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Abstract: In recent decades, photoacoustic imaging has been used widely in biomedical research,
providing molecular and functional information from biological tissues in vivo. In addition to being
used for research in small animals, photoacoustic imaging has also been utilized for in vivo human
studies, achieving a multispectral photoacoustic response in deep tissue. There have been several
clinical trials for screening cancer patients by analyzing multispectral responses, which in turn
provide metabolomic information about the underlying biological tissues. This review summarizes
the methods and results of clinical photoacoustic trials available in the literature to date to classify
cancerous tissues, specifically of the thyroid and breast. From the review, we can conclude that a
great potential exists for photoacoustic imaging to be used as a complementary modality to improve
diagnostic accuracy for suspicious tumors, thus significantly benefitting patients’ healthcare.

Keywords: photoacoustic imaging; thyroid cancer; breast cancer; multispectral analysis; clinical imaging

1. Introduction

In biomedical studies, the characterization of molecular and functional information
about the underlying tissue can significantly improve our intuition in analyzing the mor-
phology, treatment efficacy, and metabolites of target tissues. Among many biomedical
imaging techniques, optical imaging methods have been widely applied for small animal
studies due to their cost-efficiency, ease of implementation, non-ionizing radiation, and
real-time imaging capability [1]. More importantly, optical imaging techniques can also
provide molecular and functional information by tuning the wavelength of the light source.
While advantageous, the strong optical diffusion of the pure optical imaging techniques in
biological tissues leads to a reduced penetration depth, thus limiting clinical translation.

Photoacoustic imaging (PAI), one of the branches of optical imaging, provides the
added advantage of increased imaging depth [2]. Compared to other optical imaging
techniques, PAI inherits ultrasound imaging characteristics (USI), which increases its ability
to visualize structural information in deep tissue. The signal generation in PAI is based
on the photoacoustic (PA) effect, which is energy transduction from light to ultrasound
(US) [3]. In brief, PA images can be achieved through the following procedure: (i) pulse
laser illumination, (ii) light absorption by chromophores, (iii) momentary heat generation,
(iv) acoustic wave (i.e., PA wave) generation through thermoelastic expansion, (v) signal
detection by US transducer, and (vi) image generation. The resulting PA images, formed
from the acoustic wave, include the optical absorption characteristics of the underlying
biological tissue. Thus, PA images can provide molecular and functional information
with a good ultrasound resolution in deep tissue [4,5]. In addition to the endogenous
chromophores, contrast-enhanced PAI [6,7] has been studied by developing exogenous
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contrast agents including organic dyes [8–12] and inorganic nanoparticles [13–18]. Recently,
contrast agents that absorb light in the second near-infrared region (NIR-II, 1000–1350 nm)
have been investigated. In NIR-II, a greater imaging depth can be achieved with reduced
tissue scattering and background noise compared to the first near-infrared region (NIR-I,
650–950 nm), which is mainly used for contrast-enhanced PAI [19–25].

One unique advantage of PAI is its scalable resolution and large imaging depth for
the target region [26]. Since laser excitation can be tightly focused in shallow areas, high-
resolution PA images can be achieved within the optical diffusion limit (~1 mm under the
skin) [27,28]. High-resolution PAI has been used for visualizing the hemodynamics of the
brain, ear, and eye of mice in vivo [29,30]. Since the light is diffused beyond the optical
diffusion limit for deeper imaging depths, the US transducers determine the resolution at a
greater depth [31–34].

For clinical research, PAI platforms have been developed and applied. Among them,
the Vintage series (Verasonics, Kirkland, WA, USA), which equips the most-advanced pro-
grammable platform for designing user-defined operation sequence, is widely used [35,36].
The VevoLAZR series (FujiFilm VisualSonics, Toronto, ON, Canada) is another widespread
commercial system for PAI research [37,38]. The main advantage of this system is a
user-friendly interface, with real-time imaging and spectral analysis capability. Its high-
frequency US transducer can provide high-resolution images, but it also limits the appli-
cation area to a shallow area which is not favorable for clinical translation. The MSOT
Acuity series (iThera Medical, Munich, Germany) has also been applied in clinical trials
with multispectral PA analyses [39,40]. Its arc-shaped array can provide volumetric images,
but its relatively small field of view is not suitable for general clinical applications that
require a large imaging area. An FDA-cleared US machine (EC-12R, Alpinion Medical
Systems, Anyang, Korea) has also been used to develop a clinical PAI system [41,42]. From
the programmable platform in the US machine, the user can design their own operation
sequence for their specific application.

