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Abstract

We formulate and apply a novel paradigm for characterization of genome data quality,

which quantifies the effects of intentional degradation of quality. The rationale is that the

higher the initial quality, the more fragile the genome and the greater the effects of degrada-

tion. We demonstrate that this phenomenon is ubiquitous, and that quantified measures of

degradation can be used for multiple purposes, illustrated by outlier detection. We focus on

identifying outliers that may be problematic with respect to data quality, but might also be

true anomalies or even attempts to subvert the database.

Introduction

As public genome databases proliferate, their immense scientific power is tempered by skepti-

cism about their quality. The skepticism is not merely anecdotal: there are documented

instances and implications [1–3]. Although we argue in S1 Appendix that data quality should

not be construed as comprising only errors in data, the principal contribution of the paper is a

novel paradigm for measuring quality of genome sequences by deliberately introducing errors

that reduce quality, a process we term degradation. The errors are single nucleotide polymor-

phisms (SNPs), insertions and deletions that both occur naturally as mutations and arise in

next generation sequencing. Our reasoning is that higher quality data are more fragile: the

higher the initial quality, the greater the effect of the same amount of degradation. We present

evidence that supports this reasoning, as well as demonstrates the scope and consequences of

the phenomenon.

Even though the main contribution of the paper is methodological, applicability to bioin-

formatics problems is its raison d’être. Our exemplar problem is detection of outliers in

genome databases. We identify genomes in a 26,953 coronavirus database downloaded from

the National Center for Biotechnology Information (NCBI), whose degradation behavior is

anomalous, and whose quality, therefore, may be suspect. We detect deliberately inserted low

quality genomes, but other genomes in the original database are equally problematic. A second

potential application is to thwart adversarial attacks on genome databases that, for instance,

insert artificial genomes so that sequences of concern such as those generated by the methods
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in [4] will pass screening tests. Finally, degradation can be used to characterize the quality of

synthetic DNA reads that are used to evaluate genome assemblers [5].

Materials and methods

Our method is rooted in total quality paradigms for official statistics, that is, censuses and sur-

veys conducted by national statistics offices (S1 Appendix). In that context, data quality is a

longstanding issue, and low quality data are known to be resistant to further errors, such as

those introduced by editing, imputation or statistical disclosure limitation (SDL). We also

draw on official statistics for techniques to quantify data quality. In experimental settings and

because it is intuitive, we measure degradation by distance, appropriately defined, from the

stating point. In real databases, this is not possible, so we employ measures of distance from a

universal “endpoint” representing the lowest possible quality—pure randomness in the form

of maximal entropy, which every genome reaches in the limit of infinite degradation.

Preliminaries

In this paper, a genome G is a character string chosen from the alphabet B ¼ fA;C;G;Tg,
and represents one strand of the DNA (or, for viruses, RNA. in an organism. The constituent

bases (nucleotides) are A = adenine, C = cytosine, G = guanine and T = thymine. We denote

the length of a genome G by |G|; the ith base in G is G(i); and the bases from location i to loca-

tion j> i are G(i: j). Given an integer n� 1, the n-gram distribution is the probability distribu-

tion Pn(�|G) on the set all subsequences of length n chosen from B—there are 4n of them—

constructed by forming a table of all length n contiguous substrings of G and normalizing it so

that its entries sum to 1. There are |G| − n + 1 such sequences, starting at 1, 2, . . ., |G| − n + 1,

so the normalization amounts to division by |G| − n + 1.

In this paper, we focus on triplets, which are 64-dimensional summaries of genomes, and

which also encode amino acids—the building blocks of proteins. The interpretation of P3(�|G)

is that for each choice of b1, b2, b3 from B,

P3ðb1b2b3jGÞ ¼ ProbfGðk : ½kþ 2�Þ ¼ b1b2b3g; ð1Þ

where k is chosen at random from {1, . . ., |G| − 2}. Triplets provide a generative model of a

genome as a second-order Markov process, since P3 contains the same information as the pair

distribution P2 and the 16 × 4 transition matrix

T3ðb1; b2; b3jGÞ ¼ ProbðGðkþ 2Þ ¼ b3jGðkÞ ¼ b1;Gðkþ 1Þ ¼ b2Þ ð2Þ

that gives the distribution of each base conditional on its two immediate predecessors.

