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Abstract

Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) represent a tech-

nical revolution in integrative neuroscience. However, the first used ligands exhibited dose-

dependent selectivity for their molecular target, leading to potential unspecific effects. Com-

pound 21 (C21) was recently proposed as an alternative, but in vivo characterization of its

properties is not sufficient yet. Here, we evaluated its potency to selectively modulate the

activity of nigral dopaminergic (DA) neurons through the canonical DREADD receptor

hM4Di using TH-Cre rats. In males, 1 mg.kg-1 of C21 strongly increased nigral neurons

activity in control animals, indicative of a significant off-target effect. Reducing the dose to

0.5 mg.kg-1 circumvented this unspecific effect, while activated the inhibitory DREADDs and

selectively reduced nigral neurons firing. In females, 0.5 mg.kg-1 of C21 induced a transient

and residual off-target effect that may mitigated the inhibitory DREADDs-mediated effect.

This study raises up the necessity to test selectivity and efficacy of chosen ligands for each

new experimental condition.

Introduction

Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are chemogenetic

tools that represent one of the major breakthroughs of the last ten years in integrative neuro-

science [1,2]. Combining the precision of genetics with pharmacology, DREADDs provide a

remote, prolonged and reversible control of neuronal or extra-neuronal subpopulations via

conditional expression and allow the study of complex phenomena in awake animals. As such,

they were elegantly used to easily induce tonic modulation, affording an alternative to optoge-

netics which is more adapted for phasic modulation [3], and to study the implication of differ-

ent neural system in various behaviors such as feeding, memory, pain or motivation (reviewed

in [4]). Initially described as a “lock and key” system, DREADDs are G-protein-coupled recep-

tors that rely on the combination of a mutated muscarinic receptors, that have lost their affin-

ity for acetylcholine, and a designed drug which binds to the mutated receptor with potentially

otherwise no pharmacological activity [5]. Two Designed Receptors were originally and are
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commonly used for DREADD modulation: hM3Dq, coupled to Gq protein which increases

neuronal activity and hM4Di, coupled to Gi protein which decreases neuronal activity. A next

generation of DREADDs deriving from other endogenous metabotropic and ionotropic recep-

tors were developed over time [6]. Similarly, different DREADDs ligands have been developed.

The first DREADD ligand was Clozapine-N-oxide (CNO), a derived metabolite of the atypical

antipsychotic clozapine. Initially described to be devoid of endogenous activity at moderate

doses [5], this ligand was widely used to activated DREADDs during the past decade. However,

the selectivity of this compound depend on the dose (e.g., [7]), and it was observed that CNO

induced behavioral off-target effects in both mice and rats which did not express DREADDs

[8,9]. In addition, Gomez et al. [10], reported that CNO was not the real DREADDs activator

since it was not able to cross the blood brain barrier (BBB) and was in fact back-metabolized in

low doses of clozapine. However, behavioral investigations quickly showed that even low doses

of clozapine induce anxiety-related behaviors in naïve animals [11,12], indicating that this

molecule is not appropriated as a DREADDs ligand (see also [3]). All these observations

together led to the necessity of developing new ligands. As such, a second generation of ligands

was engineered leading to the creation of three new synthetic ligands: compound 21 (C21)

developed by Chen et al. [13], JHU37152 and JHU37160 (JHUs) developed by Bonaventura

et al. [14]. Compared to JHUs, C21 has been developed earlier and as such, has gained interest

in the field. For instance, Thompson et al. [15], have demonstrated that C21 from 0.3 to 3 mg.

kg-1 was sufficient to activate DREADDs in mice and to induce selective behavioral alterations.

C21 appears therefore to be an interesting DREADDs activator. However, it remains to be

fully characterized in other species and other experimental conditions, as caution is needed

since designed ligands could have different outcomes depending on the doses, species, strains

or gender used [3]. In the present study, we aimed at further document the in vivo properties

of C21 by extending its DREADDs application to transgenic TH-Cre rats. Indeed, TH-Cre rats

are frequently used in combination to DREADDs as they appear as a powerful tool for the

investigation of tonic modulation of mesolimbic and nigrostriatal dopaminergic (DA) systems

in motivated, cognitive and affective behaviors [16–19]. However, no one has tested yet the

potential efficiency and selectivity of C21 in this experimental model.

