on the growth of S. putrefaciens, with slow
growth rates at 4 and 7 ◦C, while a significant growth was observed at 10 ◦C based on λe
and µmaxe values. The growth of S. putrefaciens in tuna was in agreement with previous
studies [35]. In addition, the initial colony count (N0) of S. putrefaciens in tuna ranged from
2.3 to 3.3 log CFU/g; the value of the maximum colony count (Nmax) peaked between 8.5
and 10.4 log CFU/g, according to two growth models.

Table 1. The primary growth models of S. putrefaciens in tuna at different temperatures based on modified Gompertz and
logistic equation by CFU.

Fitted
Models T/◦C Equations λe (h) µmaxe (h−1) No Nmax R2 RMSE

Gompertz
4 f(x) = 2.276 + 6.222 × exp(−exp(0.07551/6.222 × (68.8 − x) + 1)) 68.8 0.02778 2.276 8.498 0.997 0.101
7 f(x) = 3.292 + 7.149 × exp(−exp(0.1375/7.149 × (42.67 − x) + 1)) 42.67 0.05059 3.292 10.441 0.994 0.1387
10 f(x) = 3.252 + 6.331 × exp(−exp(0.2/6.331 × (24.36 − x) + 1)) 24.36 0.07358 3.252 9.583 0.986 0.283

Logistic
4 f(x) = 3.053+5.783/(1 + exp(0.02028 × (166.6 − x))) 166.6 0.02028 3.053 8.836 0.998 0.0763
7 f(x) = 3.092 + 6.657/(1 + exp(0.03285 × (105.9 − x))) 105.9 0.03285 3.092 9.749 0.999 0.0654
10 f(x) = 2.83 + 6.48/(1 + exp(0.04478 × (63.6 − x))) 63.6 0.04478 2.83 9.31 0.985 0.167
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However, the primary models cannot estimate the effect of temperature on the growth
of S. putrefaciens in tuna, but the secondary model can evaluate it. Therefore, the square
root model was used to describe the relationship between the growth parameters (

√
µmaxe

and
√

λe−1) and the storage temperature for the microbe. As shown in Figure 4, the
results showed a strong linear correlation between the kinetic parameters and the storage
temperature, with R2 values higher than 0.98. Our study also predicted the minimum
growth temperature (Tmin) of S. putrefaciens in tuna in the range of −8.5 to −4.6 ◦C based
on a secondary model, which was slightly higher than −11.4 ◦C predicted by [36]. This
may be due to the difference in fish samples and handling.
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3.5. Modeling the Kinetics of S. putrefaciens in Tuna with E-Nose Sensors

In this study, Pearson correlation analysis was used to determine the correlation
between the signal values of sensors and the number of S. putrefaciens colonies in tuna.
Finally, sensor P30/2 was selected (data not shown). In addition, the relatively high
response values of sensor P30/2 and the considerable variation with storage time indicated
its sensitivity to tuna samples during storage. Therefore, in the same way, an attempt was
made to simulate the growth of S. putrefaciens by fitting the response of the sensor with
Gompertz and logistic functions. Sensor P30/2 responses were fitted via Gompertz and
logistic models to simulate S. putrefaciens growth according to the training set, and the
validation set was used to verify the quality of the prediction models. The parameters of
the generated mathematical equations are shown in Table 2, and the λe and µmaxe of CFU
were derived from Table 1. The sensor fitted both models well, with high Rc

2 and low
RMSEc values, in a range of 0.971–0.994 and 0.0208–0.0472, respectively. Validated with the
testing set, the fitting models were credible, with similar high Rp

2 and low RMSEp values
of 0.963–0.987 and 0.0301–0.0613, respectively.
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Table 2. Parameters of dynamic growth models of S. putrefaciens in tuna stored at different temperatures based on P30/2 by
modified Gompertz and logistic equations.