Distributions of bases, pairs of successive bases, triplets of successive bases and quartets of

successive bases differ across genomes, in ways that support a variety of analyses, including not

only outlier identification, which we address below, but also Bayesian classification of simu-

lated next generation sequencer reads and detection of contamination [6]. How tuple distribu-

tions behave under degradation supports our hypothesis regarding data quality. Higher-level

genome structure such as repeats and palindromes is addressed in the below.

Other cases of interest are less suited to our purposes. Base (n = 1) and pair (n = 2) distribu-

tions are too coarse to be useful on their own. Quartets (n = 4) have been studied extensively

[7–9]. For the problems we address, they are more cumbersome than triplets without being

significantly more informative. Finally, although we do not do so here, triplet distributions can

usefully be converted to amino acid distributions [6].
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The hypothesis and initial evidence

We hypothesize that because high quality data are more fragile than low quality data, As

noted, there is precedent in official statistics for this assertion. Some components of the argu-

ment appear in S1 Appendix, while the total survey error (TSE) paradigm referred to in S1

Appendix rests in part on this premise.) the quality of elements of a DNA sequence database

can be measured by degrading them, Secondarily, the more complex the characteristic exam-

ined, the greater the impact of degradation. As we see below, the effect of degradation increases

as we move from base distributions to pair distributions to triplet distributions to quartet dis-

tributions to repeats and palindromes.

We perform the degradation by iteratively applying the Mason_variator software [10].

Briefly, the Mason_variator simulates changes to a genome sequence: SNPs, insertions,

deletions, inversions, translocations, and duplications, with specified probabilities for each.

Such changes occur naturally as mutations as well as in reads produced by next generation

sequencers, such as those manufactured by Illumina. Mason_variator runs from a com-

mand line interface with user-specified parameters, input files, and output files. For simplicity,

in most of our analyses, only SNPs were simulated. The principal reason is to avoid burden-

some computation of Levenshtein distances. Iterative use of Mason_variator means start-

ing with a given genome, running Mason_variator on it, running Mason_variator
again on the result, . . ., up to a specified number of iterations, which is usually 2000. Much the

same effect could be achieved by increasing the error probabilities, but at a loss of interpret-

ability, because parametrization by the number of iterations is more intuitive. Evidently this

process of iteration is analogous to the real process of evolution.

We have investigated several measures of quality for degraded genomes. The first two of

these are employed in string matching: Hamming distance [11] is usable when only SNPs are

simulated, while Levenshtein distance [11] allows insertions and deletions that alter the length

of the DNA sequence. (The Hamming distance between sequences with different lengths is

infinite. Levenshtein distance is significantly more burdensome than Hamming distance com-

putationally, with respect to both time and memory requirements, especially for longer

genomes.) As discussed below, the origin point for Hamming and Levenshtein distances is

crucial. We treat distances based on distributions of nucleotides, pairs, triplets and quartets as

well as entropy of triplet distributions of degraded genomes.

Fig 1 visualizes the hypothesis for a single element of the coronavirus database employed in

our primary experiments. All forms of errors were allowed. In the figure, the x-axis is the num-

ber of iterations of the Mason_variator, and the y-axis is Levenshtein distance between

the degraded genome and the original genome. The most salient characteristic of the curve is

its concavity: the more degradation already done, the less the effect of each additional

iteration.

There are issues with the choice of the origin for Levenshtein distances. In Fig 2, there are

21 initial genomes—the one randomly selected coronavirus genome and that genome after

100, 200, . . ., 2000 Mason_variator iterations, representing continually decreasing initial

data quality. In the top panel, Levenshtein distance is measured from the parent (0-iteration)

genome, and the distance at iteration 0 has been subtracted from each curve. In a sense,

however, this is “cheating,” because in real databases that potentially contain errors, there are

not definitive parent genomes. In the middle panel in Fig 2, Levenshtein distance for each

curve is measured from its starting point. The curves there differ little, and certainly not sys-

tematically. Fortunately, a work-around exists: the bottom panel in Fig 2 shows that (within

reason), any fixed genome can be used as the origin. There, all Levenshtein distances are mea-

sured from a second randomly selected genome in the NCBI dataset. The key point is that the
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curves in the bottom panel vary significantly and systematically with respect to the initial

degradation.

