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Mesencephalic astrocyte-derived neurotrophic factor (MANF) was originally identified
as a secreted trophic factor for dopamine neurons in vitro. It protects and restores
damaged cells in rodent models of Parkinson’s disease, brain and heart ischemia,
spinocerebellar ataxia and retina in vivo. However, its exact mechanism of action is
not known. MANF is widely expressed in most human and mouse organs with high
levels in secretory tissues. Intracellularly, MANF localizes to the endoplasmic reticulum
(ER) and ER stress increases it’s expression in cells and tissues. Furthermore, increased
MANF levels has been detected in the sera of young children with newly diagnosed
Type 1 (T1D) diabetes and Type 2 (T2D) diabetic patients. ER stress is caused by the
accumulation of misfolded and aggregated proteins in the ER. It activates a cellular
defense mechanism, the unfolded protein response (UPR), a signaling cascade trying
to restore ER homeostasis. However, if prolonged, unresolved ER stress leads to
apoptosis. Unresolved ER stress contributes to the progressive death of pancreatic
insulin-producing beta cells in both T1D and T2D. Diabetes mellitus is characterized
by hyperglycemia, caused by the inability of the beta cells to maintain sufficient
levels of circulating insulin. The current medications, insulin and antidiabetic drugs,
alleviate diabetic symptoms but cannot reconstitute physiological insulin secretion which
increases the risk of devastating vascular complications of the disease. Thus, one of the
main strategies in improving current diabetes therapy is to define and validate novel
approaches to protect beta cells from stress as well as activate their regeneration.
Embryonic deletion of the Manf gene in mice led to gradual postnatal development of
insulin-deficient diabetes caused by reduced beta cell proliferation and increased beta
cell death due to increased and sustained ER stress. In vitro, recombinant MANF partly
protected mouse and human beta cells from ER stress-induced beta cell death and
potentiated mouse and human beta cell proliferation. Importantly, in vivo overexpression
of MANF in the pancreas of T1D mice led to increased beta cell proliferation and
decreased beta cell death, suggesting that MANF could be a new therapeutic candidate
for beta cell protection and regeneration in diabetes.

Keywords: MANF, endoplasmic reticulum stress, beta cell, diabetes, knockout mouse, unfolded protein response,
regeneration
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INTRODUCTION

Mesencephalic astrocyte-derived neurotrophic factor and its
homolog CDNF form a group of unconventional neurotrophic
factors with cytoprotective and regenerative effects for neurons
and cardiomyocytes in different animal disease models
(Lindholm et al., 2007; Airavaara et al., 2009, 2010; Voutilainen
et al., 2009, 2011; Glembotski et al., 2012; Back et al., 2013;
Yang et al., 2014; Cordero-Llana et al., 2015; Neves et al., 2016;
Lindahl et al., 2017; Matlik et al., 2018). The exact function of
MANF and CDNF in the nervous system is not yet understood
but it clearly differs from traditional neurotrophic factors,
neurotrophins and GDNF-family ligands which in neuronal
development and maintenance perform their action through
binding and activation of cell trans-membrane receptors leading
to cell modulation, survival or death (Airaksinen and Saarma,
2002). MANF was identified as a small secreted protein with
neuroprotective actions selective for dopamine neurons in
culture (Petrova et al., 2003) and is commonly known for its
ER stress regulated and regulating properties. In vitro MANF
expression was upregulated and protective in primary cells and
cell lines in response to chemically induced ER stress (Mizobuchi
et al., 2007; Apostolou et al., 2008; Tadimalla et al., 2008; Hellman
et al., 2011; Glembotski et al., 2012; Henderson et al., 2013).
In vivo, MANF expression was increased in myocytes in a
mouse model of myocardial infarction (Tadimalla et al., 2008;
Glembotski et al., 2012). In rat brain, Manf mRNA levels were
transiently increased after experimentally induced ischemia and
status epilepticus (Lindholm et al., 2008). Chronic ER stress
and disrupted ER homeostasis play a role in the pathogenesis
of many diseases including neurodegenerative diseases, brain
ischemia, DM (Lindholm et al., 2006; Szegezdi et al., 2006; Eizirik
et al., 2008; Fonseca et al., 2011; Matlik et al., 2018), glomerular
and tubular kidney disease (Inagi et al., 2014), and autoimmune

Abbreviations: AAV, Adeno-associated virus; APAF1, apoptotic protease
activating factor-1; ATF4, activating transcription factor 4; A-UPR, adaptive
unfolded protein response; BAK, Bcl-2 homologous antagonist/killer; BAX, Bcl-
2-associated X protein; BCL2, B cell lymphoma; CDK4, cyclin dependent kinase
4; CDNF, cerebral dopamine neurotrophic factor; CHOP, C/EBP homologous
protein-10; CRISPR, clustered regularly interspaced short palindromic repeats;
DM, diabetes mellitus; E18.5, embryonic day 18.5, ER, endoplasmic reticulum;
ERAD, ER-associated protein degradation; Ex-4, exendin 4; EZH2, zeste homolog
2; FFA, free fatty acid; GDNF, Glial cell line-derived neurotrophic factor;
GLIS3, Gli-similar 3 protein; GLP-1, glucagon-like peptide-1; Glut2, glucose
transporter 2; GRP78, 78-kDa glucose-regulated protein; GWAS, genome-wide
association studies; IAPP, islet amyloid polypeptide; IFNγ, interferon γ; IL1β,
interleukin 1β; MafA, musculoaponeurotic fibrosarcoma oncogene family A;
MANF, Mesencephalic astrocyte-derived neurotrophic factor; p38 MAPK, p38
mitogen-activated protein kinases; NOD, non-obese diabetic mice; NRF2, nuclear
factor erythroid 2-related factor 2; PARP, poly(ADP-ribose)polymerase; Pax6,
paired box protein 6; PBA, 4-phenyl butyric acid; PDGFR, platelet-derived
growth factor receptor; Pdx1, pancreas/duodenum homeobox protein 1; PIP4k2b,
phosphatidylinositol 5-phosphate 4-kinase type-2 beta; PL, placental lactogen;
P1, postnatal day 1, PP1, protein phosphatase 1; PRL, prolactin; RFP, red
fluorescent protein; rhMANF, recombinant human MANF; RELA, v-rel avian
reticuloendotheliosis viral oncogene homolog; RIDD, IRE1-dependent RNA
decay; ROS, reactive oxygen species; STZ, streptozotocin; TGF-β, transforming
growth factor β; THBS, thrombospondin proteins; TNF-α, tumor necrosis
factor α; TXNIP, thioredoxin-interacting protein; TUDCA, taurine-conjugated
ursodeoxycholic acid; T-UPR, terminal unfolded protein response; T1D, Type 1
diabetes; T2D, Type 2 diabetes; UPR, unfolded protein response; WFS1, Wolfram
syndrome 1; WT, wild type.

diseases (Morito and Nagata, 2012). Thus, the mechanism
behind the increased expression and protective effects of MANF
in the different animal disease models is still not understood, but
suggested to depend on its function in alleviating ER stress.

Recently, evidence for the role of MANF in modulating
inflammation has emerged. MANF was shown to induce repair
of damaged retina in flies and mice by alternative activation of
innate M2-type immune cells toward protection (Neves et al.,
2016). In addition, virus-delivered MANF-overexpression in the
rat brain after cerebral ischemic injury promoted functional
recovery by recruitment of phagocytic macrophages to the
subcortical peri-infarct region indicating increased phagocytosis
of myelin debris leading to faster recovery (Matlik et al., 2018).
Thus, studies suggest that the MANF protective action could be
mediated through activation of immune cells.

The mouse and human MANF genes are encoded by 4
exons generating a peptide of 179 amino acids with a signal
sequence of 21 amino acids for secretion (Figures 1A–C)
(Petrova et al., 2003; Lindholm et al., 2008). However, it is
still unclear whether the human MANF signal sequence is 24
amino acids (UniProt database, Acc. No. P55145) instead of 21
as originally reported by Petrova et al. (2003). Based on amino
acid sequence comparison, human MANF is 98% homologous
with mouse (GenBank Acc. No. NP_083379) (Lindholm et al.,
2008). MANF/CDNF are structurally distinct from classical
neurotrophic factors and their amino-acid sequences with eight
conserved cysteines forming four intramolecular disulfide bonds
reveal no sequence homology with other proteins (Figure 1C)
(Parkash et al., 2009; Hellman et al., 2011). Structure analysis
of MANF and CDNF revealed two domain proteins with
a N-terminal domain homologous to saposin-like proteins
(SAPLIPs) (Parkash et al., 2009) and a carboxy(C)-terminal
domain resembling the SAP-domain of Ku70, known to inhibit
the proapoptotic activity of BAX (Figures 1C,D) (Sawada et al.,
2003). The N-terminal saposin-like domain suggests binding
to lipids and membranes whereas the C-terminal SAP domain
proposes binding to DNA or to BAX inhibiting translocation
of BAX to the mitochondria (Hellman et al., 2011). However,
the anti-apoptotic effect of MANF in neurons seems not involve
MANF binding to BAX (Matlik et al., 2015). The very C-terminal
end of MANF contains a tetrapeptide RTDL sequence which
resembles a typical ER retention motif, KDEL shared by several
ER chaperons including GRP78/BiP (Figures 1C,D) (Raykhel
et al., 2007; Capitani and Sallese, 2009). KDEL receptors are
known to retro-transport chaperons with KDEL- or KDEL-like
sequences, from the Golgi complex to the ER (Capitani and
Sallese, 2009). In agreement, MANF has been found localized
to the luminal ER in cell lines and neurons (Mizobuchi et al.,
2007; Apostolou et al., 2008; Glembotski et al., 2012; Matlik
et al., 2015). Consequently, MANF with mutated RTDL-sequence
was found readily secreted from primary neurons and cell
lines in vitro (Tadimalla et al., 2008; Glembotski et al., 2012;
Henderson et al., 2013; Matlik et al., 2015; Oh-hashi et al.,
2015).