Various geometry of multi-element array transducers has been developed and used
for the clinical translation of PAI [43–47]. In typical clinical PAI systems, both US and PA
images are acquired by controlling the data acquisition sequence [48]. The dual-modal
images complement each other by visualizing molecular and functional information in the
PAI and specific morphologies in the USI [49]. Dual-modal PA and US imaging (PAUSI)
has been used for clinical investigation in humans [50,51]. The multispectral PA responses
provide metabolomic information about the biological tissues, thus indirectly providing
valuable information about the cancerous tissues [52,53].

Among the various clinical trials for screening cancerous tissues that have been stud-
ied using multispectral PAI, this article focuses on reviewing the recent results from clinical
trials investigating thyroid and breast cancers. The system configuration details, patient
recruiting method, and classification results are summarized. A detailed analysis of thy-
roid and breast cancers provides insights into the future directions of PAI-based cancer
diagnoses.

2. Principles of Multispectral Photoacoustic Analysis

Similar to other optical imaging techniques, PA investigates the molecular composition
of chromophores by applying spectral unmixing techniques to multispectral data [54].
From the images acquired with various excitation wavelengths, the spectral responses
from different chromophores are delineated by mathematical calculations. The typical
application of the spectral unmixing technique in PAI is in calculating hemoglobin oxygen
saturation (sO2) levels in blood vessels [55–57]. The sO2 level in tumors indirectly represents
metabolomic information about the tissue. Thus, PA-guided tumor assessment typically
measures the sO2 levels to differentiate benign from malignant tumors [58–60].

The typical unmixing method for multispectral PA data is linear unmixing, which can
be simplified as a matrix multiplication as shown below:
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V(P1, λ1) V(P2, λ1)
V(P1, λ2) V(P2, λ2)

· · · V(PK, λ1)
V(PK, λ2)

...
. . .

...
V(P1, λN) V(P2, λN) · · · V(PK, λN)

 =


µHbo(λ1) µHbR(λ1)
µHbo(λ2) µHbR(λ2)

...
...

µHbO(λN) µHbR(λN)


[

CHbo(P1) CHbo(P2) · · · CHbo(PK)
CHbR(P1) CHbR(P2) · · · CHbR(PK)

]
(1)

V = MC (2)

where Pi (i = 1, 2, · · · , K) is the i-th pixel in images and λj (j = 1, 2, · · · , N) is the j-th
excitation wavelength, V

(
Pi, λj

)
is the measured value, µHbO

(
λj
)

and µHbR
(
λj
)

are optical
absorption coefficients, and CHbO(Pi) and CHbR(Pi) are concentrations of oxy-hemoglobin
(HbO) and deoxy-hemoglobin (HbR), respectively. The concentrations of hemoglobins are
calculated by taking the pseudo-inverse as shown below.

C =
(

MTM
)−1

MTV (3)

Consequently, the concentration of the total hemoglobin (HbT) and the sO2 level in
each pixel are derived using the following equations.

CHbT(Pi) = CHbO(Pi) + CHbR(Pi) (4)

CsO2(Pi) =
CHbO(Pi)

CHbT(Pi)
(5)

In addition to the linear unmixing technique, the model-based unmixing [61] and the
deep-learning technique [62] have also been used for multispectral PA analysis.