Experimental platform

Our experimental platform is a coronavirus database containing 26,953 genomes, which was

downloaded from the NCBI in November of 2020. To it, we added eleven “known” problem

cases: a single adenovirus genome with length 34,125 BP (downloaded as part of the Art read

Fig 1. Examplar of degradation. Levenshtein distance from a (randomly selected) coronavirus genome as a function of the number of

Mason_variator iterations.

https://doi.org/10.1371/journal.pone.0271970.g001
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Fig 2. Degradation behavior as a function of Mason_variator iterations and initial data quality, for a

randomly selected coronavirus genome. A: Degradation is measured by incremental Levenshtein distance from the

parent (0-iteration) genome. B: Degradation is measured by Levenshtein distance from the starting point. C:

Degradation is measured by incremental Levenshtein distance from a second randomly selected genome in the NCBI

database. Color encodes the initial number of Mason_variator iterations.

https://doi.org/10.1371/journal.pone.0271970.g002
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simulator software package [12]) and low-quality versions of 10 coronavirus selected randomly

from the original 26,953, each created by 2000 iterations of the Mason_variator. Our

method detects not only these known outliers—the minimal criterion for credibility, but also

others.

All FASTA input files and analysis datasets used in this paper are available at https://

dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/Q6HVFO. The human

genome file there contains only the four sequences (chromosomes 1, X, Y; mitochondrial)

appearing in Fig 10. The full file is available at https://www.ncbi.nlm.nih.gov/assembly/GCF_

000001405.39, but has been superseded by https://www.ncbi.nlm.nih.gov/assembly/GCF_

000001405.40.

Measuring degradation

General effects. For the adenovirus genome, Fig 3 shows the effect of degradation on the

base, pair, triplet and quartet distributions, measured by Hellinger distance [13] from corre-

sponding distributions for the original genome. The interpretation is that as the number of

Mason_variator iterations increases, base, pair, triplet distributions, and quartet distribu-

tions all move farther and farther away from the parent genome, at slower and slower rates.

Fig 3. Effect of degradation on tuple distributions. Shown are the base distribution (black), pair distribution (blue), triplet distribution (green) and

quartet distribution (red) for the adenovirus genome.

https://doi.org/10.1371/journal.pone.0271970.g003
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Moreover, confirming our secondary hypothesis, the higher the dimensionality, the more rapid

the movement: quartets are more fragile than triplets, which are more fragile than pairs, which

are more fragile than individual bases. The horizontal lines in Fig 3, whose colors match those

of the curves, are simulation-derived 1% p-values: the probability that the distribution matches

that of the original genome is less than 0.01 when the distance exceeds the line. Interestingly,

the numbers of iterations at which the 1% thresholds are passed (i.e., where the curves cross the

lines) are nearly the same for pairs, triplets and quartets, but lower than for bases alone.

Measuring degradation of triplet distributions via entropy. So far, we have confined

attention to what degradation moves away from. In many ways, what it moves toward is more

useful, because there is a single infinite degradation endpoint representing maximum entropy.

The entropy of a probability distribution P on a finite set S is

HðPÞ ¼ �
X

s2S

pðsÞlog pðsÞ; ð3Þ

with the convention that 0 × −1 = 0. Entropy is minimized by distributions concentrated at a

single point and maximized at the uniform distribution on S, with maximizing value logðjSjÞ,
where j � j denotes cardinality. The existence of the universal maximizing value enables us to

measure degradation as movement toward maximum entropy, removing the common origin

issue discussed noted previously.

Fig 4 shows the effect of 500 Mason_variator iterations on entropy of triplet distribu-

tions—hereafter, just triplet entropy—of the adenovirus genome, starting from the genome

itself (black curve) compared to starting from the genome degraded by 250 Mason_varia-
tor iterations (blue curve), degraded by 500 Mason_variator iterations (green curve),

degraded by 1000 Mason_variator iterations (yellow curve), and degraded by 1500

Mason_variator iterations (red curve). The y-axis is the increase in entropy as a function

of Mason_variator iterations, so Fig 4 shows movement toward maximal entropy.