MANF mRNA and protein are broadly expressed in neurons
in the rodent nervous systems (Lindholm et al., 2008; Wang et al.,
2014). However, it is also widely expressed in peripheral tissues
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FIGURE 1 | From gene to protein. Schematic structure of mouse (A) and human (B) MANF genes with 4 exons, primary polypeptide structure (C) and NMR solution
structure of human MANF protein (D) with an N-terminal saposin-like domain (aa 22–116, light blue) and a C-terminal SAP-like domain (aa 117–179, orange).
∗G > T, homozygous missense mutation in a human patient with T2D (Yavarna et al., 2015) (B). Cysteine residues are marked in yellow (C). CXXC-motif and RTDL
ER retention signal are indicated (C,D). bp, base pair; Chr, chromosome; aa, amino acid; ERSE, ER stress-responsive element. Image in (C) modified from Lindahl
et al. (2017) and in (D) from Hellman et al. (2011) and Lindstrom et al. (2013).

with high expression in cells with elevated secretory functions
(Lindholm et al., 2008; Lindahl et al., 2014).

Embryonic deletion of Manf in fruitfly (Drosophila
melanogaster) demonstrated that MANF is important for the
maturation of the nervous system as Manf -deletion led to early
embryonic lethality, degeneration of axonal bundles in the central
nervous system, lack of dopamine neurites and dramatic drop in
dopamine levels (Palgi et al., 2009). Subsequently, knockdown of
the Manf mRNA in zebrafish resulted in a significant decrease
in the number of dopamine neurons in the diencephalic region
suggesting that Manf is important for the differentiation and
survival of dopaminergic neurons in zebrafish (Chen et al.,
2012). The effect of MANF-deletion in the brain of MANF
knockout mice was not as drastic as expected. MANF-deficiency
in the embryonic mouse brain led to slower neurite extension

upon neuronal differentiation, which was caused by reduced
de novo protein synthesis and activated UPR (Tseng et al.,
2017). In addition, MANF-deficiency led to increased neuronal
vulnerability to hypoxia/reperfusion as the brain infarction
volume was significantly increased in experimentally induced
focal cerebral ischemia in neuron-specific MANF-deficient mice
(Matlik et al., 2018).

Despite the protecting and restorative effects of MANF
for many cell types and organs in mammals, important roles
for MANF in pancreatic beta cells have emerged. MANF-
deficient (Manf−/−) mice developed insulin-deficient DM due
to progressive postnatal decrease in beta cell proliferation and
increase in beta cell death (Lindahl et al., 2014). One of
the reasons behind reduced beta cell mass was found to be
chronic irreversible ER stress. Furthermore, recombinant MANF
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protein was able to induce primary mouse and human beta cell
proliferation in culture and to partly protect human and mouse
beta cells from ER stress-induced beta cell death (Lindahl et al.,
2014; Cunha et al., 2017; Hakonen et al., 2018). Modulation
of inflammatory NF-κB signaling was suggested as one of the
protective mechanism behind MANF action (Hakonen et al.,
2018). In vivo, virus-delivered MANF-overexpression increased
beta cell proliferation and rescued beta cells from streptozotocin-
induced beta cell death in the pancreas of T1 diabetic mice
(Lindahl et al., 2014). The emerging protective and regenerative
effects for MANF in mouse and human pancreatic beta cells and
diabetes are discussed in this review.

DIABETES MELLITUS

Diabetes mellitus is a major endocrine metabolic disorder
characterized by hyperglycemia caused by either insulin
deficiency and/or insulin resistance. Poorly controlled diabetes
may lead to severe long-term complications, including
microvascular (including retinopathy, nephropathy and
neuropathy) and macrovascular (including atherosclerosis and
amputation) diseases leading to disability and death. DM affects
more than 425 million people worldwide (International Diabetes
Federation [IDF], 2017; Diabetes Atlas) and is rapidly increasing.
Typically, diabetes is classified into two major subtypes, T1D
and T2D where T1D diabetes is caused by the progressive
autoimmune destruction of pancreatic beta cells (Pirot et al.,
2008). The pancreas is a mixed gland consisting of exocrine
tissue with acinar cells important for production and secretion
of digestive enzymes and endocrine Langerhans islets where
majority of cells (70–80%) are insulin-producing beta cells
(Cabrera et al., 2006; Murtaugh, 2007). Beta cells are responsible
for the synthesis, storage and release of insulin, which is a
key anabolic hormone in the regulation of metabolism. At the
time of T1D diagnosis, about 70–80% of the beta cells are lost
(Cnop et al., 2005). Both environmental, such as viral infections,
drugs and dietary factors during infancy, as well as genetic
factors, contribute to the development of T1D (Pirot et al.,
2008). Several susceptibility loci for T1D have been found and
diabetes-predictive circulating autoantibodies against beta cell
antigens such as insulin can be found in non-diabetic subjects
years before clinical manifestation of the disease. The process
of beta cell death in T1D is not fully understood. However, the
first step involves T lymphocytes recognizing self-antigens in the
lymph nodes (Wan et al., 2018), resulting in cytotoxic activated
T lymphocytes invading islets and killing beta cells through the
extrinsic death pathway via death-receptor Fas pathway and
granzyme/perforin system (Pirot et al., 2008). The inflammatory
cascade also involves macrophages, dendritic cells, T and B
lymphocytes invading the islets resulting in insulitis and beta cell
death through the action of cytokines and chemokines (Pirot
et al., 2008). In combination with increased ER stress, production
of nitric oxide (NO), activation of JNK inflammatory pathways,
mitochondrial dysfunction and production of free radical this
leads to execution of the intrinsic or mitochondrial beta cell
death pathway (Eizirik et al., 2008).

T2D is characterized by hyperglycemia caused by insulin
resistance in peripheral tissues and defects in insulin secretion,
metabolic dysfunction and death of pancreatic beta cells (Kolb
and Eizirik, 2011). Insulin resistance is likely caused by modern
Western life style with diet rich in saturated fat, minimal
exercise, and shortened duration of sleep, resulting in obesity
but also by genetic predisposition (Kolb and Mandrup-Poulsen,
2010; Donath and Shoelson, 2011). T2D develops when the
islet beta cells cannot compensate for the degree of insulin
resistance leading to metabolic stress including mitochondrial
oxidative and ER stress activating the UPR, insulin deficiency
and chronic hyperglycemia and beta cell dysfunction and death.
The dysfunction of beta cells and increased beta cell death in
T2D patients are likely caused by nutrient-induced systemic
subclinical inflammation and as a hormetic response trying to
rescue beta cells from death (Cnop et al., 2005; Donath and
Shoelson, 2011; Kolb and Eizirik, 2011).

The current medications, insulin and anti-diabetic drugs, can
transiently decrease the hyperglycemia in diabetic patients and
rather represent ameliorative treatment than cure. Thus, their
administration does not truly mirror the physiological response
of beta cells and therefore does not prevent the devastating micro-
and macrovascular complications of the disease. The reasons
for beta cell destruction are not clear but there are evidence
suggesting prolonged ER stress and chronic activation of the UPR
as one common pathogenic mechanism for beta cell dysfunction
and death in both T1 and T2D (Eizirik et al., 2008; Fonseca et al.,
2011; Cnop et al., 2012).

ER STRESS AND UPR SIGNALING IN
BETA CELLS

The ER directs the folding, processing and trafficking of
membrane bound and secreted proteins. A number of genetic
and environmental insults result in ER stress, which is caused
by the accumulation and aggregation of unfolded or misfolded
proteins in the ER (Wang and Kaufman, 2016). Beta cells
contain a large and well-developed ER, specialized for insulin
biosynthesis and its secretion. Beta cells are under normal
conditions continuously exposed to low threshold levels of UPR
signaling playing major roles in normal ER biogenesis and
expansion of the ER network (Sriburi et al., 2007; Bommiasamy
et al., 2009). Increased insulin demand leads to accumulation
of misfolded proinsulin which results in ER stress activating
UPR signaling pathways in beta cells. This leads to temporarily
reduced protein synthesis to prevent further accumulation of
misfolded proteins, recovery of protein folding, clearance of
misfolded and unfolded proteins by the ERAD pathway involving
the cytoplasmic ubiquitin-proteasome system and activation of
autophagy to promote clearance (Ron and Walter, 2007; Cnop
et al., 2017). Actually, pseudotime RNA sequencing analysis of
single non-diabetic human beta cells revealed transition between
states of high activity by insulin expression and low UPR, and
states of low insulin expression and high expression of UPR
markers, including the master regulator of antioxidant response
NRF2 (Xin et al., 2018). Interestingly, MANF was upregulated
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along with other UPR genes in this state and has previously
been suggested to promote the activation of NRF2 (Zhang et al.,
2017; Xin et al., 2018). This UPR-mediated stress recovery state
with low rates of insulin biosynthesis was also enriched for
proliferating beta cells (Xin et al., 2018).

The UPR signaling is mediated via three major ER
transmembrane sensors, protein kinase RNA(PKR)-like ER
endoplasmic reticulum kinase (PERK), endoribonuclease
inositol-requiring protein 1 (IRE1 α) and activating transcription
factor 6 (ATF6 α and β) (Wang and Kaufman, 2016). The
activation of these sensors leads to downstream signaling
cascades aiming to reduce protein synthesis, increase
transcription of genes involved in global proteostasis control
and increase the degradation of misfolded proteins. If ER
stress is unresolved, UPR shift from an adaptive (A-UPR)
response to a chronic unresolved UPR leading toward increased
inflammatory signaling, autophagy, terminal UPR (T-UPR)
and apoptosis (Tabas and Ron, 2011; Hetz and Papa, 2018).
Under normal conditions ER chaperone GRP78, binds the
luminal domain of PERK and IRE1α through its ATPase domain
keeping the sensors inactive (Carrara et al., 2015). However,
when unfolded proteins are accumulated in the ER, GRP78
associates with the unfolded proteins and releases the sensors
leading to IRE1α and PERK dimerization or oligomerization
and trans-autophosphorylation. GRP78 releases ATF6 for
translocation to the Golgi where it is cleaved into functional
transcription factor ATF6f. PERK phosphorylates eukaryotic
translation initiator factor 2α (eIF2α) at serine 51 which
reduces overall translation but selectively allows translation
of ATF4 and other proteins thus contributing to reduction of
the polypeptide load and increasing the folding capacity at the
ER. ATF4 regulates genes involved in amino acid biosynthesis,
amino acid transport and anti-oxidative response (Schroder
and Kaufman, 2006). Insulin has been found to regulate ATF4
expression (Malmberg and Adams, 2008). In chronic ER
stress, sustained ATF4 translation contributes to the induction
of apoptosis through inducing expression of pro-apoptotic
CHOP (Harding et al., 2000). CHOP directly promotes the
growth arrest and DNA damage protein GADD34, which
dephosphorylates eIF2α via PP1 and leads to protein translation
recovery and feed-back attenuating ER stress. In sustained
ER stress, in cooperation with ATF4, CHOP triggers increase
in pro-apoptotic protein production, cellular ATP depletion,
formation of ROS and oxidative stress contributing to the cell
death (Han et al., 2013). Additionally, CHOP promotes cell
death by inhibiting the expression of anti-apoptotic BCL-2
and by inducing the pseudokinase tribbles homolog 3 (TRIB3)
expression (McCullough et al., 2001; Ohoka et al., 2005). TRIB3
is an inhibitor of AKT in the insulin signaling pathway and
its expression is also regulated by ATF4 (Cunard, 2013). In
addition Trib3 was increased after thapsigargin-induced ER
stress in rodent beta cells and overexpression of TRIB3 led to
beta cell death by activation of the NF-κB signaling pathway
(Fang et al., 2014), thus indicating that TRIB3 is an important
factor in ER stress-induced beta cell failure. Furthermore, eIF2α