3. Multispectral Photoacoustic Analysis of Thyroid Gland

Thyroid cancer is one of the most common cancers, with an increasing global incidence
rate in men and women [63–65]. The gold standard for diagnosing thyroid nodules is fine-
needle aspiration biopsy (FNAB) [66]. The triaging for FNAB of the nodule is determined
by the characteristics of nodules in USI [67–69]. Although the sensitivity of US-guided
triaging is greater than 90%, the lack of functional metabolomics results in a low specificity
of 20–50% [70]. The high false-positive rate leads to unnecessary FNAB, which results in
the over-diagnosing of the tumor. Thus, clinical trials have been conducted to enhance the
accuracy of triaging thyroid nodules using PAI due to its molecular and functional imaging
capability.

Dogra et al. analyzed 88 resected tissues (13 malignant nodules, 30 benign nodules,
13 colloid accumulations, and 32 normal tissues) from 50 patients (11 malignant and
39 benign) [71]. Four different wavelengths (760, 850, 930, and 970 nm) were used for
the spectral unmixing of HbO, HbR, lipid, and water components from multispectral PA
data. Statistically significant differences were found in HbO and HbR between malignant
and other types of tissues (Figure 1a). In particular, HbR components were significantly
different between malignant and normal tissue, with a p-value of 0.003 in the student t-test.
The results showed the promising feasibility of PA-guided classification with a sensitivity
of 69.2% and a specificity of 96.9%, but this study was limited to ex vivo environments only.
Thus, for clinical translation, further in vivo validation is needed.

Dima et al. demonstrated the in vivo imaging capability of their PA and US system
for the human thyroid [72]. They recruited two healthy volunteers to acquire PA images
with a single excitation wavelength of 800 nm (Figure 1b). US Doppler images were
also acquired in the same region to verify the blood vessel’s position (yellow box in
Figure 1b). By comparing the PA images with the US Doppler images, surrounding blood
vessels extending from the isthmus and carotid artery to the anterior of the thyroid gland
were identified. The results showed the feasibility of in vivo PAI using the arc array
US transducer by confirming the matched positions of blood vessels (white arrows in
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Figure 1b). However, the spectral analysis of cancerous nodules was not available in this
study. Yang et al. compared in vivo PA images between papillary thyroid cancer (PTC)
patients and healthy volunteers (Figure 1c) [73]. Although they achieved PA responses
from cancerous nodules, the number of patients (10 PTC and 3 normal) included in the
study was insufficient for statistical analysis. In addition, multispectral analysis was also
not available in this study because they used a single excitation wavelength of 1064 nm.
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Figure 1. Initial results on PA analysis of thyroid nodules. (a) Student t-test results of HbO and
HbR components in excised thyroid between malignant and nonmalignant (benign, colloid, and
normal) tissues. **, p ≤ 0.01; *, p ≤ 0.05; ns, not significant. (b) PA (pseudo-colored), US (grayscale),
and US Doppler (yellow box) images of thyroid from a healthy volunteer in vivo. The numbers
indicate the locations of prominent blood vessels for comparison between PA and US Doppler images.
(c) Overlaid PA and US images from healthy volunteers and PTC patients in vivo. PA, photoacoustic;
US, ultrasound; HbO, oxy-hemoglobin; HbR, deoxy-hemoglobin; M, muscle; T, thyroid; Tr, trachea;
C, carotid artery; N, nodule. The images are reproduced with permission from [71–73].