Results

Full dataset

Fig 5 shows, albeit with massive overplotting, the triplet entropy degradation for the entire

26,964-element experimental database. The adenovirus genome, in blue, and the 10 degraded

coronavirus genomes, in red, are apparent outliers. But, clearly there are also other outliers,

which we pursue momentarily.

Outlier detection

One effective strategy for identifying elements of a genome database with problematic quality

is to search for outliers. We concede that the implicit presumption that the bulk of the database

is of high quality may be untested. The key question is, “Outlying with respect to what metric?”

In this section, the metric is based on hierarchical cluster analysis of triplet entropy increase

resulting from Mason_variator degradation, that is, on the shapes of the curves in Fig 5.

The clustering is in three dimensions, as opposed to 64 dimensions for triplet distributions

and 21 for amino acid distributions. Possibly unexpectedly, the two sets of clusters are very

similar.

Outlier detection using triplet distributions. We showed in [6] that clustering of triplet

distributions identifies outliers. Briefly, we performed hierarchical clustering, using Euclidean

distances and “complete clustering” in R [14], on the 26,964-genome database, using as cluster-

ing variables the 64 standardized components of the triplet distributions. By means of standard
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heuristics that trade off model fit and model complexity, the number of clusters was deter-

mined to be 23.

Fig 6 is a plot of two-dimensional multidimensional scaling (MDS) [15, 16] of the 23 cluster

centroids. The overwhelming majority of coronavirus genomes—26,433 of the original 26,953,

or 98.1%—are in a single cluster. One original coronavirus genome appears by itself, in cluster

12. Cluster 13 contains the adenovirus genome alone, while each of the 10 degraded coronavi-

rus genomes appears in a cluster by itself (clusters 14–23). Thus, the deliberate outliers are not

only detected but also distinguished from one another. The dendrogram in Fig 7 shows that

the coronavirus genome in cluster 12 and the deliberate outliers are separated from the

remaining 26,952 coronavirus genomes at the first split in the clustering process. Clusters

1–10, which are small, are potential outliers as well. See [6] for details and a scientific

interpretation.

Fig 4. Change in entropy as a function of Mason_variator iterations, for one adenovirus genome and four degraded versions of it. Black:

original genome; Blue: degraded by 250 iterations; Green: degraded by 500 iterations; Yellow: degraded by 1000 iterations; Red: degraded by 1500

iterations.

https://doi.org/10.1371/journal.pone.0271970.g004
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Outlier detection using entropy degradation. Here we cluster the genomes on the basis

of degradation behavior of triplet entropy, that is, the curves shown in Fig 5. As noted already,

the results match closely with those using triplet distributions.

The clustering is now in only three dimensions, reached by a path that starts with Fig 5.

Every one of the 26,964 curves plotted there is based on entropy following 0, 250, 500, 1000

and 2000 Mason_variator iterations. We fitted a quadratic function to each set of 5 values,

reducing the dimension to 3. These quadratic models are uniformly good: the smallest of the

coefficients of determination, R2, is 0.941 and 99% of them exceed 0.976. Hierarchical cluster-

ing was then performed on standardized versions of the three quadratic coefficients, using the

“ward.D” option in R, resulting in 34 clusters, with counts ranging from 11 to 1470. Statisti-

cally, the clustering is extremely good: the cluster numbers alone explain 98.96509%,

99.02426% and 98.45677% of the variation in the quadratic coefficients.