Materials and methods

Animals

29 males and 13 females TH-Cre rats (breeding at the Plateforme Haute Technologie Animal,

La Tronche) were included in this study. They were housed in a 12h/12h reverse light cycle,

with food and water ad libitum. At the beginning of the experiments, the males weighed

between 240 and 430g and females weighed between 200g and 320g. All experimental proto-

cols complied with the European Union 2010 Animal Welfare Act and the new French direc-

tive 2010/63, and were approved by the French national ethics committee no. 004.

Stereotaxic viral infusion

Animals were anesthetized with a mixed intraperitoneal (i.p.) injection of ketamine (Chlorké-

tam, 60 mg.kg-1, Mérial SAS, Lyon, France) and xylazine (Rompun, 10 mg.kg-1, Bayer Santé,

Puteaux, France). Then local anesthesia was provided by a subcutaneous injection of lidocaïne

(Lurocaïne, 8 mg. kg-1, Laboratoire Vetoquinol S.A., France) on the skull surface and animal

were secured in a Kopf stereotaxic frame under a microbiological safety post (PSM). Coordi-

nates for SNc injections were determined according to [20], adjusted to the body weight and

set at, relative to bregma: -4.3 mm (AP), ±2.4 mm (ML), -7.9 mm (DV). Animals were infused

bilaterally with 1 μl of AAV5-hSyn-DIO-hM4Di-mCherry (1012 particles.ml-1, Addgene,
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Watertown, Massachusetts, États-Unis, #44362-AAV5) or 1 μl of AAV5-hSyn-DIO-mCherry

(1012 particles.ml-1, Addgene, #50459-AAV5). The virus was infused at a rate of 0.2 μL.min-1

using microinjection cannula (33-gauge, Plastic One, USA) connected to a 10 μL Hamilton

syringe and a microinjection pump (Stoelting Co., Wood Dale, IL). After injection, the can-

nula remained in situ for 5 min before withdrawal to allow the injected solution to be absorbed

into the parenchyma. The skin was sutured, disinfected, and the animal placed in a heated

wake-up cage, before being replaced in its home-cage after complete awakening and moni-

tored for a couple of days.

Reagent

C21 (Hello Bio, Bristol, UK) was dissolved in 0.9% saline and kept at -20˚C before testing. All

the injections were given intraperitoneally, at 0.5 or 1 mg.kg-1 (at a volume of 1 mL.kg-1). A

vehicle solution (NaCl 0.9%) was prepared and kept in the same conditions.

In vivo extracellular electrophysiology

At least two weeks after viral infusion, we performed extracellular multiunit recordings to

assess neuronal activity of SNc neurons. Rats were anesthetized continuously with isoflurane

and body temperature was maintained at 37˚C with a thermostatically controlled heating blan-

ket. Two tungsten electrodes (Phymep, Paris, France), allowing recording of a neuronal popu-

lation, were implanted bilaterally into the SNc using the coordinates determined according to

[20], and set at: -4.3 mm (AP, bregma), ±2.3 mm (ML, bregma) and -6.5 mm (DV, brain sur-

face). Coordinates between infusion and electrophysiology were slightly changed to avoid the

area of mechanical injury induced by the injection. Extracellular voltage excursions were

amplified, band-pass filtered (300 Hz–10 kHz), digitized at 10 kHz and recorded directly onto

computer disc using a Micro 1401 data acquisition system (Cambridge Electronic Design

[CED] Systems, Cambridge, UK) running CED data capture software (Spike 2). Once elec-

trodes were implanted and signal stabilized, baseline (BL) without treatment was recorded

during 10 minutes before i.p. administration of a vehicle solution (VEH—NaCl 0.9%). The

VEH period of 20 minutes was followed by i.p. administration of C21 (1 mg.kg-1 or 0.5 mg.kg-

1), for a recording period of 240 minutes. Then, the position of SNc recording sites were

marked with a small lesion caused by passing 10 μA DC current for 1 min through the tung-

sten recording electrode. Multi-unit activity was normalized by the baseline activity of the first

10 minutes. Recordings with more than 25% of variation of the multi-unit activity between the

baseline pre-injection and the vehicle periods were excluded from the study. One recording

per hemisphere were performed. Recordings were excluded after histological and immunohis-

tological analyses (see below) when the recording site was outside the SNc and/or when

DREADDs or control virus expression in the SNc was absent.