phosphorylation can promote the activation of pro-inflammatory
NF-κB signaling pathway through the rapid reduction in its

inhibitor (IκBα) due to general translation inhibition (Deng
et al., 2004).

Conformational changes in trans-autophopshorylated IRE1α

leads to activation of IRE1α RNase activity which catalyzes the
removal of a 26 bp intron from the unspliced XBP1u mRNA
generating when translated, an active transcription factor XBP1s.
XBP1s induces the upregulation of ER chaperones, components
of the ERAD machinery and phospholipid biosynthesis. The
RNase activity in IRE1α also regulates the cleavage or decay of
multiple RNAs including insulin in pancreatic beta cells (Lipson
et al., 2008). The regulated IRE1α-dependent decay or RIDD
has thus important physiological functions in decreasing the
ER workload for newly synthesized proteins especially in cells
with high secretory function (Coelho and Domingos, 2014).
Hyperactive RNase activity of IRE1α leads to upregulation
of caspase-2 and pro-oxidant TXNIP important for the
T-UPR leading to beta cell apoptosis and diabetes via the
intrinsic/mitochondrial death pathway (Lerner et al., 2012). In
chronic ER stress, hyperoligomerized IRE1α recruits TRAF2 by
its cytosolic domain and activates ASK1 at the ER membrane
(Urano et al., 2000; Nishitoh et al., 2002; Brozzi and Eizirik, 2016).
IRE1α/TRAF2/ASK1 complex triggers apoptosis via p38 MAPK
and JNK pathways followed by enhanced transcriptional activity
of activator protein 1 (AP-1) dependent pro-inflammatory genes
(Urano et al., 2000; Nishitoh et al., 2002; Kim et al., 2010). Finally,
IRE1α/TRAF2 complex also activates pro-inflammatory NF-κB
signaling pathway via IκBα proteosomal degradation by ERAD
(Kaneko et al., 2003), followed by expression of inducible isoform
nitric oxide synthases (iNOS) and subsequent nitric oxide (NO)
formation. NO provokes beta cell death through oxidative stress,
disrupted energy metabolism, DNA damage via necrosis pathway
mediated by activation of poly(ADP-ribose) polymerase (PARP)
or depletion of ER Ca2+ (Oyadomari et al., 2001; Cardozo et al.,
2005; Meares et al., 2013).

ER-stress mediated activation of ATF6 leads to its
translocation to Golgi, where it is cleaved by site 1 and 2
proteases (S1P) and (S2P). The cleaved form of ATF6 is a
transcriptional activator of chaperones GRP78 and GRP94,
CHOP, Xbp1s, ERAD target genes and genes involved in lipid
biosynthesis (Kaufman et al., 2010). ATF6α and ATF6β recognize
conserved ER stress regulatory elements but have different
transcriptional activation domains suggesting that the relative
levels of ATF6α and ATF6β may regulate the duration and
strength of ATF6-dependent gene expression and cell viability
(Thuerauf et al., 2007). Prolonged activation of ATF6 pathway in
the beta cells restrains insulin gene expression and results in beta
cell dysfunction and death (Seo et al., 2008).

ER STRESS-RELATED MECHANISMS OF
BETA CELL DEATH IN T1D

In T1D the inflammatory response caused by the release and
binding of cytokines such as TNF-α, IL-1β, and IFN-γ to
receptors on the beta cell membrane, trigger apoptosis via
activation of mitochondrial intrinsic pathway involving BCL2
family of anti-apoptotic and pro-apoptotic proteins (Gurzov
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and Eizirik, 2011). Death effectors (e.g., BAX, BAK) trigger
the loss of mitochondrial membrane integrity followed by
release of cytochrome c, increase in intracellular calcium and
mitochondrial ROS production (Gurzov and Eizirik, 2011).
Cytochrome c released from mitochondria binds to APAF-1,
which forms the apoptosome together with ATP and procaspase-
9, resulting in caspase-9 followed by caspase-3 activation and beta
cell death. The cell death followed after chronic ER stress has been
suggested to involve activation of BH3 only proteins DP5 and
PUMA (Gurzov and Eizirik, 2011).

There is a strong link between the chronic activation of the
UPR, especially the IRE1α and PERK pathways, and cytokine
induced beta cell death in T1D (Brozzi and Eizirik, 2016). Pro-
inflammatory cytokines cause beta cell death also trough ER
stress leading to activation of the pro-apoptotic JNK, p38 and
inflammatory NF-κB pathway (Urano et al., 2000; Cardozo et al.,
2005; Brozzi and Eizirik, 2016). In rat beta cells IL-1β and IFNγ

induce NO production and consequent SERCA2b inhibition,
leading to ER Ca2+ depletion and activation of IRE1α, increased
levels of phosphorylated JNK, CHOP expression, and beta cell
death (Cardozo et al., 2005; Brozzi and Eizirik, 2016). In contrast,
in human and mouse beta cells, PERK and IRE1α pathways are
activated independent of increased NO production (Brozzi and
Eizirik, 2016).

Sustained ER stress is one of the potential cause leading to
beta cell death in human patients with T1D and T1D mouse
models (Eizirik et al., 2008; Cnop et al., 2017). Increased levels
of ATF3, CHOP and GRP78 were found in inflamed islets of
T1D patients (Hartman et al., 2004; Marhfour et al., 2012).
NOD spontaneously develop diabetes and is a commonly used
mouse model for T1D (Anderson and Bluestone, 2005). First
signs of insulitis occurs in NOD mice already at 3 weeks of age
(Fujino-Kurihara et al., 1985) and as disease progresses, the beta
cell mass decreases and hyperglycemia occurs in female mice
between 12 and 20 weeks of age, indicating the onset of diabetes.
Importantly, increased ER stress has been found to precede the
development of beta cell failure and diabetes in NOD mice, which
is accompanied by increased expression of NF-κB target genes
(Tersey et al., 2012). UPR target genes Grp78, Xbp1s and Chop,
were also upregulated while Atf4 mRNA levels were decreased
before the downregulation of beta cell markers at the age of
6 weeks in pre-diabetic NOD mice (Tersey et al., 2012; Morita
et al., 2017). Interestingly, another study detected upregulation
of Manf mRNA along with increased auto-phosphorylation
of IRE1α in islets of pre-diabetic NOD mice (Morita et al.,
2017). Additionally, decreased expression of Serca2b mRNA was
detected in pre-diabetic NOD islets, indicating impaired ER Ca2+

homeostasis (Tersey et al., 2012).
The Ins2Akita mouse is a mutant model of T1D, which

expresses the proinsulin variant gene, Ins2 (C96Y) and
heterozygous Ins2AKITA mice develop hyperglycemia and
hypoinsulinemia due to beta cell death (Wang et al., 1999). The
Ins2Akita mutation disrupts a disulfide bond between insulin
chain A and B thus leading to a conformational change in
the protein. Accumulation of the misfolded proinsulin and
blocking trafficking to the Golgi led to increased ER stress and
upregulated UPR markers, Grp78 and Chop mRNA (Wang et al.,

1999; Araki et al., 2003). Additionally, beta cells in Akita mice
contained secretory insulin granules of reduced number and size,
accompanied with dilated ER, which is a hallmark for ER stress
and dysfunction (Wang et al., 1999). Importantly, MANF protein
was upregulated in pancreatic beta cells of Akita mice probably
due to the ER stress (Mizobuchi et al., 2007).

ER STRESS AND T2D

In T2D, beta cells are exposed to local environmental factors
such as glucolipotoxicity and inflammatory cytokines leading to
increased insulin and ceramide production, ER- and oxidative
stress and intrinsic beta cell death (Cnop et al., 2010, 2012).
Increasing levels of saturated FFAs such as palmitate activate
all three UPR branches in beta cells shown both in vitro and
in vivo, leading to beta cell dysfunction and death (Cunha et al.,
2008; Cnop et al., 2010, 2012). In vitro exposure of human islets
to palmitate led to ER stress followed by NF-κB activation and
inflammatory responses (Igoillo-Esteve et al., 2010). In pancreatic
islets from T2D patients, increased activation of classical UPR-
induced proteins p58IPK, CHOP, GRP78, ATF3 and distended ER
were found (Hartman et al., 2004; Marchetti et al., 2004; Huang
et al., 2007; Laybutt et al., 2007). However, decreased expression
levels of ATF6, XBP1s and almost no eIF2α phosphorylation were
detected in the islets of long term T2D patients (Engin et al.,
2014), suggesting that deficient activation of the UPR leads to beta
cell demise in long term patients.