Paralleling Figs 6–9 show the result of applying two-dimensional MDS to the cluster cen-

troids, as well as the associated dendrogram. There is nothing comparable to the massive

Fig 5. Entropy as a function of Mason_variator iterations, for the 26,964-genome dataset. The adenovirus outlier is in blue, the 10 degraded

coronavirus outliers are in red, and the parents of the ten coronavirus outliers are in yellow.

https://doi.org/10.1371/journal.pone.0271970.g005
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coronavirus cluster in the triplet distribution analysis. As noted above, the largest cluster in the

triplet entropy degradation cluster contains only 1470 genomes. The adenovirus outlier and

the ten degraded coronavirus outliers are placed together in cluster 34, and Fig 8 shows that

they clearly differ from all of the other genomes. Clusters 1–5 contain candidate outliers. Not

only are they relatively small, but also each differs strongly from all of the other clusters. They

are suggestively similar to clusters 1–10 for triplet distributions, which we pursue below. In Fig

8, the 11 deliberate outliers in cluster 34 are distant from the majority of the coronavirus

genomes, but no more so than the 18 coronavirus genomes in cluster 2.

Relationships between the two sets of clusters. Clusters 1–10 in the triplet distribution

analysis together contain 519 genomes, a number similar to the number of genomes in clusters

1–5 for the triplet entropy analysis. Moreover, both analyses separate the 11 deliberate outliers

from the 26,953 legitimate coronavirus genomes, although differently. The triplet distribution

Fig 6. Results for triplet distribution clustering. Two-dimensional MDS plot of the 23 triplet distribution cluster centroids for a 26,964-element

coronavirus database containing 11 deliberately added outliers. Labels are cluster numbers and counts. Greater distance implies higher dissimilarity.

https://doi.org/10.1371/journal.pone.0271970.g006
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analysis places these outliers in 11 distinct clusters, while the triplet entropy degradation analy-

sis places them all in a single cluster.

Table 1 shows the complete and strongly block-diagonal relationship between the two sets

of clusters. For clarity, cells in Table 1 containing values of 0 are highlighted in pink. In detail,

1. Triplet entropy degradation cluster 34 is, as noted above, an amalgamation of triplet distri-

bution clusters 13–24; both contain the 11 deliberate outliers.

2. The lone coronavirus genome in triplet distribution cluster 12 is absorbed into entropy deg-

radation cluster 7, along with 843 other coronavirus genomes. Perhaps it is not an outlier

after all. There is further evidence to this effect in [6]: when clustering is done using amino

acid distributions, it also ceases to be an outlier. Specifically, it is merged with cluster 11 to

form a massive amino acid cluster of size 26,434.

3. Triplet entropy degradation clusters 6–33 disaggregate the massive, 26,433-genome triplet

distribution cluster 11, modulo four additional genomes.

4. Triplet entropy degradation clusters 1–5, containing 516 genomes and triplet distribution

clusters 1–8 and 10, both containing 516 genomes, are identical collectively. These are in

the upper-left corner in Table 1. Clearly, the two approaches are detecting the same outliers,

with different nuances.

5. Triplet distribution cluster 9, with 3 genomes, is anomalous. Each genome it contains lies in

its own large entropy degradation cluster.

Therefore, much of the scientific interpretation of outliers in [6], which is based on the text

string ID variable in the NCBI database, carries over here.

Fig 7. Results for triplet distribution clustering. Dendrogram, in which clusters are in order from 1 at the bottom to 23 at the top. Colors are the same

as in Fig 6.

https://doi.org/10.1371/journal.pone.0271970.g007
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Higher-order DNA structure

Degradation attenuates (relatively) low-dimensional genome characteristics such as tuple dis-

tributions (Fig 3). We see here that more complex structure such as repeats and palindromes is

affected more strongly. As exemplar, we use an E. coli genome of length 4,639,675 downloaded

from NCBI; the same genome appears again in Fig 10.

Repeats. Repeats are inherent to non-virus genomes, leading, inter alia, to the discovery

of clustered regularly interspaced short palindromic repeats (CRISPR) in E. coli [17]. Table 2

Fig 8. Results for triplet entropy clustering. Two-dimensional MDS plot of the 34 cluster centroids. Labels are cluster numbers and counts. Greater

distance implies higher dissimilarity.

https://doi.org/10.1371/journal.pone.0271970.g008
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shows the effect of Mason_variator degradation on the numbers of repeats of various

lengths in the E. coli genome. The column for length 29, rather than 30, honors the original

discovery of CRISPR. By 500 Mason_variator iterations, all repeats of length 20 or longer

have been obliterated. Those of length 29 are gone at 300 iterations.