Model T/◦C Equations
Training Set Testing Set Sensor CFU

r
Rc2 RMSEc Rp2 RMSEpc λs (h) µmaxs (h−1) λe (h) µmaxe (h−1)

Gompertz

4
f(x) = 0.280 + 0.401 ×

exp(−exp(0.0102/0.4023 ×
(90.05 − x) + 1))

0.978 0.0261 0.968 0.0307 90.05 0.003753 68.8 0.02778 0.986

7
f(x) = 0.282 + 0.6125 ×

exp(−exp(0.0229/0.6125 ×
(52.27 − x) + 1))

0.994 0.0208 0.985 0.0334 52.27 0.008425 42.67 0.05059 0.976

10
f(x) = 0.2872 + 0.509 ×

exp(−exp(0.03126/0.509 ×
(40.51 − x) + 1))

0.983 0.0341 0.987 0.0324 40.51 0.01150 24.36 0.07358 0.986

Logistic

4 f(x) = 0.2598 + 0.4307/(1 +
exp(0.03033 × (156.50 − x))) 0.971 0.0315 0.965 0.0329 156.50 0.03033 166.6 0.02028 0.996

7 f(x) = 0.2352 + 0.658/(1 +
exp(0.03812 × (95.24 − x))) 0.977 0.0472 0.963 0.0613 95.24 0.03812 105.9 0.03285 0.995

10 f(x) = 0.2629 + 0.5553/(1 +
exp(0.04864 × (60.36 − x))) 0.978 0.0391 0.987 0.0301 60.36 0.04864 63.6 0.04478 0.999

In addition, the P/30 λs and µmaxs values obtained by the sensor based on the logistic
model fit were closer to the results obtained from the actual growth model compared to
the Gompertz model (Table 2). It indicated that the logistic model was more suitable for
predicting of the growth of S. putrefaciens by the gas sensor in our study, which was different
from the result reported by Gu et al. [34]. This difference may be due to differences in the
gas sensors selected and strains. Kinetic parameters (λs and µmaxs) are of special interest
in predicting microbiology and are of high practical value in monitoring food quality and
safety [37]. A high correlation coefficient (r) was obtained by comparing the growth fit
models generated by sensor P/30 with the models in Table 1, which indicated that the
response changes of sensor P/30 to the sample were similar to the growth of S. putrefaction.
Microbial kinetic models according to microbial counting methods often have difficulty in
obtaining λs and µmaxs of microbial growth because of long training times [38]. Our study
showed that a microbial odor response sensor may be used to simulate the dynamics of
S. putrefaciens in tuna, but this requires more experimental verification.

A secondary model of the gas sensor P30/2 was also established and showed a good
fit with R2 in the range of 0.965–0.998, and the linear relationship based on logistic equation
was slightly stronger than that of the Gompertz equation for λs and µmaxs (Figure 5).
Most studies predicted the number of microorganisms based on the chemometric method
using multiple E-nose sensors [31,39,40], but rarely predicted the dynamic growth of
spoilage microorganisms in aquatic products by a single sensor. In our study, primary and
secondary kinetic models of S. putrefaciens in tuna were fitted by a single sensor, and the
kinetic parameters were obtained.