In vivo, islets from animals fed with high fat diet or from
genetic T2D mouse or rat models showed increased ER stress in
beta cells (Cnop et al., 2012). The leptin receptor deficient db/db
mice develop hyperinsulinemia and obesity already a few weeks
after birth. Hyperglycemia appears at the age of 8 weeks followed
by beta cell dysfunction (Dalboge et al., 2013). Increased beta cell
mass occurs in young animals (10 weeks of age) whereas beta cell
mass declines in older animals (Dalboge et al., 2013). Enhanced
expression of phosphorylated eIF2α, increased Xbp1s and Chop
mRNA were observed in the islets of insulin resistant db/db mice
at the age of 10–12 weeks (Yusta et al., 2006; Laybutt et al.,
2007). Another study showed significant upregulation of Grp78,
p58 and Grp94 mRNA as well as increased expression of UPR
genes (Atf3, Chop, and Trib3) in islets from prediabetic db/db
mice (Chan et al., 2013), strongly indicating the involvement of
chronic increased ER stress in the beta cells of T2D diabetic mice.
Along with upregulated UPR genes, RNA sequencing analysis
revealed increased Manf mRNA levels in beta cells of 12-week-
old db/db mice (Neelankal John et al., 2018), suggesting that
MANF contributes in UPR signaling also in T2D beta cells.

Glucotoxicity, causing high ER- and oxidative stress in T2D
beta cells, has been implicated to lead to dedifferentiation of
beta cells. Cells reversibly lose their beta cell identity through
downregulation of beta cell specific transcriptional genes such as
Pdx1, MafA, Nkx6.1, and Pax6, and even gaining features of other
pancreatic endocrine cell types such as glucagon-producing alpha
cells (Weir et al., 2013; Szabat et al., 2016; Swisa et al., 2017). In
contrast, in normal conditions, little evidence of apoptosis and
dedifferentiation of human beta cells have been found (Xin et al.,
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2018). In glucotoxic conditions beta cells, but also islet alpha-
cells seem to suffer from chronic ER stress, with the exception
that alpha cells are more resistant to ER stress-induced apoptosis
(Marroqui et al., 2015). Acute and chronic glucose stimulation
causes activation of IRE1α/Xbp1 pathway in pancreatic mouse
and rat beta cells in vitro (Lipson et al., 2006; Elouil et al.,
2007). In addition, chronic hyperglycemia increases proinsulin
biosynthesis and formation of IAPP in the beta cells which
leads to accumulation of misfolded IAPP and ROS production,
disruption of ER Ca2+ homeostasis, activation of the UPR
pathways leading to proinsulin degradation and beta cell death
(Haataja et al., 2008; Hasnain et al., 2016).

DYSREGULATED UPR SIGNALING AND
DIABETES IN HUMAN AND MICE

Genetic mutations in various UPR components cause inherited
syndromes and diabetes both in rodents and humans. Recessive
homozygote mutations in the eIF2α kinase domain of the
PERK (EIF2AK3) gene results in Wolcott-Rallison syndrome,
characterized by infantile non-autoimmune insulin-dependent
diabetes, multiple epiphyseal dysplasia, defects in exocrine
pancreas, hepatic steatosis, microcephaly, intellectual disability
and growth retardation (Delepine et al., 2000; Senee et al.,
2004). Similarly to humans, homozygous ablation of the Perk
gene (Perk−/−) in mice recapitulates the defects of the human
syndrome, demonstrating loss of insulin-secreting beta cells and
development of diabetes, followed by the loss of glucagon-
secreting alpha cells and failure of the exocrine pancreas, skeletal
dysplasias followed by postnatal growth retardation (Harding
et al., 2001; Zhang et al., 2002). Recent studies demonstrated
that PERK deletion from the pancreases of young and mature
adult mice resulted in hyperglycemia associated with loss of beta
cells and islet architecture, indicating the importance of PERK in
adult pancreas for maintaining glucose homeostasis (Gao et al.,
2012). Activation of the IRE1α and ATF6 UPR branches led to
increase in pro-apoptotic JNK signaling in PERK-excised islets
(Gao et al., 2012). In contrast, homozygous knock-in mutation
at the PERK phosphorylation site in eIF2α (Ser51Ala) in mice
lead to a neonatal lethal phenotype, characterized by defects
in embryonic beta cell survival (Scheuner et al., 2001). Further
studies performed on heterozygous eIF2α mice revealed insulin
resistance with elevated fasting blood glucose levels, defects
in beta cell function and glucose intolerance after the feeding
with high fat diet due to accumulation of misfolded proinsulin
(Scheuner et al., 2005). Interestingly, ATF4 deficient mice did
not show any signs of beta cell impairment, although the ATF4
responses were abolished in diabetic Perk−/− mice (Back et al.,
2009).

Wolfram syndrome 1, is a rare autosomal-recessive
neurodegenerative disease caused by mutation in the Wolframin
1 gene (WFS1) and characterized by juvenile-onset insulin-
dependent diabetes, neurodegenerative disorder, optic atrophy,
hearing impairment, and psychiatric illness (Cryns et al.,
2003). Common polymorphisms in the WFS1 gene have been
associated with T2D (Sandhu et al., 2007; Franks et al., 2008).

The WFS1 gene encodes for a transmembrane ER protein and
its expression is induced by increased ER stress (Fonseca et al.,
2005). Wolframin is highly expressed in pancreatic beta cells
and it has been shown to negatively regulate the expression of
ATF6α target genes and enhance ATF6α ubiquitin-mediated
proteosomal degradation thus also attenuating Grp78 and Xbp1
mRNA expression (Fonseca et al., 2010). In agreement, deficient
WFS1 expression in mice and human led to hyperactivation
of the ATF6α pathway, and subsequent increased activation of
the ATF4, CHOP and IRE1α/XBP1 pathways inducing beta cell
dysfunction and apoptosis resulting in diabetes (Ishihara et al.,
2004; Riggs et al., 2005; Yamada et al., 2006; Fonseca et al., 2010;
Shang et al., 2014).

Inactivation of Ire1α in mice resulted in widespread
developmental defects and embryonic lethality (Zhang et al.,
2005). Embryonic inactivation of the Ire1α gene specifically in
beta cells in mice resulted in a diabetic phenotype including
impaired glycemic control and defects in insulin biosynthesis
and secretion postnatally due to decreased oxidative folding of
proinsulin along with decreased expression of protein disulfide
isomerases (Tsuchiya et al., 2018). Deletion of Ire1α specifically
from beta cells in adult mice lead to hyperglycemia and
hypoinsulinemia, due to impaired beta cell function, which was
exacerbated upon high fat diet feeding and glucose stimulation
(Hassler et al., 2015). Moreover, deletion of IRE1α from beta
cells as well as hypothalamus in mice resulted in obesity and
insulin resistance, when kept on a high-fat diet (Xu et al.,
2014). Conditional ablation of Xbp1 specifically from the beta
cells resulted in impaired ER homeostasis associated with
diminished proinsulin processing, reduced insulin secretion and
cell proliferation due to hyperactivation of IRE1α (Lee et al.,
2011).

Similarly, to IRE1α knockout mice, simultaneous embryonic
ablation of ATF6α and ATF6β in mice lead to embryonic lethality
in the early developmental stage with severe developmental
defects (Wu et al., 2007; Yamamoto et al., 2007). However, neither
beta cell development nor function were affected by removal of
ATF6α specifically from beta cells (Engin et al., 2013). However,
when carrying the Ins2Akita allele or under high fat diet Atf6α-
deficient mice displayed decreased insulin secretion (Usui et al.,
2012), indicating that ATF6α contributes to both beta cell survival
and beta cell death.

Thus deficiency in any of the key proteins in the UPR pathway
seem to lead to dysregulated UPR response, defect in beta cell
function or death in human and mice.

MANF-DEFICIENCY IN BETA CELLS
LEADS TO SUSTAINED ER STRESS,
REDUCED PROLIFERATION AND BETA
CELL DEATH

To understand the physiological roles for MANF in mammals we
created MANF conventional knockout (Manf−/−) mice where
Manf mRNA expression was disrupted by efficient splicing of
exon 2 to a β-galactosidase reporter gene (Lindahl et al., 2014).
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The Manf−/− mice showed poor survival after birth, a severe
growth retardation and died at 2–3 months of age (Figure 2A).
Unexpectedly, homozygote Manf−/− mice developed insulin-
dependent diabetes after birth (Figures 2B,C) due to progressive
decrease in beta cell proliferation and increased beta cell death.
The beta cell mass in Manf−/− mice was decreased by 50%
already at P1 (Figures 2D,E), whereas the glucagon-producing
alpha cell mass remained unchanged compared to wild-type
litter-mate mice. Insulin positive beta cells were barely detectable
in 8-week-old knockout pancreases (Figure 2D).

The function of MANF in humans, is not known. A clinical
exome sequencing study of patients with neurocognitive
disorders in a highly consanguineous Middle Eastern population
revealed a young 22-year-old patient with a homozygous
missense mutation in the splice donor site in exon 1 of the
human MANF gene (Figure 1B) (Yavarna et al., 2015). This
mutation most likely is the cause of obesity, T2D, short stature,

mild intellectual disability, microcephaly, hypothyroidism,
hypogonadism, myopia and autoimmune alopecia. However,
nothing is known about the actual MANF mRNA and protein
levels in this patient. Nevertheless, similarities with short stature
and diabetes was found in Manf−/− mice (Lindahl et al.,
2014).

CHRONIC ACTIVATION OF THE
UNFOLDED PROTEIN RESPONSE
LEADS TO BETA CELL DEMISE IN
Manf−/− MICE

The mammalian MANF promoter contains ER stress responsive
elements ERSE and ERSEII, which are important for XBP1s
and ATF6 binding leading to upregulation of MANF expression
in response to ER stress (Figure 1A) (Mizobuchi et al., 2007;

FIGURE 2 | MANF-deficient mice develop insulin-dependent diabetes caused by progressive decrease in beta cell mass. (A) Manf−/− mice at 8 weeks of age show
a severe growth defect compared to WT littermates. (B,C) Manf−/− mice develop diabetes, characterized by increased blood glucose levels (B) and decreased
serum insulin levels (C). (D) Histological analysis revealed reduced insulin staining, reduced islet size and number of beta cells in pancreases of newborn, 2 and
8 weeks old Manf−/− pancreases. (E) Progressive loss of beta cell mass in Manf−/− mice compared to controls. Images in (B–E) modified from Lindahl et al. (2014).
Scale bar, 50 µm.
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Oh-Hashi et al., 2013; Wang et al., 2018). In a recent genome-
scale CRISPR-interference screen, MANF was identified as a
gene whose repression perturbs ER homeostasis (Adamson et al.,
2016). In single cells deleted for different combinations of
UPR genes, ATF6α but not PERK or IRE1α was shown to be
required for the upregulation of MANF expression in ER stress
conditions induced by tunicamycin or thapsigargin (Adamson
et al., 2016). This confirms the importance of ATF6α as a
transcription factor for MANF in ER stress (Adamson et al.,
2016). Importantly, MANF was shown to bind GRP78 in a Ca2+-
dependent manner in cardiomyocytes and HeLa cells and this
binding was abolished, and MANF was secreted from cells when
Ca2+ was depleted from the ER by thapsigargin (Glembotski
et al., 2012).