Roll et al. presented multispectral PA analyses for differentiating tissue disorders
in the thyroid gland [74]. The composition of HbO, HbR, fat, and water were spectrally
unmixed from the in vivo PA images of the enrolled patients (6 Graves’ disease, 3 malignant,
13 benign, and 8 healthy), obtained using eight excitation wavelengths (700, 730, 760,
800, 850, 900, 920, and 950 nm). The sO2 levels of the thyroid were also visualized and
investigated (Figure 2a). The contours of the thyroid glands were determined by the
corresponding US images. Statistical analyses demonstrated significant differences between
diseased and normal thyroid tissues (Figure 2b). This study was also unable to calculate
the classification accuracy due to a small number of samples, thus limiting the applicability
of the results.
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Figure 2. Multispectral PA analysis of thyroid nodules in vivo. (a) Spectrally unmixed sO2 distribu-
tion and corresponding US images of the thyroid region. (b) Student’s t-test results between diseased
and non-diseased tissues, based on unmixed sO2, HbR, and HbT. (c) sO2 distributions in benign
and PTC nodules overlayed on the corresponding US images. (d) Classification results using the
SVM-trained three-dimensional decision function and the ATAP scoring method. PA, photoacoustic;
US, ultrasound; sO2, hemoglobin oxygen saturation; HbR, deoxy-hemoglobin; HbT, total hemoglobin;
PTC, papillary thyroid cancer; SVM, support vector machine; ATAP, the American Thyroid Associa-
tion and the PA probability of PTC; Se, sensitivity; Sp, specificity; CA, carotid artery; TH, thyroid;
ND, nodule; **, p ≤ 0.01; *, p ≤ 0.05. The images are reproduced with permission from [74,75].

Recently, Kim et al. presented a multispectral PA analysis with a statistically sufficient
number of samples (23 PTC and 29 benign), the largest number of patients in a clinical
thyroid study to date [75]. They achieved multispectral PAI using five wavelengths (700,
756, 796, 866, and 900 nm). The corresponding US data were also acquired simultaneously
for delineating the boundary of nodules. Similar to the previous studies, the sO2 levels in
nodules were acquired through the spectral unmixing of HbO and HbR (Figure 2c). Three
parameters were quantified and used for training the decision function (Figure 2d): (i) PA
spectral gradient: the slope of a first-order polynomial fitted line to the average value of
the top 50% of PA signals within the nodule boundary at each wavelength; (ii) relative sO2
level: the average value of the top 50% sO2 values within the nodule; (iii) skewed angle of
sO2 distribution: the skewed angle of the Gaussian-fitted distribution for the top 50% of
sO2 values within the nodule. With the values of the three parameters scattered in a 3D
plane, a support vector machine was trained to determine the 3D decision boundary, which
showed a good classification accuracy with a sensitivity of 78% and a specificity of 93%. The
classification accuracy was further enhanced using a novel scoring method (ATAP score),
which combined a conventional USI-based scoring method (i.e., ATA guideline score) and
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the photoacoustic probability of malignancy. The novel scoring method improved the
sensitivity to 83% and the specificity to 93%. Thus, the results showed a great potential for
enhancing the triaging accuracy of thyroid nodules using a multiparametric analysis of
multispectral PA data as a complementary method to the conventional triaging method.

While PA analyses of thyroid nodules have been conducted by various groups world-
wide (Table 1), the validation of multispectral PA analysis is still at the initial stage of
evaluation. Further studies are required to address the following issues for successful
clinical translation. (i) Larger number of patients are needed to enhance the reliability of
this technique. (ii) In addition to PTC, the classification of other types of thyroid cancers
such as follicular, medullary, and anaplastic thyroid cancers would expand the application
area. (iii) Quantitative analyses of PA responses in skin color are needed. (iv) System
improvement with a deeper imaging depth, faster frame rate, and smaller size would
enhance the image quality for multispectral analyses.
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Table 1. Summary of the system configurations and PA analysis results of the human thyroid cancers. PA, photoacoustic; US, ultrasound; PTC, papillary thyroid
cancer; fc, center frequency; λ, excitation wavelength; Se, sensitivity; Sp, specificity; n/a, not applicable.

Imaging
Method

Imaging System
Transducer

Imaging Depth
[mm]

Frame Rate
[fps] λ [nm] # of Subjects Accuracy

[%]
Ref.