3.6. Prediction of the Spoilage of S. putrefaciens in Tuna

To predict the spoilage level of inoculated bigeye tuna, the PLS algorithm was used
to evaluate the correlation between the E-nose responses and spoilage indicators (TVB-N,
TMA, and TNS) of the tuna. In addition, the changes in tissues caused by fish spoilage
can be reflected by electrical conductivity [41,42], and the measurement method of EC is
relatively simple. Therefore, the sensor responding values of E-nose and EC values were
also combined to predict the spoilage of tuna. For PLS regression modeling, E-nose and
EC measurement values from each group were randomly separated into two sets: seven
samples used as the calibration set for and the remaining three samples as the prediction
set. The leave-one-out cross-validation method was used to improve the accuracy of the
PLS model.
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Scatter graphs of the count of S. putrefaciens in tuna stored at 4 ◦C based on the PLS
with and without EC values are given in Figure 6. The R2 and RMSE values between the
predicted and experimental values are shown in Table 3. It is well known that the key to
evaluating the quality of a predictive model is not only internal validation (calibration)
but also external validation of samples not included in the calibration set [43]. In the two
sets, the predictions of the PLS models with and without EC values performed well, and
the PLS model with EC values was better than those without EC values, except for the
prediction of TMA values for tuna stored at 10 ◦C (but the difference was not significant).
The reason for this result was that the accuracy of the PLS prediction model improved by
adding the index (EC) that had a great correlation with the prediction object [44].

Table 3. Calibration and validation results in tuna stored at different temperatures based on the PLS model with and
without EC values.

Indicators Temperatures (◦C)
PLS without EC Values PLS with EC Values

Calibration Set Validation Set Calibration Set Validation Set

Rc
2 RMSEc Rv

2 RMSEv Rc
2 RMSEc Rv

2 RMSEv

TVB-N (mg/100 g)
4

0.9713 0.9327 0.9775 0.8673 0.9812 0.7519 0.9902 0.6448
TMA (mg/100 g) 0.99 0.1932 0.9862 0.2425 0.9905 0.189 0.988 0.2237

TNS (log10 CFU/mL) 0.9808 0.2679 0.9702 0.3589 0.9868 0.222 0.9843 0.2653

TVB-N (mg/100 g)
7

0.9874 0.6461 0.9863 0.6981 0.9925 0.4966 0.9919 0.5053
TMA (mg/100 g) 0.9956 0.1418 0.9851 0.322 0.9962 0.1326 0.9966 0.1292

TNS (log10 CFU/mL) 0.9956 0.1594 0.9923 0.225 0.9957 0.1565 0.995 0.1742

TVB-N (mg/100 g)
10

0.9932 0.5411 0.9896 0.6755 0.9958 0.4485 0.9963 0.4214
TMA (mg/100 g) 0.9897 0.276 0.9871 0.3478 0.9876 0.3020 0.9826 0.3837

TNS (log10 CFU/mL) 0.9857 0.2735 0.969 0.4185 0.9963 0.1396 0.9864 0.2705
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Figure 6. Reference measured data versus predicted data from the PLS models for prediction of
the total number of S. putrefaciens (TNS) in tuna stored at 4 ◦C. (A,B): PLS models for calibration
and validation set without EC values; (C,D): PLS models for calibration and validation set with
EC values.

3.7. Volatile Compounds in Tuna Samples According to HS-SPME/GC-MS

In this work, a total of 30 VOCs were detected in the control and inoculated groups
(Table 4). The changing trend of VOCs at 10 ◦C was greater than that at 4 ◦C, and various
VOCs in this study were previously reported to be products of protein or lipid oxidation
metabolism [45]. To exclude the effect of oxidation of the fish itself on VOCs, this study
also measured the VOCs produced by non-inoculated tuna blocks during storage.