Consequently, ER stress levels and activation of the UPR
pathways was studied as one of the mechanisms behind
the beta cell demise in Manf−/− mice. Increased Chop and
Xbp1s mRNA expression in the IRE1α pathway was found
already in the embryonic Manf−/− pancreases (Lindahl et al.,
2014). As the expression levels of beta cell specific markers
Glut2, Insulin1/2 and Pdx1, were similar in the embryonic
pancreases of WT and Manf−/− mice but significantly reduced
after birth in Manf−/− islets, ER stress was suggested to
precede the reduced beta cell phenotype in Manf−/− islets.
In islets of P1 and 2-week-old Manf−/− mice UPR genes
in the PERK and ATF6α pathways were upregulated and
eIF2α phosphorylated confirming sustained UPR activation in
the MANF-deficient beta cells. MANF-deficiency in beta cells
was suggested to lead to prolonged ER stress resulting in
reduced beta cell phenotype, decreased beta cell proliferation
and increased beta cell death. In accordance, maternal and
zygotic deletion of Manf in fruitfly led to embryonic lethality
and increased expression of UPR genes (Palgi et al., 2009,
2012).

As MANF is widely expressed in other tissues, the question
remains why Manf−/− mice have such a robust beta cell specific
phenotype? Beta cells express high levels of proteins involved in
UPR compared to cells in other tissues, suggesting that beta cells
are adapted to signal ER stress (Cnop et al., 2017). However, beta
cell dysfunction and death shown by deficient expression of UPR
genes in humans with diabetes and animal models, indicate that
beta cells are extremely sensitive to the dysregulation of ER stress.

How would chronic UPR activation decrease the expression of
beta cell specific gene? Attenuation of global mRNA translation
by prolonged eIF2α phosphorylation is known to be poorly
tolerated by beta cells (Cnop et al., 2007). In addition, global
decrease in translation reduces expression of beta cell specific
genes as well. Prolonged activation of IRE1α has been shown to
lead to RIDD induced insulin mRNA degradation (Lipson et al.,
2008), whereas prolonged expression of ATF6 has been shown to
downregulate the expression of Pdx1 and MafA, both important
for insulin expression (Seo et al., 2008; Artner et al., 2010).

The beta cell mass is expanded during early embryonic
pancreas development through differentiation of a population of
progenitor cells (neogenesis) and proliferation (Dhawan et al.,
2007). During late embryogenesis and in young rodents the beta
cell mass is mainly expanding through extensive proliferation

which declines rapidly with age (Teta et al., 2005). The beta cells
are long-lived and in adult rodents the major mechanism of slow-
turnover beta cell replacement is by replication of pre-existing
beta cells (Dor et al., 2004). The reason for decline in beta cell
proliferation in newborn and young Manf−/− mice compared
to WT was likely at least in part due to the prolonged UPR and
phosphorylation of eIF2α leading to translational arrest (Lindahl
et al., 2014). It has been shown that global decrease in mRNA
translation due to sustained phosphorylation of eIF2α resulted
in cell cycle arrest at G1 phase (Brewer and Diehl, 2000). In a
recent study genetically reduced insulin production in mice led
to reduced PERK/eIF2α and UPR signaling in pancreatic beta
cells, thus reducing ATF4 translation and consequent expression
of target gene Trib3 (Szabat et al., 2016). TRIB3 has been shown
to disrupt insulin-signaling in liver cells by directly binding
and blocking the kinase activity of AKT (Du et al., 2003).
Thus, decreased ER stress in beta cells expressing lower levels
of insulin was suggested to promote proliferation through the
activation of the AKT-Cyclin D1 axis. This would suggest that
the decreased beta cell proliferation in Manf−/− islets could
be triggered by the increased PERK/EIF2α activation, leading
to increased Trib3 expression thus blocking AKT-cyclinD1
activity.

A recent study revealed that genetically induced MANF
overexpression in the hypothalamus of mice led to increased
feeding behavior and obesity, impaired insulin signaling and
insulin-resistance in the hypothalamus, whereas decreased
MANF-expression in the hypothalamus resulted in reduced
feeding behavior and body weight (Yang et al., 2017).
Overexpressed MANF was suggested to recruit and activate
PIP4k2b in the ER, thus reducing AKT phosphorylation
downstream of insulin receptor signaling leading to hyperphagia
and obesity (Yang et al., 2017).

The above studies might suggest that MANF levels are
critical for modulating insulin signaling in different cell types
by (1) regulating ER stress levels and thus downstream TRIB3
expression and (2) by interacting with PIP4k2b in the ER and thus
regulating AKT phosphorylation.

MANF EXPRESSION IN MOUSE AND
HUMAN PANCREATIC BETA CELLS

MANF was found to be highly expressed in mouse beta cells as
well as in pancreatic exocrine acinar cells (Lindahl et al., 2014).
In humans, MANF was highly expressed already in embryonic
pancreatic epithelium and in embryonic cells double positive for
glucagon and insulin (Hakonen et al., 2018). In adult human
pancreases MANF was expressed in the exocrine tissue and in
islet beta cells but not in glucagon-producing alpha cells or
pancreatic polypeptide cells (Hakonen et al., 2018). The lack of
MANF protein in alpha cells supports our finding that the alpha
cell mass was not affected in the Manf−/− islets (Lindahl et al.,
2014) and thus MANF seems not to be needed for the survival
of alpha cells. In EndoC-βH1 cell line, which is a valid model of
human beta cells (Tsonkova et al., 2018), MANF was co-localized
with protein disulfide isomerase (PDI) in the ER confirming that
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MANF is localized to the ER also in beta cells (Hakonen et al.,
2018).

ER STRESS-INDUCED MANF
SECRETION

The expression profiles of genes differently regulated in T1D
beta cells and human beta cells exposed to pro-inflammatory
cytokines in vitro are very similar (Eizirik et al., 2012; Lundberg
et al., 2016). EndoC-βH1 cells and primary beta cells are
sensitive to cytokine-induced ER stress, thus partly modeling the
mechanism of beta cell death in T1D in vitro (Cardozo et al.,
2005; Eizirik et al., 2008; Tsonkova et al., 2018). In agreement with
this, increased levels of UPR markers, both in human islets and
EndoC-βH1 cells were found in response to cytokines in culture
(Hakonen et al., 2018). In addition, increased MANF expression
was detected in human islets and EndoC-βH1 cells exposed to
cytokine cocktail IL-1β, IFN-γ, IL-17 and TNF-α in culture.
A progressive increase in MANF secretion from cytokine-treated
EndoC-βH1 cells was also detected. Importantly, MANF was
found to be secreted independently from insulin, as MANF
secretion was not affected in KCl-depolarized EndoC-βH1 cells
induced to secrete insulin (Hakonen et al., 2018). Thus, MANF
seems to be secreted from human beta cells in response to
ER stress but the precise mechanism of MANF secretion
from human and rodent beta cells are to be investigated.
In vitro, MANF has been shown to be constitutively secreted
but its secretion was highly increased by chemical compounds
inhibiting SERCA ATPase pump thus depleting Ca2+ from
the ER in cardiomyotes and HeLa cells (Glembotski et al.,
2012). In vivo, secretion of MANF was increased by ER stress
in chondrodysplasias and ER-stress induced kidney diseases
(Hartley et al., 2013; Kim et al., 2016, 2017), suggesting that high
ER stress increases MANF secretion in pathological conditions.

We have previously shown that MANF protein levels are
increased in sera from young children newly diagnosed with
T1D (Galli et al., 2016). The highest MANF levels were found in
sera from children closest to diagnosis. Similarly, serum MANF
levels were increased in patients diagnosed with prediabetes and
T2D, correlating with indexes of insulin resistance (Wu et al.,
2017). However, it is intriguing from where the increased MANF
levels are derived. After initiation of insulin therapy in T1D
the lowering of blood glucose levels and insulin demand leads
to decreased ER stress and increased insulin production in the
remaining beta cells known as the “honeymoon” period in T1D
(Clark and Urano, 2016). During this period MANF might be
upregulated and secreted from beta cells in order trying to rescue
the remaining beta cells. The beta cells in newly diagnosed
T1D patients may have dedifferentiated upon hyperglycemia
as suggested by some studies (Weir et al., 2013), and could
therefore resume beta cell phenotype upon insulin treatment and
normoglycemia. MANF expression may thus be upregulated and
secreted shown as the increased MANF levels in sera of newly
diagnosed T1D patients (Galli et al., 2016). MANF may also well
derive from unknown source in newly diagnosed T1D patients
as MANF levels in sera of patients with established T1D are

similar to the levels found in healthy subjects (Galli et al., 2016).
Increased ER stress has been suggested to contribute to insulin
resistance in adipose tissue, liver and muscle in obese, prediabetic
and T2D mice and humans (Cnop et al., 2012). Thus, increased
MANF levels in sera from prediabetic and T2D patients may
derive from these tissues or endothelial cells in the blood vessels.