Type fC
[MHz]

ex vivo n/a Linear 5 5 10 760, 850,
930, 970

13 malignant
30 benign
13 colloid
32 normal

Se. 69.2
Sp. 96.9 [71]

in vivo

Terason 2000+,
Teratech Arc 7.5 ~20 10 800 2 healthy n/a [72]

Resona7,
Mindray Bio-Medical

Electronics
Linear 5.8 3.5 10 1064 10 PTC

3 normal n/a [73]

MSOT Acuity Echo,
iThera Medical Arc 3 ~20 25

700, 730, 760,
800, 850, 900,

920, 950

6 Graves’ disease
3 malignant
13 benign
8 healthy

n/a [74]

EC-12R,
Alpinion

Medical Systems
Linear 7.5 ~30 5 700, 756, 796,

866, 900
23 PTC

29 benign
Se. 83
Sp. 93 [75]
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4. Multispectral Photoacoustic Analysis of Breast

Breast cancer is the most common cancer for women worldwide [76,77], with more
than 110,000 new cases estimated to be diagnosed in the United States alone in 2022 [78].
Similar to other cancers, early diagnosis of breast cancer increases the survival rates of
affected patients [79]. Diagnostic imaging modalities such as X-ray digital mammography,
magnetic resonance imaging (MRI), and USI are currently used for screening breast cancers.
While X-ray mammography is the most commonly used screening device and has been
found to reduce mortality, its sensitivity and specificity are low, especially in dense breast
patients and small tumors [80–82]. MRI has a high sensitivity in detecting cancer but its
specificity is low, resulting in unnecessary biopsies. In addition, MRI is cost-prohibitive
and is not available for routine examination [83]. The low-cost, commonly available USI
can overcome the disadvantages of mammography, especially in dense breasts, but the
lack of functional information degrades its diagnostic accuracy [84]. Thus, there have been
efforts to use PAI to increase diagnostic accuracy in breast cancer by providing molecular
and functional information with multispectral analysis. By combining this with structural
information (shape of nodules) obtained by USI, the PAI showed a great potential to
distinguish benign from malignant tumors in vivo.

The feasibility of PAI for in vivo human breast has been evaluated by several re-
searchers [85–87]. Hemispherical array transducers have typically been used for the 3D
visualization of the breast. Kruger et al. successfully visualized 3D volumes of breasts from
four healthy volunteers (Figure 3a) [88]. The resulting image clearly showed the blood ves-
sels, with a sufficient contrast-to-noise ratio (CNR) of ~200 and an imaging depth of 30 mm.
However, since they used a single-wavelength (756 nm) laser source, the results lacked
functional information. Schoustra et al. acquired the 3D PA images of two healthy breasts
using arc-shaped detector arrays and a laser with two wavelengths (755 and 1064 nm) [89].
Although they used multiple wavelengths, the study’s goal was focused on penetration
depth and optical absorption (Figure 3b).
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Figure 3. Volumetric PA images of human breasts in vivo. (a) Representative PA images of both
breasts from a healthy volunteer. (b) Depth-resolved PA images of a healthy breast at different angles
of view. (c) Vessel density map on the gray-scaled PA image. Green dashed circles denote the position
of tumors. PA, photoacoustic; RB, right breast; LB, left breast. The images are reproduced with
permission from [88–90].

Lin et al. acquired tomographic PA images of the breast using a full-ring array
transducer with a single wavelength of 1064 nm [90]. They used four data acquisition
modules to increase the imaging speed of the system significantly. A volumetric PA image of
the entire breast was achieved within a single breath-hold (~15 s), thus minimizing motion-
related artifacts in the images. In seven patients with malignant tumors, they quantified
the vessel density of the tumors and compared it with the normal tissue (Figure 3c). The
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results clearly showed the differences between malignant and normal tissues, but the small
number of samples limited statistical verification. In addition to the volumetric geometry,
linear array transducers were also used for breast imaging. Wang et al. demonstrated
the feasibility of PAI using a linear array transducer on a healthy volunteer [87]. From
the same group, Nyayapathi et al. improved their system to achieve mammogram-like
PA images by using linear array transducers located both superior and inferior to the
breast [91]. They recruited 38 patients with malignant tumors, and acquired PA images
of both diseased and healthy breasts with a wavelength of 1064 nm [92]. They defined
four quantitative parameters which were calculated as the ratio of values in cancerous
and normal tissues. (i) Vessel mean ratio: the ratio of the mean values of PA signals in
the vessels. (ii) Contrast ratio: the ratio of the contrast that was calculated as the vessel
values divided by the background signal. (iii) Standard deviation ratio of vessels: the ratio
of the standard deviations of PA signals in the vessels. (iv) Standard deviation ratio of
background: the ratio of the standard deviations of PA signals in the background. They
used these to compare the PAI results of malignant and healthy breasts. The results showed
statistical differences with p-values of ~0.05, but the diagnostic accuracy was not evaluated.
Thus, the imaging results showed the feasibility of visualizing the vascular structure in
human breasts, but multispectral analysis to assess the functional information was still
missing.