As SNc contains of a majority of DA neurons but also a minority of GABA neurons [21], to

decipher the nature of the neurons recorded we performed additional spike analysis, focusing

on the action potential’s shape. In multi-unit recordings, DA neuronal extracellular signals are

characterized by a triphasic spike, with a duration greater than 2 ms, and a duration measured

from spike initiation to the maximal negative phase of the action potential greater than 1.1 ms

[22–24]. Only recording fulfilling these criteria where included in the study. In addition, we

observed a low variability in the shape of the waveform average obtained from our recordings

indicating that this average is from a highly homogeneous population of putative dopaminer-

gic neurons with a long duration triphasic action potentials, and is unlikely to include GABA

neurons with biphasic short-lasting spikes (Fig 1).
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Tissue preparation and histological validation

At the end of the experiment, rats were deeply anesthetized by isoflurane saturation and trans-

cardially perfused with 0.9% NaCl (100 mL) followed by 4% paraformaldehyde (300 mL, PFA)

in phosphate-buffered saline (PBS). After decapitation, brains were extracted and post- fixed

for 24h in 4% PFA. They were then cryoprotected in 20% sucrose/PB for 24h and frozen in iso-

pentane cooled to -50˚C on dry ice. Coronal sections (30 μm) of mesencephalon were cut

using a cryostat (Microm HM 525; Microm, Francheville, France). Placement of electrodes

were verified by Cresyl violet staining and visualized with the ICS FrameWork computerized

image analysis system (TRIBVN, 2.9.2 version, Châtillon, France), coupled to a light micro-

scope (Nikon, Eclipse 80i) and a Pike F-421C camera (ALLIED Vision Technologies, Stad-

troda, Germany) for digitalization. Meanwhile, floating coronal section of three levels of the

mesencephalon were selected as previously described [25] for assessment of DREADDs

expression.

TH-immunohistochemistry and DREADDs expression localization

To assess DREADDs expression in DA mesencephalic regions, immunostaining for tyrosine

hydroxylase (TH) was performed. Free-floating 30 μm thick coronal sections were washed

with TBS and incubated for 1 h in 0.3% Triton X-100 in TBS (TBST) and 3% normal goat

serum (NGS). They were then incubated with primary monoclonal mouse anti-TH antibody

(mouse monoclonal MAB5280, Millipore, France, 1/2500) diluted in TBST containing 1%

NGS overnight (4˚C). Then, slices were incubated with a green fluorescent conjugated goat

anti-mouse Alexa 488 antibody (1/500, Invitrogen™, Waltham, Massachusetts, USA) for 1h30

at room temperature. They were finally mounted on superfrost glass slides, with Aqua-Poly/

Mount (Polysciences, Inc., Germany). Fluorescent pictures of TH labelling and mCherry

Fig 1. Representative example of the waveform average of recordings. The total duration of the triphasic spike is

indicated in blue. The duration, from spike initiation to the maximal negative phase of action potential, is indicated in

green. Data are presented as the waveform average +/- SEM.

https://doi.org/10.1371/journal.pone.0238156.g001
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expression were taken using a slide scanner (Z1 Axioscan, Zeiss Göttingen, Germany), at x20

magnification and analyzed with ImageJ. DREADD expression was quantified for each hemi-

sphere by comparing the number of TH-labeled-mCherry-positive neurons with the number

of TH-labeled neurons within three areas: the lateral SNc (lSNc), the medial SNc (mSNc) and

the Ventral Tegmental Area (VTA). We have also verified first that mCherry was only detected

in TH-positive neurons. Fluorescent illustrations presented in this article were taken with a

laser-scanning confocal microscope (LSM710, Zeiss,). Z-stacks of digital images were captured

using ZEN software (Zeiss).

Data analyses

For DREADDs expression, data were expressed as the mean number of quantified hemi-

spheres for which recordings were included +/- SEM (number of quantified hemispheres and

animals for each group are detailed in figure legends). For extracellular electrophysiology, data

were expressed as the mean number of recordings +/- SEM (number of included recordings

and animals for each group are detailed in figure legends). Parametric analyses were per-

formed after verification of the assumptions of normality (Shapiro-Wilk and Kolmogorov-

Smirnov tests) and sphericity (Bartlett’s test). Data were analyzed by t-test, RM one-way

ANOVA, two-way ANOVAs and RM two-way ANOVAs, depending on the experimental

design, using GraphPad Prism 8 (summarized in S1 Table). As the electrophysiological record-

ings were long, some values were missing due to artefacts (3% of the data recorded in extracel-

lular electrophysiology). In this case, data were analyzed by fitting a mixed model proposed by

the statistical software. This mixed model uses a compound symmetry covariance matrix, and

is fit using Restricted Maximum Likelihood (REML). When indicated, post hoc analyses were

carried out with the Bonferroni’s correction procedure. Significance for p values was set at α =

0.05. Effect sizes for the ANOVAs were also reported using partial η2 values [26,27]. Determin-

ing these values from the mixed-model analysis was however not accessible.