MANF EXPRESSION IS DIFFERENTLY
REGULATED IN BETA CELLS UPON
STRESS-INDUCTION

Cytokines were found to upregulate MANF expression in human
islet beta cells and EndoC-βH1 cells in vitro (Hakonen et al., 2018).
In contrast, decreased MANF expression and increased MANF
protein degradation was seen in rat insulinoma INS-1E cell line
treated with cytokines or chemical ER stressors (Cunha et al.,
2017). Thus, there might be a species difference or genetic impact
in the level of MANF expression by different cell stressors. In
immune-independent NOD mice, decreased expression of Glis3
was found to be responsible for the reduced Manf expression
which led to beta cell death caused by increased ER stress due
to overexpression of the hen egg lysozyme (Dooley et al., 2016).
Thus GLIS3 transcription factor is implicated to regulate MANF
expression in beta cells. GWAS have identified GLIS3 as a known
risk gene for T1D and T2D (Calderari et al., 2018). Patients
with mutations in this gene show neonatal diabetes, skeletal
and other defects. Importantly, Glis3−/− mice become severe
diabetic neonatally due to reduced beta cell mass (Watanabe
et al., 2009). In a genome-wide chromatin immunoprecipitation
sequencing screen aimed at searching for Glis3 binding sites in
INS-1 cells, 199 putative genes were found to bind Glis3 (Calderari
et al., 2018). Interestingly, genes with Glis3 binding sites were
enriched for GWAS loci associated with metabolic diseases and
neuropathologies. Consequently, GLIS3 seem to regulate genes
involved in the function of the endocrine pancreas and neurons.
Although, reduced Manf expression was followed by defect Glis3
expression in diabetes susceptible NOD mice (Dooley et al., 2016),
the Manf gene was not found in the list of Glis3 binding genes
(Calderari et al., 2018). This suggests that GLIS3 is not directly
responsible for the regulation of MANF expression or a functional
Glis3 binding site is not present in the rat Manf gene.

PROTECTIVE EFFECT OF MANF IN ER
STRESS-INDUCED APOPTOSIS

Extensive beta cell apoptosis was detected in Manf−/− beta cells
at 2 weeks of age (Table 1, Lindahl et al., 2014), probably due
to chronic or T-UPR in Manf−/− beta cells leading to beta cell
death. In contrast, MANF-overexpression in beta cells of diabetic
mice partly protected against streptozotocin-induced beta cell
death even though virus-delivered MANF transduction efficacy
was low (∼4% of beta cells) (Table 1, Lindahl et al., 2014).
Streptozotocin is a cytotoxic glucose analog that enters beta
cells through GLUT2 and selectively kills beta cells and induces
insulitis in rodents commonly used to mimicking T1D in humans
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TABLE 1 | Survival and proliferation of beta cells.

Cell type Survival Proliferation

No factor Thapsigargin Cytokines No factor MANF

No factor MANF No factor MANF No factor MANF

Human beta cells - - n/a n/a ↓
1,2

↑
1,2 - ↑ TGF-β + inhibitor1

EndoC-βH1 cells - - ↓
2

↑
2

↓
1,2

↑
1,2 n/a n/a

EndoC-βH3 cells n/a n/a n/a n/a n/a n/a - ↑
1

Human beta cells MANF siRNA - n/a n/a n/a ↓↓
2 n/a n/a n/a

EndoC-βH1 cells MANF siRNA - n/a ↓↓
2 n/a ↓↓

2 n/a n/a n/a

Mouse beta cells (young mice) - - ↓
2

↑
2

↓
2

↑
2 - ↑

3

Mouse Manf KO beta cells∗ ↓
3 n/a n/a n/a n/a n/a ↓

3 n/a

AAV-MANF islet beta cells∗∗ STZ STZ n/a n/a n/a n/a STZ STZ

↑
3

↓
3

↓
3

↑
3

INS-1E cells - n/a ↓
2

↓
2

↓
2

↓
2 n/a n/a

INS-1E cells MANF siRNA - n/a ↓↓
2 n/a ↓↓

2 n/a n/a n/a

↑, survival or proliferation increased; ↓, survival or proliferation decreased; ↓↓, aggravated death; -, no effect; n/a, data not available; ∗, in vivo;∗∗, in vivo in streptozotocin-
induced T1D mouse pancreas. 1Hakonen et al., 2018; 2 Cunha et al., 2017; 3Lindahl et al., 2014.

(Lenzen, 2008). Importantly, recombinant human (rh)MANF
partly rescued isolated mouse beta cells from thapsigargin- and
cytokine-induced beta cell death in vitro (Table 1, Cunha et al.,
2017). In contrast, MANF failed to protect clonal rat INS-1E
cells from cytokine- and thapsigargin-induced apoptosis (Table 1,
Cunha et al., 2017). In fact, Manf mRNA depletion from INS-
1 cells by siRNA inhibition aggravated beta cell death induced
by stressors (Table 1, Cunha et al., 2017). In this study MANF
mediated cytoprotection of beta cells through thrombospondin
1. THBS are Ca2+-binding glycoprotein induced at sites of injury.
Recently, THBS proteins showed ER stress protecting properties
in cardiomyocytes and beta cells exposed saturated fatty acids
(Lynch et al., 2012; Cunha et al., 2016). Overexpression of THBS1
in mouse and human beta cells and rat INS-1 cells partially
protected against thapsigargin- and cytokine-induced intrinsic
beta cell apoptosis whereas islets from Thbs−/− mice showed
increased vulnerability against the same stressors (Cunha et al.,
2017). ER stress and cytokines were shown to downregulate
THBS1 expression in human and mouse beta cells and in INS-1
cells. This was suggested to depend on reduced MANF expression
and thus MANF mediating the protective effect of THBS1 in these
cells. As BH3-only proteins are important in mediating cytokine-
induced beta cell apoptosis, BIM but not DP5, PUMA or BAD,
seemed to be the downstream mediator of beta cell death in
cytokine- and thapsigargin- treated THBS1 and MANF siRNA
silenced INS-1 cells (Cunha et al., 2017).

Recombinant human MANF partly protected human EndoC-
βH1 cells from both cytokine- and thapsigargin-induced cell
death (Table 1, Cunha et al., 2017; Hakonen et al., 2018). These
results were confirmed in EndoC-βH1 cells where rhMANF
reduced the cytokine-induced cell death by 50% compared to
control cells (Hakonen et al., 2018). Interestingly, rhMANF
reduced endogenous MANF and GRP78 mRNA expression in
cytokine-treated EndoC-βH1 cells, suggesting that exogenously
added MANF reduces ER stress and thereby downregulates the
expression of ATF6 and XBP1s mRNA (Hakonen et al., 2018).

These transcription factors are important inducers of MANF gene
expression thus explaining the downregulation of endogenous
MANF. MANF knockdown by siRNA in human primary beta
cells and EndoC-βH1 cells intensified cytokine- and thapsigargin-
induced beta cell death (Table 1, Cunha et al., 2017; Hakonen
et al., 2018), suggesting that MANF is important for human
beta cell survival. In addition to increased apoptosis in MANF-
depleted cytokine-treated EndoC-βH1 cells, expression of UPR
markers ATF4, ATF3 and CHOP were increased (Hakonen et al.,
2018). These results confirm the importance of exogenous and
endogenous MANF for protecting mouse and human beta cells
from ER stress-induced cell death. Rat INS-1 cells seemed to
respond differently as MANF was not upregulated upon stress-
induction and did not respond to exogenous human MANF
(Table 1, Cunha et al., 2017), suggesting a species difference in
MANF protection.

The mechanistic effect of MANF-induced protection of
primary human beta cells to cytokine-induced cell death was
studied by RNA sequencing of the transcriptome from islet
preparations (Hakonen et al., 2018). Addition of MANF alone
to human beta cells did not change gene expression significantly.
The addition of a potent cytokine cocktail including IL-1β, IFN-
γ, IL17 and TNF-α for 48 h, led to the upregulation of 618 genes
and 377 downregulated genes compared to non-treated controls.
Interestingly, addition of MANF together with cytokines resulted
in an unexpected 15% increase in global gene expression or
mRNA reads. As IRE1α is the first UPR pathway activated
in Manf−/− mouse beta cells at E18.5 (Lindahl et al., 2014),
exogenous MANF could thus suppress the IRE1α mediated RNA
decay (RIDD) in cytokine-stressed islets leading to the increase
in mRNA reads. However, further studies need to be performed
to elucidate the mechanistic connection between MANF, IRE1α

signaling and RIDD.
Addition of MANF to cytokine-treated human beta cells led

to a significant upregulation of 251 genes whereas only one was
downregulated. The only significantly downregulated gene was
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BCL10, which is a known inducer of apoptosis probably through
NF-κB signaling inducing caspase 9 activation (Ruland et al.,
2001; Mazzone et al., 2015). In contrast, knockdown of MANF by
siRNA resulted in a significant increase in BCL10 expression and
apoptosis in cytokine-treated EndoC-βH1 (Hakonen et al., 2018),
thus implicating that MANF could regulate beta cell survival
through regulation of BCL10 levels.

Differential expression analysis from the transcriptome
data was performed after standard RNA-seq normalization
and 282 differently expressed genes were found between the
cytokines group compared to the MANF-treated cytokines group
(Hakonen et al., 2018). Among these were genes related to
cellular movement, proliferation and growth, gene expression
and cell cycle. Interestingly, 30 from the 282 genes were found
to be involved in NF-κB pathway. As activation of the NF-κB
pathway in beta cells is associated with inflammatory response
and cell death (Melloul, 2008), activation levels of NF-κB was
studied in EndoC-βH1 cells. NF-κB is activated through IkappaB
kinases (IKK)-mediated phosphorylation of RELA/p65 at Serine
536 and phosphorylation and degradation of inhibitory IκBα

leading to nuclear translocation and transcriptional activation
of NF-κB (Sakurai et al., 1999). MANF was found to partly
inhibit the translocation of the RELA/p65 component to the
nucleus in cytokine treated EndoC-βH1 cells (Hakonen et al.,
2018). The decreased levels of phosphorylated Ser537 RELA/p65
in MANF-treated cells were confirmed by Western blotting.
Importantly, these results indicated that MANF is able to reduce
NF-κB inflammatory signaling and BCL10 induction in cytokine-
stressed human beta cells.