Toi et al. investigated multispectral PA analysis using two wavelengths (755 and
795 nm) [93]. They recruited 22 patients with malignant tumors, and successfully visu-
alized tumor-related blood vessels using a hemispherical array transducer (Figure 4a).
They defined a novel imaging parameter named the S-factor, which depends upon the sO2
level and HbO composition in blood vessels. The comparison of vessels before and after
chemotherapy showed the degradation of the S-factor, which indicates hypoxia. Although
they could acquire high-quality images for a relatively large number of subjects, no statisti-
cal analysis was performed for differentiating malignant masses from benign or normal
tissues. Diot et al. evaluated multispectral PAI with 28 wavelengths for the human breast
in the range of 700–970 nm at 10 nm intervals [94]. Using the spectral unmixing of the
multispectral data, they obtained the distributions of HbO, HbR, lipid, and water within
the tissue. The corresponding total blood volume, which was related to the HbT level, was
also calculated. They compared the findings between 10 patients with malignant tumors
and 3 healthy volunteers. Compared to the healthy tissues, the malignant tumors showed
significantly high values of total blood volume, indicating angiogenesis in the tumorous
region. Statistical analysis was still unavailable due to the small number of patients. Thus,
further statistical studies with a sufficient number of subjects are necessary to indicate the
reliability of the results.

Neuschler et al. reported classification results using multispectral PA data on a large
number of subjects (1079 benign and 678 malignant cases) [95]. They also presented a
statistical analysis of their results. They used a laser with two wavelengths (757 and
1064 nm) to visualize HbO, HbR, and HbT distributions in human breasts. From the
acquired images, the authors quantified five scores based on the corresponding features
(Figure 4b). (i) Vessel score: the combination of the number of individually resolvable
vessels and their relative degree of deoxygenation. (ii) Blush score: the average volume of
vessels that are too small to distinguish. (iii) Hemoglobin score: the amount of hemoglobin.
(iv) Boundary zone score: vascular morphology and deoxygenation in the boundary of
nodules. (v) Peripheral zone score: the number of radiating vessels in the peripheral region.
They combined the PA scores with the BI-RADS (breast imaging reporting and data system)
grades, the conventional image-based risk stratification method for breast cancers. In
benign cases, PA scores downgraded 34.5% of high-grade BI-RADS masses, while only
6.0% were upgraded from low BI-RADS grades. In contrast, PA scores upgraded 30.6%
of malignant masses from low BI-RADS grades, and downgraded 16.5% of high-graded
malignant masses. These results showed that the PA scores could correct the BI-RADS
grades to improve diagnostic accuracy. The classification result yielded a sensitivity of
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98.6% and a specificity of 43.0%. This is the largest clinical study with patients recruited
from multiple sites, showing the clinical feasibility of multispectral PA analysis. The
subsequent study validated the PA-based BI-RADS correction with 209 patients [96]. For
47.9% of benign masses, the proposed PA analysis method successfully downgraded the
BI-RADS scores to two or three. The original scores of those masses were 4a or 4b, which
are classified as highly suspicious for cancer in BI-RADS. The result showed the great
potential of the PA-guided scoring method to decrease unnecessary biopsies or surgical
operations for breast cancer patients.
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Figure 4. Multispectral PA analysis of human breasts in vivo. (a) The distribution of the S-factor
before and after chemotherapy. The yellow marks show hypoxic signals in the tumor after therapy.
(b) Representative multispectral PA images for minimum and maximum scores for each PA feature.
PA, photoacoustic; US, ultrasound; sO2, hemoglobin oxygen saturation; HbT, total hemoglobin. The
images are reproduced with permission from [93,95].