The increasing tendency of 1-Penten-3-ol, 1-Octen-3-ol, and 2-Hexen-1-ol, (Z)- was
observed in tuna during storage, and their increase was associated with auto-oxidative
derivatization of polyunsaturated fatty acids [46]. Ethanol was present only in the early
stages of tuna storage (day 0, day 4–4, and day 2–10) and was not detected as the storage
period increased, which was similar to the results of Liu et al. [10]. This may be related
to the fact that the metabolic process of Shewanella does not produce ethanol but can use
it [4]. In addition, hexanal, heptanal, octanal, nonanal, and propanal were detected at
the early stage of storage, and the above substances were confirmed to be produced by
fat oxidation and had a fishy odor. The content of hexanal increased with storage time
and storage temperature, which may indicate that the fat in tuna was oxidized. The
changes of aldehydes reflect the degree of oxidation of polyunsaturated fatty acids such
as linoleic acid in bigeye tuna, which can be used as a basis for judging the freshness of
tuna. Ketones including 2-nonanone, 2-undecanone, and 2-heptanone were significantly
higher in inoculated tuna compared to the control group. These ketones may originate
from lipolysis and dehydrogenation by spoilage bacteria [47], which explains the low
ketone content of fresh fish samples (day 0). Some hydrocarbons were also detected in this
study, which were mainly derived from the decomposition of alkoxy radicals of fatty acids.
Various hydrocarbons were present in the volatiles of crustaceans and fish, but they had a
high threshold and made little contribution to the flavor of bigeye tuna [48]. Methylamine,
N, N-dimethyl-(so-called trimethylamine) were detected only after 8–12 days at 4 ◦C and
4–6 days at 10 ◦C, which may be because of higher concentrations of TMA in the inoculated
tuna during the late storage period. Dimethyl disulfide was detected in the inoculated tuna
at the late storage period. This compound derived from the methionine catabolism that
was produced by S. putrefaciens [49].
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Table 4. Volatile organic compounds (VOCs) in tuna at 4 and 10 ◦C. Day 4–4, day 8–4, and day 12–4: inoculated tuna stored for 4, 8, and 12 days at 4 ◦C, respectively. Day 2–10, day 4–10,
and day 6–10: inoculated tuna stored for 2, 4, and 6 days at 10 ◦C, respectively. CK 12–4 and CK 6–10: non-inoculated tuna stored for 12 and 6 days at 4 and 10 ◦C, respectively.

VOCs
Relative Concentration (Area 10−6)

Day 0 Day 4–4 Day 8–4 Day 12–4 CK 12–4 Day 2–10 Day 4–10 Day 6–10 CK 6–10

Alcohols
1-Penten-3-ol 3.01 ± 1.13 3.56 ± 0.56 3.89 ± 1.36 4.65 ± 1.98 4.54 ± 0.64 6.89 ± 0.98 8.99 ± 2.36 9.29 ± 1.99 7.98 ± 2.36
1-Octen-3-ol 7.28 ± 1.86 21.69 ± 0.98 20.79 ± 3.25 46.13 ± 6.56 20.36 ± 2.56 18.61 ± 0.56 35.79 ± 2.11 66.98 ± 5.24 35.98 ± 4.65

Ethanol 9.65 ± 1.23 1.23 ± 0.21 ND ND ND 2.23 ± 0.56 ND ND ND
1-Hexanol 12.56 ± 0.33 6.22 ± 0.65 2.12 ± 0.32 ND 1.36 ± 0.05 3.56 ± 0.65 ND ND 2.98 ± 0.06

(3-Methyl-oxiran-2-yl)-methanol ND 0.66 ± 0.23 0.68 ± 0.24 1.65 ± 0.66 0.12 ± 0.04 ND 2.38 ± 0.56 3.01 ± 0.21 0.22 ± 0.08
2-Hexen-1-ol, (Z)- ND 0.54 ± 0.04 1.89 ± 0.03 5.65 ± 0.69 ND ND 2.32 ± 0.05 9.28 ± 0.32 ND

2-Nonen-1-ol 0.4 ± 0.02 1.25 ± 0.11 0.65 ± 0.01 0.33 ± 0.02 0.43 ± 0.03 0.54 ± 0.06 1.56 ± 0.02 0.51 ± 0.03 0.36 ± 0.02
Aldehydes