Palindromes. Genomic palindromes, unlike those in ordinary language, consist of a

sequence of bases followed immediately by its reverse complement. So, an example is ATTC-

GATTkAATCGAAT. (The k has been inserted for visual clarity.) In what follows, palindromes

are parameterized by half-length; the example has half-length 8. Their behavior with respect to

Mason_variator degradation differs somewhat from that of repeats.

Table 3 shows that long palindromes (half-lengths 12, 14 and 16), are not plentiful to begin

with, and, modulo noise discussed momentarily, vanish within 100 Mason_variator itera-

tions. Palindromes with half-length 8 and 10 do decline in number, but do not vanish, even by

2000 iterations. Moreover, their numbers can increase, although not enormously. Palindromes

of half length 6 barely diminish at all, and fluctuate substantially, The noise and the increases

suggest that short palindromes differ from the other genome features discussed in this paper,

and especially from repeats. They are resistant to the Mason_variator degradation, and

can even be produced by it. This is not surprising because very short repeats are low-dimen-

sional and may, therefore, be too short to be interesting biologically.

Fig 9. Results for triplet entropy clustering. Dendrogram, in which clusters are in order from 1 at the bottom to 34 at the top. Colors are the same as

in Fig 8.

https://doi.org/10.1371/journal.pone.0271970.g009
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Other genomes

Fig 10 demonstrates that degradation behavior is not confined to viruses. It is the analog of Fig

5 for two bacterial genomes—P. gingivalis and E. coli, for three human chromosomes—1, X

and Y, and for human mitochondrial DNA. All six genomes were downloaded from NCBI; the

human genome is identified as GRCh38.p13.

Discussion

At least three paths for further research are clear. The first is that our paradigm does not yet

produce quantified uncertainties about the decisions it may engender. Following this path also

Table 1. Cross-tabulation of the 34 degradation clusters (rows) and the 23 triplet distribution clusters (columns). Cells containing zeros are shaded in red.