The breast is one of the accessible organs which can be imaged using PAI. In addition
to being superficial with protruding geometry, the homogeneous structure of the breast
is optically transparent compared to other organs, lending itself as an ideal organ to be
imaged using PAI. Thus, many clinical trials have been conducted to identify breasts cancer
using multispectral PA images (Table 2). These studies have demonstrated the feasibility of
PAI with a relatively large number of subjects. However, further validation is required for
its successful translation to the clinic, as outlined here. (i) Improved specificity is needed for
the reliability of this method. (ii) The study of additional excitation wavelengths and multi-
parametric analysis will allow the opportunity to define additional quantification methods,
increasing the classification accuracy further. (iii) Imaging with contrast agents will assess
the lymph node metastasis, which is one of the key factors for treatment planning [97–99].
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Table 2. Summary of the system configurations and PA analysis results of human breast cancers. PA, photoacoustic; US, ultrasound; fc, center frequency; λ,
excitation wavelength; Se, sensitivity; Sp, specificity; n/a, not applicable.

Imaging System
Transducer

Imaging Depth
[mm]

Imaging Time
[min]

λ [nm] # of Subjects Accuracy
[%]

Ref.
Type fC

[MHz]

Custom Hemi-
spherical 2 53 3.2 756 4 healthy n/a [88]

Custom Arc 1 22 4 755, 1064 2 healthy n/a [89]

SonixDAQ,
Ultrasonix Medical Ring 2.25 ~40 ~15 s 1064 7 malignant

1 healthy n/a [90]

Vintage 256,
(Verasonics) Linear 2.25 ~70 1 1064 38 malignant n/a [92]

PAM-03,
Canon-Optosonics

Hemi-
spherical 2 27 4 755, 795 22 malignant n/a [93]

Custom Arc 5 ~20 2–4 700–970
(10 nm interval)

10 malignant
3 healthy n/a [94]

Imagio,
Seno Medical
Instruments

Linear 10 ~30 Real-time 755, 1064 1079 benign
678 malignant

Se. 98.6
Sp. 43.0 [95]
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5. Discussion and Outlook

Multispectral PAI is a promising method for investigating the metabolism of cancer
cells and the molecular composition of biological tissue without injecting any contrast
agents. In most cases, the quantification of sO2 level has been used for detecting tumor
hypoxia, which is one of the well-known characteristics of cancerous tissue [100]. Using
the functional information of PAI, clinical trials have been conducted for visualizing,
diagnosing, and analyzing tissue in various clinical applications including cancers [36,101],
melanoma [52,53], and vascular diseases [102].

This review summarized multispectral PAI for analyzing thyroid and breast cancers
in humans. The multispectral PA analysis results showed the feasibility of this technique
for classifying cancerous nodules from healthy tissues, but some limitations remain to be
overcome for successful clinical translation. (i) The reproducibility of initial results should
be verified and validated with larger-scale clinical studies. (ii) In addition to a simple
cancer classification, various types of diseased nodules should be differentiable. (iii) A
method to improve both sensitivity and specificity should be developed and verified. To
solve the issues above, clinical PAI systems should be also improved with the following
points: (i) real-time quantification for multispectral PA features, (ii) enhanced image quality,
(iii) improved imaging depth, (iv) compact systems for better mobility, and (v) a user-
friendly interface.

Although PAI is still in the initial stage of clinical translation, many studies have
already established, with statistical analyses, the feasibility of distinguishing cancerous
masses from benign tissues. With additional verification using a larger number of patients
from multiple sites, a PAI-based modality could become an excellent method for screen-
ing cancer patients. In the near future, with sufficient data collected, machine learning
techniques could be used to further increase classification accuracy.
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