Hexanal 7.86 ± 0.65 19.23 ± 1.89 33.21 ± 3.12 64.93 ± 5.36 13.54 ± 2.36 22.52 ± 1.35 35.26 ± 3.22 71.26 ± 5.62 21.22 ± 2.56
Heptanal 4.22 ± 0.12 4.12 ± 0.63 9.52 ± 1.32 5.24 ± 0.97 3.22 ± 0.86 8.79 ± 1.22 1.23 ± 0.06 3.54 ± 0.07 1.98 ± 0.21
Nonanal 2.21 ± 0.08 2.28 ± 0.21 4.60 ± 0.11 8.21 ± 0.99 3.21 ± 0.07 18.47 ± 2.36 12.11 ± 2.65 15.89 ± 3.06 11.21 ± 2.10
Propanal 2.35 ± 0.09 5.61 ± 0.46 7.22 ± 1.23 6.11 ± 0.12 2.12 ± 0.33 5.31 ± 0.22 4.33 ± 1.11 6.85 ± 0.64 5.11 ± 0.21

2-Decenal, (E) ND 3.12 ± 0.18 2.47 ± 0.21 1.56 ± 0.06 ND ND 0.43 ± 0.05 2.55 ± 0.65 0.35 ± 0.05
2-Nonanal, (E)- ND 0.22 ± 0.03 3.56 ± 0.24 4.54 ± 0.68 3.72 ± 0.21 0.31 ± 0.05 5.33 ± 0.98 5.99 ± 1.33 3.56 ± 0.09

2-Dodecanal, (E)- ND ND 1.263 ± 0.05 2.112 ± 0.32 4.6 ± 0.23 5.68 ± 1.22 4.22 ± 0.09 3.68 ± 1.21 2.23 ± 0.21
Decanal 0.65 ± 0.02 1.36 ± 0.05 ND ND 2.55 ± 0.65 1.55 ± 0.96 2.36 ± 0.12 1.32 ± 0.08 1.86 ± 0.09
Octanal 3.86 ± 0.33 1.69 ± 0.35 0.98 ± 0.04 9.98 ± 2.65 2.65 ± 0.22 1.98 ± 0.21 5.65 ± 0.69 3.23 ± 0.93 5.36 ± 0.97

4-Heptanal, (Z)- ND 0.09 ± 0.01 0.98 ± 0.09 6.22 ± 1.23 0.28 ± 0.02 0.18 ± 0.04 2.32 ± 0.26 1.69 ± 0.66 0.56 ± 0.08
Ketones

2,3-Octanedione ND ND 0.85 ± 0.15 1.7 ± 0.56 ND 0.08 ± 0.01 1.23 ± 1.23 2.56 ± 1.56 ND
2,3-Pentanedione 0.04 ± 0.01 0.06 ± 0.02 0.03 ± 0.01 1.56 ± 0.05 1.78 ± 0.58 2.53 ± 0.04 1.03 ± 0.05 4.22 ± 1.86 3.29 ± 0.12

2-Nonanone ND ND 0.06 ± 0.02 0.12 ± 0.04 ND ND 0.08 ± 0.05 0.25 ± 0.08 ND
2-Undecanone ND ND 0.75 ± 0.02 2.67 ± 0.66 0.96 ± 0.06 ND 1.19 ± 0.28 4.55 ± 1.32 1.89 ± 0.64
2-Heptanone ND ND 0.12 ± 0.02 0.89 ± 0.13 0.06 ± 0.01 ND 1.35 ± 0.61 2.46 ± 0.05 0.09 ± 0.01

Hydrocarbons
Heptacosane ND ND 1.23 ± 0.13 0.85 ± 0.04 2.35 ± 0.12 2.79 ± 0.13 0.46 ± 0.02 0.77 ± 0.07 1.23 ± 0.21
Pentadecane 2.23 ± 0.14 8.63 ± 1.36 4.62 ± 0.88 3.33 ± 0.21 3.26 ± 1.02 9.59 ± 1.33 4.35 ± 0.98 2.23 ± 0.29 1.9 ± 0.06
Tetradecane 4.23 ± 0.32 2.51 ± 0.11 0.56 ± 0.02 ND 1.03 ± 0.05 1.54 ± 0.21 ND ND 0.81 ± 0.06