Entropy Degradation Cluster Triplet Distribution Cluster

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Sum

1 12 0 0 0 0 0 137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 149

2 0 15 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 18

3 0 0 2 141 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 170

4 0 0 0 0 55 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 58

5 0 0 0 0 0 0 121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 121

6 0 0 0 0 0 0 0 0 1 0 354 0 0 0 0 0 0 0 0 0 0 0 0 355

7 0 0 0 0 0 0 0 0 1 0 842 1 0 0 0 0 0 0 0 0 0 0 0 844

8 0 0 0 0 0 0 0 0 1 0 313 0 0 0 0 0 0 0 0 0 0 0 0 314

9 0 0 0 0 0 0 0 0 0 0 1470 0 0 0 0 0 0 0 0 0 0 0 0 1470

10 0 0 0 0 0 0 0 0 0 0 1466 0 0 0 0 0 0 0 0 0 0 0 0 1466

11 0 0 0 0 0 0 0 0 0 0 1005 0 0 0 0 0 0 0 0 0 0 0 0 1005

12 0 0 0 0 0 0 0 0 0 0 923 0 0 0 0 0 0 0 0 0 0 0 0 923

13 0 0 0 0 0 0 0 0 0 0 1215 0 0 0 0 0 0 0 0 0 0 0 0 1215

14 0 0 0 0 0 0 0 0 0 0 849 0 0 0 0 0 0 0 0 0 0 0 0 849

15 0 0 0 0 0 0 0 0 0 0 858 0 0 0 0 0 0 0 0 0 0 0 0 858

16 0 0 0 0 0 0 0 0 0 0 526 0 0 0 0 0 0 0 0 0 0 0 0 526

17 0 0 0 0 0 0 0 0 0 0 1138 0 0 0 0 0 0 0 0 0 0 0 0 1138

18 0 0 0 0 0 0 0 0 0 0 946 0 0 0 0 0 0 0 0 0 0 0 0 946

19 0 0 0 0 0 0 0 0 0 0 1259 0 0 0 0 0 0 0 0 0 0 0 0 1259

20 0 0 0 0 0 0 0 0 0 0 1111 0 0 0 0 0 0 0 0 0 0 0 0 1111

21 0 0 0 0 0 0 0 0 0 0 1393 0 0 0 0 0 0 0 0 0 0 0 0 1393

22 0 0 0 0 0 0 0 0 0 0 776 0 0 0 0 0 0 0 0 0 0 0 0 776

23 0 0 0 0 0 0 0 0 0 0 1027 0 0 0 0 0 0 0 0 0 0 0 0 1027

24 0 0 0 0 0 0 0 0 0 0 1176 0 0 0 0 0 0 0 0 0 0 0 0 1176

25 0 0 0 0 0 0 0 0 0 0 825 0 0 0 0 0 0 0 0 0 0 0 0 825

26 0 0 0 0 0 0 0 0 0 0 1115 0 0 0 0 0 0 0 0 0 0 0 0 1115

27 0 0 0 0 0 0 0 0 0 0 1069 0 0 0 0 0 0 0 0 0 0 0 0 1069

28 0 0 0 0 0 0 0 0 0 0 467 0 0 0 0 0 0 0 0 0 0 0 0 467

29 0 0 0 0 0 0 0 0 0 0 949 0 0 0 0 0 0 0 0 0 0 0 0 949

30 0 0 0 0 0 0 0 0 0 0 1261 0 0 0 0 0 0 0 0 0 0 0 0 1261

31 0 0 0 0 0 0 0 0 0 0 928 0 0 0 0 0 0 0 0 0 0 0 0 928

32 0 0 0 0 0 0 0 0 0 0 589 0 0 0 0 0 0 0 0 0 0 0 0 589

33 0 0 0 0 0 0 0 0 0 0 583 0 0 0 0 0 0 0 0 0 0 0 0 583

34 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 11

Sum 12 15 2 141 55 27 258 3 3 3 26433 1 1 1 1 1 1 1 1 1 1 1 1 26964

https://doi.org/10.1371/journal.pone.0271970.t001
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Fig 10. Entropy as a function of Mason_variator iterations, for selected prokaryote and eukaryote genomes. Included are two bacterial

genomes—P. gingivalis and E. coli, three human chromosomes—1, X and Y, and human mitochondrial DNA.

https://doi.org/10.1371/journal.pone.0271970.g010

Table 2. Numbers of repeats as a function of Mason_variator iterations. The genome is E. coli. Repeats of length 20, 25, 29, 35 and 40 are columns and Mason_-
variator iterations are rows.

Repeat Length

Iteration 20 25 29 35 40

0 37285 35588 34667 33429 32530

100 2865 1094 487 153 58

200 640 156 47 11 2

300 152 11 0 0 0

400 36 1 0 0 0

500 17 0 0 0 0

600 14 0 0 0 0

700 6 0 0 0 0

800 8 0 0 0 0

900 10 0 0 0 0

1000 6 0 0 0 0

https://doi.org/10.1371/journal.pone.0271970.t002
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requires, as raised in S1 Appendix, more explicit attention to the decisions to be made using

the data. To consider decision quality fully leads to the second path—better understanding

of the effects of data quality on bioinformatics software pipelines. Now that we can create

data of demonstrably and quantifiably lower quality, this path is feasible. Third and more spec-

ulatively, there is the relationship between data quality and adversarial attacks on genome

databases or software pipelines [4, 18, 19]. Attempts to “pollute” databases with (what may

turn out to be) low quality genomes are potentially detectable using the outlier identification

strategies presented here. Risk-utility paradigms for statistical disclosure limitation (see S1

Appendix) are relevant, especially the need to distinguish attackers from legitimate users of the

data.

Finally, there is clear potential to extend our paradigm to contexts other than genomics,

provided that a credible generative model for quality degradation can be constructed. To illus-

trate, in the official statistics context, one simply needs a mechanism to simulate one of more

forms of total survey error.

Conclusions

In this paper, we have introduced and investigated a new, degradation-based approach to data

quality for genome sequence databases, and established that it is sound scientifically and statis-

tically. Our principal application is to outlier detection, and our methods are demonstrably

effective.

Supporting information

S1 Appendix. Background on data quality.

(PDF)
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