Results

We thereby infused into the substantia nigra pars compacta (SNc) of male and female TH-Cre
rats, a floxed virus encoding for the inhibitory DREADDs hM4Di coupled to mCherry

(♂-hM4Di and ♀-hM4Di). Meanwhile, a floxed virus encoding only for mCherry was infused

in control groups (♂-mCherry and ♀-mCherry) (Fig 2). With extracellular electrophysiology,

we first verified that basal activity of the neuronal subpopulations recorded within the SNc

were comparable between our different experimental groups, since DREADDs may have a

constitutive activity [28]. We found neither differences between ♂-hM4Di and ♂-mCherry ani-

mals (23.6 events/s ± 1.9 and 21.2 events/s ± 2.9 respectively, t(39) = 0.65, p = 0.521) nor

between ♀-hM4Di and ♀-mCherry animals (38.8 events/s ± 7.3 and 26.7 events/s ± 4.3 respec-

tively, t(13) = 1.48, p = 0.164). We also verified that basal activity of this multi-unit recording

remains stable over time in groups of mCherry and hM4Di animals only treated with saline

(RM one-way ANOVAs report no effect of time: Fs < 0.98, p> 0.46, partial η2 < 0.12; S1 Fig).

Then, we tested the potential effect of two concentrations of C21, 1 mg.kg-1 and 0.5 mg.kg-

1, on the neuronal activity of the SNc in ♂-mCherry or ♂-hM4Di animals (Figs 3 and S2). We

first assessed the effect of 1 mg.kg-1 of C21 in ♂-mCherry animals (Fig 3B and 3D). We

observed a robust and persistent increase in the activity of nigral neurons, indicating that, even

within the recommended range of doses [15], C21 can have strong non-DREADDs mediated

pharmacological effects. Importantly, decreasing the dose of C21 to 0.5 mg.kg-1 allowed to

completely circumvent this unspecific effect on SNc neuronal activity (Mixed-effects analysis

highlights a main effect of treatment: F(1, 13) = 16.08, p< 0.01; of the time: F(8, 98) = 6.38,
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p< 0.001; and treatment × time interaction: F(8, 98) = 5.44, p< 0.01; Fig 3D, left panel). Over-

all, a 100%-increase was observed between 90 to 180 minutes after the injection of C21 at 1

mg.kg-1 compared to vehicle, an effect that was absent at 0.5 mg.kg-1 (Two-way ANOVAs

showed a main effect of the treatment: F(1, 13) = 17.45, p< 0.01, partial η2 = 0.57; of the trans-

gene: F(1, 13) = 17.81, p< 0.01, partial η2 = 0.59; and treatment x transgene interaction: F(1, 13)

= 15,74, p< 0.01, partial η2 = 0.55; Fig 3D, middle and right panel). We next tested whether

the dose of 0.5 mg.kg-1 of C21, devoid of off-target effect in the SNc, was sufficient to activate

the DREADDs in ♂-hM4Di animals and to produce significant in vivo chemogenetic effects.

As shown on Fig 3C and 3E, 0.5 mg.kg-1 of C21 induced in ♂-hM4Di but not in ♂-mCherry
animals, a significant reduction of SNc neuronal activity, as expected from the activation of an

inhibitory receptor selectively expressed in a DA neuronal subpopulation. This decrease

became evident 90 minutes after the injection of C21 and ended 120 minutes later (Mixed-

effects analysis highlighted a main effect of transgene: F(1,17) = 5.89, p< 0.05; marginal effect

of time F(8,130) = 1.97, p = 0.055 and no significant transgene x time interaction F(8,130) = 1.67,

p = 0.113; Fig 3E, left panel). Overall, a 30%-decrease was observed between 90 to 180 minutes

after injection of 0.5 mg.kg-1 of C21 compared to vehicle and the mCherry control condition

(Two-way ANOVAs showed a main effect of the treatment: F(1, 17) = 6.52, p< 0.05, partial η2