Others
Ethyl acetate 5.03 ± 0.09 7.54 ± 1.32 3.21 ± 0.35 1.22 ± 0.35 2.13 ± 0.86 3.23 ± 0.78 0.77 ± 0.12 2.27 ± 0.65 1.22 ± 0.05

Methylamine, N, N-dimethyl- ND ND 3.31 ± 0.09 8.02 ± 1.04 ND 3.28 ± 0.39 10.65 ± 2.65 21.23 ± 4.65 ND
Methoxy-phenyl-oxime ND ND 0.64 ± 0.06 0.46 ± 0.03 0.11 ± 0.02 ND 0.83 ± 0.04 2.22 ± 0.25 0.23 ± 0.03

Naphthalene 0.07 ± 0.01 0.14 ± 0.02 0.08 ± 0.01 0.07 ± 0.02 0.12 ± 0.03 0.09 ± 0.01 0.16 ± 0.04 0.06 ± 0.01 0.16 ± 0.04
Dimethyl disulfide ND ND ND 0.85 ± 0.06 ND ND ND 1.32 ± 0.31 ND

ND means not detected.
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3.8. Relationship between E-Nose Results and VOCs

In this work, characteristic VOCs, including alcohols, aldehydes, ketones, amines, and
sulfide compounds, played a significant role in distinguishing tuna samples infected with
S. putrefaciens by GC-MS at different temperatures. Sensor P30/2 was sensitive to hydrogen
sulfide and ketone. Comparing the VOCs with the sensor P30/2, the presence of alcohols,
ketones, amines, and sulfide compounds had a significant impact on the sensor response.
The significantly increased response values of the P30/2 were consistently correlated with
the increased concentrations of ketones and sulfides. In addition, the relationship between
sensor responses and VOCs was investigated by Pearson correlation coefficients (Figure 7).
Correlation coefficient results indicated that the sensor responses were positively correlated
with 1-octen-3-ol, 2-nonanone, 2-heptanone, dimethyl disulfide, and methylamine, N,
N-dimethyl-, which revealed that the P30/2 was sensitive to representative VOCs of tuna
inoculated with S. putrefaciens. In particular, dimethyl disulfide, and methylamine, N,
N-dimethyl-, as the characteristic volatile compounds of S. putrefaciens [10], contained
high content, which contributed significantly to the high signals of P30/2 to inoculated
tuna. Therefore, the selected sensor could be used to discriminate tuna infected with
S. putrefaciens through the specific response to characteristic VOCs.
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4. Conclusions

This work demonstrated that the growth of S. putrefaciens in tuna samples stored at 4,
7, and 10 ◦C was consistent with two primary kinetic models (Gompertz and logistic), with
high R2 and low RMSE values in the range of 0.985–0.999 and 0.0654–0.283, respectively,
as well as a secondary kinetic model with high R2 values in the range of 0.9859–0.9958.
The selected sensor P30/2 accurately predicted the dynamic growth of S. putrefaction. In
addition, the secondary model was used to characterize the relationship between the
storage temperature of the samples and the growth kinetic parameters of S. putrefaciens.
The secondary model fitted with the sensor P30/2 accurately estimated the influence
of temperature on the kinetic parameters of S. putrefaciens and the minimum growth
temperature range of S. putrefaciens. The PLS model based on the E-nose response values
with the EC values was more accurate than the model without the EC values in predicting
the spoilage of tuna inoculated with S. putrefaciens. Based on the GC-MS analysis, several
alcohols, ketones, amines, and sulfide compounds, especially 1-octen-3-ol, 2-nonanone,
2-heptanone, dimethyl disulfide, and methylamine, N, N-dimethyl- were determined as
characteristic VOCs in tuna infected with S. putrefaciens stored at 4 and 10 ◦C. These results
revealed that the E-nose can have a wide range of applications for predicting the growth of
spoilage microorganisms and performing a quantitative analysis of spoilage in tuna.
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