MANF ability to regulate NF-κB signaling is supported by a
recent study where MANF was shown to inhibit NF-κB induced
transcriptional activation of inflammatory genes in fibroblast-
like synoviocytes by binding to p65 and translocating into the
nucleus, thus interfering with the binding activity of NF-κB to
target promoters (Chen et al., 2015b). However, MANF has not
been detected in the nucleus of stressed human or mouse beta
cells tested by specific MANF antibodies confirmed on knockout
tissue and cells (Hakonen et al., 2018). It has been shown that
sustained PERK/pEIF2α activation leads to increased NF-κB
translocation to the nucleus through decreased IκBα translation.
In addition, increased IRE1α signaling leads to increased IKK
phosphorylation and downstream p65 and IκBα phosphorylation
and degradation (Zhang and Kaufman, 2008; Garg et al., 2012).
Thus, previous results suggest that the mechanism behind
MANF protection may lie in the inhibition of ER stress-induced
reduction in NF-κB activation, BCL10 expression and apoptosis.

ROLE FOR MANF IN PANCREATIC BETA
CELL PROLIFERATION

Under normal conditions the primary mechanism for
maintaining the postnatal beta cells mass in adults is replication
of existing beta cells (Dor et al., 2004), but basal beta cell
proliferation and response to mitogenic triggers declines
markedly with age in both rodents and humans (Teta et al., 2005;
Kushner et al., 2010; Kushner, 2013). Interestingly, the beta cell

mass is expanding during pregnancy in rodents and in obesity
also in humans suggesting that beta cells can proliferate during
adulthood. In fact, recent studies have identified factors that
age-dependently regulate or limit beta cell proliferation in mice
and human.

Expression of EZH2, a polycomb histone methyl transferase,
declines with aging in beta cells (Zhou et al., 2013; Adamson
et al., 2016). EZH2 has been found to repress cell cycle inhibitor
p16INK4a and tumor suppressor p19ARF genes encoded by the
Cdkn2A locus (Krishnamurthy et al., 2006; Chen et al., 2009).
Thus decline in EZH2 and increase in expression of p16INK4a,
a potent inhibitor of the proliferative kinase CDK4, leads to
reduced beta cell proliferation with age (Krishnamurthy et al.,
2006). A recent study using genetic mouse models revealed
that platelet-derived growth factor receptor signaling (PDGFR)
in beta cells induced Ezh2 expression, delayed age-dependent
Ezh2 loss and promoted beta cell expansion in adult mice
(Chen et al., 2011). In addition, PDGFRa signaling resulted
in ERK/CyclinD1 activation upregulating EZH2 expression in
human beta cells which led to increased proliferation through
inhibition of p16INK4a. Thus, reduced PDGFR signaling may
be one cause of age-dependent mitogenic restriction in beta
cells. Other extrinsic signals that regulate beta cell proliferation
include the lactogenic hormones PRL and PL. Both effectively
stimulate proliferation of rodent beta cells in vitro and in vivo
(Billestrup and Nielsen, 1991). However, no beta cell proliferation
was detected in adult human islets with PRL and ectopic
expression of PRL receptor in adult human beta cells did not
restore responsiveness to PRL (Chen et al., 2015a). GLP-1 has
an established role in stimulating insulin secretion and insulin
biosynthesis in beta cells and rescue beta cells from apoptosis
(Campbell and Drucker, 2013). The GLP-1 analog Exendin-4
(Ex-4) has been shown to induce mouse beta cell proliferation
in an age-dependent manner in a streptozotocin-induced T1D
mouse model (Tschen et al., 2009). The increased proliferation
was associated with inhibition of the p16INK4a gene. Ex-4 was
shown to induce proliferation in juvenile but not adult islets
likely by failing to regulate the age-associated cell cycle inhibitor
CDKN2A (Dai et al., 2017).

Embryonic deletion of MANF in pancreatic beta cells resulted
in a significant abrubt neonatal decrease in beta cell proliferation
whereas beta cell proliferation was not affected in Manf−/− mice
before birth (Table 1, Lindahl et al., 2014). In vivo, overexpression
of MANF in beta cells resulted in increased islet size in pancreases
of diabetic mice compared to those that were transduced with
control adeno associated virus 6 (AAV6)-RFP (Table 1, Lindahl
et al., 2014). This was due to a significant increase in beta cell
proliferation and decrease in beta cell death in the AAV6-MANF
treated mice, demonstrating that overexpression of MANF could
enhance beta cell proliferation and regeneration in vivo. However,
we concluded that the low transduction efficiency (∼4%) was
not enough to show a beneficial therapeutic effect restoring the
blood glucose levels in mice overexpressing MANF in the beta
cells. These results suggested that endogenous MANF is critically
important for the proliferation of mouse beta cells.

The effect of exogenous rhMANF on primary mouse beta cells
was assessed in vitro. Compared to islets cultured without added
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growth factors, rhMANF significantly increased proliferation of
beta cells from young adult mice (Table 1, Lindahl et al., 2014).

Comparative analysis of the RNA sequencing data from
the cytokine-treated primary human beta cells cultured in the
presence or absence of MANF revealed clusters of upregulated
genes in the MANF-treated cells with functions related to the
regulation of G2/M transition of the mitotic cell cycle (Hakonen
et al., 2018). Consequently, rhMANF proliferative effect was
tested in vitro on adult human islets. Surprisingly, rhMANF
together with a pharmacological TGF-β inhibitor SB431542
increased the proliferation of human beta cells by 2.5-fold shown
by EdU incorporation compared to either MANF or TGF-β
inhibitor alone (Table 1, Hakonen et al., 2018). Recently it was
shown that TGF-β signaling via Smad3, activated or maintained
p16Ink4a expression and thus led to replicative decline in adult
mouse beta cells (Dhawan et al., 2016). In contrast, small
molecule inhibition of TGF-β signaling reduced the expression
of p16INK4a in human beta cells of islets grafted under the
kidney capsule of immune deficient mice, thus resulting in
increased proliferation of human beta cells (Dhawan et al.,
2016). Importantly, rhMANF seemed to promote human beta cell
replication after relief of mitogenic repression and rejuvenation
of adult human beta cells by inhibition of TGF-β signaling
(Hakonen et al., 2018). To further confirm the mitogenic effect
of MANF on human beta cells, a 3rd generation human EndoC
beta cell-line, EndoC-βH3 that phenotypically is very close to
genuine adult human beta cells, was used (Benazra et al., 2015).
Interestingly, MANF addition to the quiescent EndoC-βH3 cells
alone resulted in a 3-fold increase in proliferation, which was not
potentiated by SB431542 (Table 1).

Thus, in contrast to many mitogens effective for mouse
beta cells, but not human beta cells, MANF was shown to
have a mitogenic effect on human beta cells which could
be potentiated by inhibition of TGF-β signaling pathways. In
addition, extracellular MANF had a direct proliferative effect
on mouse primary beta cells and quiescent human EndoC-
βH3 cells capable of mediating intracellular mitogenic signaling.
Importantly, the beta cell is the only cell type so far shown to
respond to MANF by mitogenic action in culture.

MANF HYPOTHETICAL MODE OF
ACTION

It is evident that endogenous MANF is needed for the survival
and proliferation of mouse beta cells as lack of MANF in beta
cells results in ER stress and sustained UPR activation leading
to reduced expression of beta cell specific genes, decreased beta
cells proliferation and increased cell death (Lindahl et al., 2014).
The mechanism whereby endogenous MANF acts is not known.
MANF expression and secretion is increased upon increased
ER stress in mouse and human beta cells. This implies that it
acts in two ways (1) by directly regulating the intensity and
duration of ER stress trying to restore the ER homeostasis, or
if not successful to alleviate ER stress, (2) MANF is secreted
to act as a autocrine/paracrine factor trying to rescue the
particular cell itself and nearby cells. It could re-enter cells or

neighboring cells, translocate back to the ER, thus relieving ER
stress, avoiding T-UPR and apoptosis. Exogenous MANF could
also induce intracellular signaling cascades in the cell by binding
and activating cell membrane receptor(s) leading to activation
of unidentified signaling cascades for beta cell survival and
proliferation (Stewart et al., 2015).

As exogenous MANF was found to reduce ER stress and
was both mitogenic and protective for human and mouse beta
cells in culture (Lindahl et al., 2014; Hakonen et al., 2018), it is
likely that MANF is able to act in an autocrine/paracrine manner
and somehow enter beta cells. However, the question remains
how MANF exerts its beneficial effects. The identification of
signaling receptors for MANF has been challenging. MANF was
found to bind weakly to the KDEL receptor in the ER with its
C-terminal amino acid consensus sequence RTDL that resembles
the canonical ER retention signal, KDEL (Henderson et al., 2013).
The same study suggested that MANF also binds KDEL receptors
at the cell membrane of cell-lines overexpressing KDELRs
(Henderson et al., 2013). However, direct binding of MANF to
KDELR has not been shown. Recently, MANF was shown to bind
to lipid sulfatides (e.g., 3-O-sulfogalactosylceramide) located at
the outer leaflet of the membrane of C. elegans and in mammalian
cells following MANF uptake by endocytosis into the cells (Bai
et al., 2018). Thus, sulfatides have been proven important for
MANF cell surface binding, transport and secretion (Bai et al.,
2018). Sulfatides are synthesized in beta cells but not in pancreatic
exocrine acinar cells (Boslem et al., 2012) and the N-terminal
domain of MANF contains a saposin-like domain known to be
able to bind lipids (Parkash et al., 2009), therefore exogenously
added MANF might be taken up by beta cells through lipid
sulfatide binding and transported back to ER where it relieves
ER stress leading to increased proliferation and/or protection
from ER stress-induced apoptosis. However, the relatively robust
mitogenic effect of MANF on beta cells might still depend on yet
unidentified signaling receptor(s) and signaling cascades.