= 0.28; of the transgene: F(1, 17) = 6.69, p< 0.05, partial η2 = 0.38; and treatment x transgene

interaction: F(1, 17) = 10.26, p< 0.01, partial η2 = 0.37; Fig 3E, middle and right panel). Notably,

we also observed a complete recovery of the basal activity in ♂-hM4Di rats at 240 minutes

post-injection. This indicates that, consistently with the DREADDs approach, this effect was

Fig 2. hM4Di-mCherry and mCherry expression in mesencephalic DA neurons of TH-Cre rats. (A) On the left,

schema of the three levels of mesencephalon used for quantified viral expression with three areas: lateral SNc (lSNc),

medial SNc (mSNc) and Ventral Tegmental Area (VTA). The black rectangle indicates the level at which

representative images, on the right, were taken to illustrate TH immunostaining and hM4Di-mCherry or mCherry

expression. (B-C) Percent of transgenes expression in the lSNc, mSNC and VTA for males (B) (hM4Di, orange, n = 18

hemispheres, 13 animals; mCherry, black, n = 23 hemispheres, 16 animals) or females (C) (hM4Di, red, n = 7

hemispheres, 7 animals; mCherry, grey, n = 8 hemispheres, 6 animals). A similar pattern of expression was observed

between males and females with a gradient of expression from lSNc to the VTA (two-way ANOVAs: Fs> 18.83,

p< 0.001, partial η2> 0.49), in both transgene conditions (two-way ANOVAs: Fs< 2.45, p> 0.16, partial η2< 0.06).

For each area, the given percent of expression correspond to the mean expression of the three levels of mesencephalon.

Scale bar: 200 μm. Data were expressed as the mean number of quantified hemispheres for which recordings were

included +/- SEM.

https://doi.org/10.1371/journal.pone.0238156.g002
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reversible, and not due to a loss of signals along time. These finding indicate that, in male

TH-Cre rats, 0.5 mg.kg-1 of C21 is sufficient to potently activate hM4Di in TH-Cre rats, without

inducing endogenous off-target effects.

As brain responses may differ between males and females [29], we next investigated the

effect of 0.5 mg.kg-1 of C21 in female TH-Cre rats. As in male, this dose of C21 selectively

decreased the activity of nigral neurons in♀-hM4Di rats (Fig 3F). This effect was however not

detected as significant (Fig 3F, left panel: Mixed-effects analysis report no significant effect of

the transgene: F(1, 13) = 0.28, p = 0.605; neither of time: F(8, 95) = 1.88, p = 0.072; nor time x

transgene interaction: F(8, 95) = 0.23, p = 0.977; Fig 3F, middle and right panel: Two-way

Fig 3. Dose dependent effect of C21 on multi-unit activity of SNc neurons expressing hM4Di-mCherry or

mCherry. (A) Schema of the bilateral electrodes implantations. (B) Representative data obtained during recording of

neuronal subpopulation within the SNc from male mCherry rat treated with 1 mg.kg-1 of C21. (C) Representative data

obtained during recording of neuronal subpopulation within the SNc from male hM4Di rat treated with 0.5 mg.kg-1 of

C21. (D-F) On the left, effect of C21 along time on SNc neuronal multi-unit activity, during vehicle (VEH, a

20-minutes interval) and C21 periods (30-minutes intervals), normalized to 10-minutes baseline recording. In the
middle and on the right, mean neuronal multi-unit activity, during the VEH period and between the 90 and 180

minutes post-C21 injection intervals, normalized to baseline. (D) Effect of C21 in mCherry male rats treated with 1

(white, n = 6 recordings, 4 animals) or 0.5 (black, n = 9 recordings, 7 animals) mg.kg-1. (E) Effect of C21 in mCherry

(black, n = 8 recordings, 7 animals) or hM4Di (orange, n = 10 recordings, 8 animals) male rats treated with 0.5 mg. kg-

1. (F) Effect of C21 in mCherry (grey, n = 8 recordings, 6 animals) or hM4Di (red, n = 7 recordings, 7 animals) female

rats treated with 0.5 mg.kg-1. Data were expressed as the mean number of recording sides +/- SEM. BL: baseline, VEH:

vehicle. �P< 0.05, ��P< 0.01, ���P< 0.001.

https://doi.org/10.1371/journal.pone.0238156.g003
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ANOVAs report a marginal effect of treatment: F(1,13) = 3.63, p = 0.079, no significant effect of

the transgene: F(1, 13) = 3.13, p = 0.1, or significant treatment x transgene interaction: F(1, 13) =

3.13, p = 0.1), consistent with lower effect sizes of DREADDs as compared to male (Fig 3F,

middle and right panel: partial η2 = 0.22, partial η2 = 0.18, partial η2 = 0.19, for the treatment,

the transgene an treatment x transgene interaction respectively). This is probably due to the

fact that, in contrast to male, a residual unspecific effect of C21, highlighted by a clear transient

increase of 169% of the activity at 60 min post-injection (Fig 2F), likely mitigated the following

DREADDs-mediated effect. (Fig 3F, left panel). Therefore, detecting a statistically significant

DREADDs-mediated effect may require a greater number of animals for female with this dose

of C21.

Discussion

Here, we demonstrated that C21 possesses both specific and unspecific effect on rats depend-

ing on doses used. In males, at 0.5 mg.kg-1, C21 activated hM4Di with a potent in vivo effect,

without inducing off-target effect. This led to a reversible inhibition of nigral neurons activity

selectively in hM4Di-expressing animals. Conversely, at 1 mg.kg-1, C21 induced a robust and

long-lasting increase of SNc neurons activity in hM4Di-lacking animals. In females, this

unspecific effect was also transiently observed, in both hM4Di-expressing and hM4Di-lacking

animal, with the dose of 0.5 mg.kg-1, meaning that precaution must be taken in studies using

both genders. This is critical because scientists working on transgenic lines often used males

and females to obtain larger cohorts (e.g., [10,14,28,30]). Relative potent affinity of C21 for

some endogenous receptors may account for the off- target effect evidenced in the present

study. Indeed, C21 may exhibit similar affinity for serotoninergic 5-HT2 Gi-coupled and hista-

minergic H1 Gq-coupled receptors than for hM4Di behaving potentially as a competitive

antagonist of these receptors [3,7,15]. Given that 5-HT2 Gi-coupled receptors are expressed on

SNc DA neurons [31,32], by blocking this inhibitory receptor, C21 can promote SNc neurons

activity [33]. In addition, blocking H1 Gq-coupled receptors that are located on nigral

GABAergic neurons can lead to a reduction of the GABAergic inhibition on nigral DA neu-

rons and therefore enhance their activity [34,35]. Although these two hypotheses remain spec-

ulative and deserve further investigations, it appears not unlikely that, depending on the dose,

C21 exhibits such off-target effect on SNc neuronal activity.

Finally, this study demonstrates that C21 can be a potent DREADDs activator in rats. It

also clearly illustrates that, because DREADDs derive from endogenous receptors and rely on

the use of pharmacological compounds, they are unlikely to be fully devoid of off-target effects,

even if new ligands are proposed each year and help to maximize this approach. These effects

will always depend on the dose, the species, the strains and the gender used. Therefore, regard-

less of the chosen ligand, a “model-dependent” approach must be adopted to assess the selec-

tivity and efficiency of the ligand for every new experimental condition prior any behavioral

experiment.

Supporting information

S1 Fig. Basal neuronal activity and recording remain stable over time in animals treat with

saline solution. Effect of vehicle along time on SNc neuronal activity rate in rats expressing

mCherry (n = 8 recordings, 5 animals) (A) or hM4Di (n = 8 recordings, 5 animals) (B). To

keep the same experimental conditions, two saline injections were realized, one at the end of

the 10-minutes baseline recording (VEH, a 20-minutes interval) and one at the end of the vehi-

cle period corresponding to the time of C21 injection (30-minutes intervals). Data were
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expressed as the mean number of recording sides +/- SEM.

(TIF)

S2 Fig. Location of recording sites within the SNc among the different groups studied.

Male expressing mCherry treated with 1 mg.kg-1 of C21 (A) or 0.5 mg.kg-1 of C21 (B). Male

expressing hM4Di treated with 0.5 mg.kg-1 of C21 (C). Female expressing mCherry (D) or

hM4Di (E) and treated with 0.5 mg.kg-1 of C21.

(TIF)

S1 Table. Summary of statistical analyses.

(TIF)
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31. Fink KB, Göthert M. 5-HT receptor regulation of neurotransmitter release. Pharmacol Rev. 2007; 59:

360–417. https://doi.org/10.1124/pr.107.07103 PMID: 18160701
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