MANF-depletion from mouse and human beta cells leads
to chronic ER stress and sustained upregulation of all UPR
branches (Lindahl et al., 2014) (Figure 3). Sustained IRE1α

activates TRAF2 and thereby contributes to NF-κB and JNK
activation (Urano et al., 2000; Brozzi and Eizirik, 2016). BCL10
is a known inducer of apoptosis and upstream regulator of NF-
κB signaling but also a binding partner of TRAF2 (Yoneda
et al., 2000; Ruland et al., 2001; Mazzone et al., 2015). As NF-κB
activation was found to be relieved and BCL10 mRNA expression
reduced by MANF addition in cytokine-treated human beta cells
(Hakonen et al., 2018), one could speculate that the protective
mechanism of exogenously added MANF is to reduce ER stress
and thereby block the inflammatory signaling pathways NF-κB
and JNK that leads to beta cell death. MANF has been linked
to inflammation also in other cell types. MANF inhibited NF-
κB induced transcriptional activation of inflammatory genes in
synoviocytes (Chen et al., 2015b). In addition, MANF was found
to inhibit oxygen-glucose deprivation-induced cell damage and
inflammatory cytokine secretion by suppressing ER stress in
rat primary astrocytes (Zhao et al., 2013). Interestingly, PDGF
AA released from injured retina promoted MANF expression in
innate immune cells, and biased cells toward anti-inflammatory
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FIGURE 3 | Hypothetical scheme for the unfolded protein response-induced signaling cascade in MANF-deficient beta cells. Ablation of MANF in mouse beta cells
in vivo leads to sustained UPR, increased inflammatory signaling and beta cell death. The IRE1α pathway, Xbp1s and Chop mRNA levels were found increased in the
pancreases of Manf−/− embryos at E18.5, whereas the PERK and ATF6 pathways were upregulated and chronically activated after birth in Manf−/− islets (Lindahl
et al., 2014). Chronic activation of IRE1α and its oligomerization, has been shown to recruit TRAF2 and ASK1 in a complex that activates JNK and p38 signaling
cascades, leading to increased expression of CHOP and pro-apoptotic genes (Ron and Hubbard, 2008; Brozzi and Eizirik, 2016). IRE1α/TRAF2 complex also
stimulates the activation of pro-inflammatory NF-κB signaling cascades via IκBα proteosomal degradation by ERAD leading to intrinsic beta cell death. BCL10
expression levels were found decreased in cytokine-treated human beta cells and silencing of MANF in cytokine-treated human EndoC-βH1 resulted in a significant
increase of BCL10 expression (Hakonen et al., 2018), suggesting involvement of BCL10 in the beta cell survival pathway regulated by MANF. BCL10 is a known
inducer of apoptosis and an upstream regulator of NF-κB and also a binding partner of TRAF2 (Yoneda et al., 2000). Thus, BCL10 was placed with TRAF2 activated
by IRE1α in the scheme. NF-κB nuclear translocation induces among other genes, iNOS expression leading to subsequent NO formation. NO constrain the
SERCA2b pump, consequently leading to depletion of Ca2+ from the ER, resulting in increased ER stress (Fonseca et al., 2011) and cell death. The role of the
JNK/p38 pathway in Manf−/− islets is under investigation. Activation of ATF6 pathway results in enhanced expression of pro-apoptotic transcription factor CHOP.
The activation of PERK pathway followed by phosphorylation of eIF2α leads to global inhibition of protein synthesis and selective increase in translation of
transcription factor ATF4. EIF2α was chronically phosphorylated and ATF4 mRNA upregulated in islets from Manf−/− mice (Lindahl et al., 2014). Global inhibition of
translation induced by pEIFα also leads to reduced expression of inhibitory IκBα resulting in increased NF-κB nuclear translocation and activation of inflammatory
genes. ATF4 is known to induce the expression of Chop, Trib3 and Xbp1. Trib3 has been shown to inhibit AKT phosphorylation in the insulin signaling pathway (Du
et al., 2003). In addition, Trib3 expression was shown to be reduced in beta cells with genetically reduced insulin production due to reduced PERK/eIF2α/ATF4
activation (Szabat et al., 2016). Reduced ATF4 led to increased AKT Ser473 phosphorylation and increase in beta cell proliferation via cyclinD1. Thus decreased beta
cell proliferation in Manf−/− mice could be caused by increased ATF4-induced Trib3 mRNA expression and increased inhibition of AKT Ser473 phosphorylation and
insulin signaling. ER, endoplasmic reticulum; ATF6, activating transcription factor 6; S1P and S2P, site 1 and 2 proteases; ATF6f, cytosolic fragment of ATF6; PERK,
protein kinase RNA(PKR)-like endoplasmic reticulum kinase; eIF2α, eukaryotic translation initiation factor 2α; Trib3, pseudokinase tribbles homolog 3; PI3K,
phosphatidylinositide 3-kinases; AKT, protein kinase B; IRE1, inositol-requiring protein 1; TRAF2, TNF receptor associated factor 2; ASK1, apoptosis
signal-regulating kinase-1;NF-κB, nuclear factor κ-light-chain-enhancer of activated B cells; JNK, c-Jun N-terminal kinases, BCL10, B-cell lymphoma/leukemia 10;
IκB, inhibitor of κB kinases; iNOS, inducible nitric oxide synthase: NO, nitric oxide; SERCA2b, sarcoplasmic/endoplasmic reticulum calcium ATPase. This scheme is
modified from Danilova et al. (2018).

phenotype thereby promoting retinal tissue repair (Neves et al.,
2016). Thus, results in beta cells so far support a mechanistic
link between MANF, ER stress and inflammatory pathways.
Importantly, as MANF has been found to regulate insulin
signaling in the hypothalamus, it might as well regulate insulin

receptor signaling through PERK/eIF2α/ATF4/Trib3 modulation
of AKT phosphorylation in the beta cells. We propose that
MANF-deficiency or downregulation of MANF in beta cells
might hasten beta cell demise by chronic ER stress leading to
increased inflammatory signaling and reduced insulin expression
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and insulin signaling (Figure 3). Exogenous MANF thus might
alleviate ER stress, inflammatory signaling and increase insulin
signaling and AKT phosphorylation leading to increased beta cell
proliferation. However, evidence for this hypothesis is lacking
and MANF mechanism of action in beta cells needs further
investigation.

CONCLUSION AND PROSPECTS FOR
MANF AS REGENERATIVE
THERAPEUTIC AGENT IN DIABETES

Therapeutic strategies directed to induce endogenous beta
cell regeneration are currently under intensive investigation.
A number of strategies have proven effective in inducing
regeneration of mouse and human beta cells. These involve
initiation of beta cell proliferation and transdifferentiation of
different pancreatic cells to functional beta cells (Aguayo-
Mazzucato and Bonner-Weir, 2018). Despite great advances in
understanding mechanisms underlying regeneration in different
approaches and identifying small drugs to enhance regeneration,
there are limitations and concerns in their use.

Targeting ER stress and the UPR in diabetes is a
promising approach for beta cell regeneration. A number of
pharmacological compounds and small molecules are available to
modulate ER stress and the UPR. Low molecular weight chemical
chaperons 4-phenyl butyric acid (PBA) and TUDCA were shown
to reduce phosphorylation of PERK and IRE1α and downstream
JNK in cells from ob/ob mice and normalized hyperglycemia
and insulin resistance in those mice (Ozcan et al., 2006). In
addition, TUDCA reduced the incidence of diabetes and insulitis
in NOD mice as well as improved insulin secretion and beta cell
morphology (Engin et al., 2013). In humans, oral PBA treatment
for 2 weeks partially ameliorated intralipid infusion-induced beta
cell dysfunction thus suggesting that PBA might reduce insulin
resistance in T2D patients (Xiao et al., 2011). Recent inventions
have led to the discovery of several new small molecules that
target the enzymatic activities of UPR sensors. IRE1 inhibitors
that selectively inhibit IRE1’s RNase activity were found to
reduce ER stress-induced inflammation and atherosclerosis in
hyperlipidemic mice (Tufanli et al., 2017). Several studies have
shown that Ex-4 used to treat T2D, is protective for beta cells
via modulating ER stress induced by tunicamycin, thapsigargin,
saturated fatty acids and glucolipotoxic conditions (Yusta et al.,
2006; Cunha et al., 2009; Oh et al., 2013). In vivo, Ex-4 treatment
of diabetic Ins2Akita mice showed attenuated ER stress, associated
with reduced beta cell death and lowered blood glucose levels
(Yamane et al., 2011). Thus, these studies and others hold
promise for GLP-1 receptor agonists in the treatment of T1D
patients.

Cytosolic ABL kinases were found to interact with IRE1α

in the ER and to induce hyperactive IRE1α RNase activity
(Morita et al., 2017). This interaction was reduced by the
anti-cancer drug imatinib, in vitro and diabetes was prevented
and reversed in NOD mice. The anti-diabetic effect of
imatinib was suggested to rely on blunting the T-UPR through
decreased IRE1α/ABL interaction, reduced IRE1α-dependent

RNase activity and downregulation of TXNIP levels. In addition
mono-selective IRE1 kinase/RNase inhibitors, KIRAs were able
to nearly completely reverse established diabetes in the NOD
and Ins2Akita mouse models. The recovery was accompanied
with reduced TXNIP expression and increased Manf, Grp78 and
Ins1/Ins2 mRNA expression. Thus, T-UPR plays a central role in
degeneration of beta cells in T1D and temporal revival of beta cell
function after starting insulin therapy may be caused by reduced
beta cell ER stress and T-UPR. Thus researchers speculate that
there are salvageable beta cells during this “honeymoon period”
that could be a promising target for the treatment of T1D with
drugs that blunt the ABL-IRE1α or other UPR branches (Morita
et al., 2017). As MANF was found upregulated in T1D beta
cells under A-UPR and down-regulated at the time of initiation
of T-UPR onset, increasing MANF levels in beta cells could
hinder beta cell transition from A-UPR to T-UPR and cell death
executive pathways. Thus MANF could be a potential therapeutic
factor to alleviate ER stress, rescue beta cells and induce beta cell
regeneration in diabetes.

The data discussed in this review suggest that MANF is a novel
potent beta cell protective and mitogenic factor for human and
mice beta cells. The mechanism of action for MANF is still elusive
but point to a regenerative effect acting both intracellularly and
exogenously through modulating sustained ER stress in beta cells,
which is an important factor contributing to beta cell dysfunction
and death leading to insulin-deficiency in T1D and T2D. Thus
MANF alone or in combination with other drugs is a potential
agent for development into a regenerative drug for beta cells
in diabetes. From the translational and clinical point of view,
results with mice suggest that MANF could be delivered to
diabetic human pancreas and beta cells through viral AAV vectors
by endoscopic non-surgical procedures. However, clinical trials
using AVV vectors will uncover whether the use of these vectors
are efficient and safe. Future studies will reveal whether MANF
protein-based systemic delivery can normalize blood glucose
levels in rodent models of diabetes. In addition, efforts to improve
MANF stability and efficacy will be required for translating the
MANF therapy to humans.
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