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ABSTRACT
BACKGROUND: By adolescence, foundational cognitive and affective neurobehavioral processes specialize based
on environmental demands, such as stress, to determine the basis of adult trajectories. The ongoing COVID-19
pandemic has increased stress for everyone, particularly adolescents who face unique stressors such as
restrictions in socialization and education. However, variability in brain processes supporting stress reactivity is
not well understood. Here, we leverage pre-pandemic brain development studies to identify how maturity of
prefrontal connectivity with the amygdala and hippocampus (HPC) is associated with response to COVID-19. We
hypothesized that age-related changes in connectivity of affective and cognitive brain systems may underlie the
emotional response of adolescents during the pandemic.
METHODS: In this study, 10- to 31-year-old participants (n = 111) completed resting-state functional magnetic
resonance imaging scans prior to the pandemic and then completed a questionnaire 9 months into the pandemic
measuring worry, COVID-related stress, sadness, perceived stress, and positive affect. Associations between
pairwise functional connectivity of HPC/amygdala subregions with prefrontal cortex subdivisions and affective
reactivity during the pandemic were examined.
RESULTS: Regression analyses indicated that both worry and COVID-19–related stress increased with age (false
discovery rate–corrected p , .05). Furthermore, greater connectivity between the anterior ventromedial prefrontal
cortex and posterior HPC was associated with greater worry and COVID-19–related stress (p , .05 corrected),
which was primarily driven by individuals younger than 18 years.
CONCLUSIONS: Taken together, our results indicate that increases in stress reactivity to the COVID-19 pandemic
across the transition to adulthood are driven by maturation of posterior HPC–ventromedial prefrontal cortex
coupling, which integrates stress response and emotional memory processing.

https://doi.org/10.1016/j.bpsgos.2021.06.010
Adolescence is a developmental period defined by the onset of
puberty and characterized by maturation of cognitive and af-
fective systems (1,2). During adolescence, relationships take
on a central role as the social brain continues to develop (3,4).
In fact, having social experiences during adolescence seems
to be critical for both normative social (5) and cognitive (6)
development. Furthermore, adolescent social experiences may
play a role in the onset of critical period plasticity, driving
maturation of association cortex (7). Thus, a disruption to an
adolescent’s ability to engage with their environment during
this time may have a heightened impact on their develop-
mental trajectory.

Unfortunately, the COVID-19 pandemic has presented a
challenging backdrop for adolescent development, increasing
stress related to health, employment, and caretaking de-
mands. As of this writing, COVID-19 prevention measures,
including lockdowns and mask mandates, have been in place
for more than 1 year, with more than 203 million cases and 4.3
million deaths reported worldwide (8). Social distancing mea-
sures and remote learning have severely limited adolescents’
opportunities to socialize with peers at a time when these
THE AUTHORS. Published by Elsevier Inc on behalf of the Society of B
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experiences are essential for healthy brain development.
Indeed, recent studies have shown that depressive symptoms
have increased among adolescents since the pandemic’s
onset (9) and that internalizing symptom severity scaled with
the level of pandemic-related stress (10). Although this
pandemic is a historically unique event, similar stressful events
of a comparable nature, such as natural disasters, have been
shown to lead to lasting brain changes. For example, a study of
children in the Adolescent Brain Cognitive Development
(ABCD) initiative who experienced Hurricane Irma in Florida
found decreased neurogenesis and altered memory function in
the hippocampus (HPC) compared with nonexposed
children (11).

A growing literature indicates that stress affects systems
that are undergoing significant maturation across adoles-
cence, such as the HPC, amygdala, and their connectivity to
prefrontal cortex (PFC) regions. The HPC, which is primarily
implicated in cognitive functions such as memory, has been
found to be affected by chronic stress leading to alterations in
volume (12), microstructure (11), function (11,13), and connec-
tivity with other regions, particularly the PFC (12,13). Similarly,
iological Psychiatry. This is an open access article under the
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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the amygdala, which is involved in emotion processing, shows
substantial change following exposure to chronic stress at the
neuronal level (14) as well as in its connectivity with the PFC
(15–17). Notably, resting-state functional connectivity of both
the amygdala and HPC with the PFC shows protracted
development during adolescence. Developmental reductions
in amygdala-PFC connectivity throughout adolescence have
been associated with anxiety and depression (18), while
developmental HPC–ventromedial PFC (vmPFC) increases
have been associated with cognitive processes such as
planning (19). In addition, the uncinate fasciculus and the
cingulum, primary white matter tracts that integrate these
systems, continue to strengthen into young adulthood (20,21).

While there is evidence that stress may affect connectivity,
little is known regarding how variability in connectivity prior to
stress may influence stress response. Initial studies have found
some connectivity-based indices of stress predisposition. For
example, connectivity between bilateral HPC in 20 male adults
was found to be predictive of cortisol release following a stress
test (22). Furthermore, connectivity between the anterior
cingulate cortex (ACC) and the salience network in 49 ado-
lescents was associated with an individual’s cortisol reactivity
in response to a stressful task (23). These results suggest that
predisposition to stress reactivity may be reflected at the level
of connectivity. However, it is unclear how connectivity of
stress-responsive regions is predictive of real-life stressful
experiences, and how this may differ between the develop-
mentally dynamic stage of adolescence and stable adulthood.
Here, we leveraged resting-state functional brain data in 10- to
31-year-old participants (n = 111) obtained before the
pandemic to identify neurobiological markers of variability in
stress response.

METHODS AND MATERIALS

Participants

Neuroimaging data were collected from 286 participants (age,
10–31 years; 152 female) across two multimodal accelerated
longitudinal studies. Participants were recruited from the
community and were excluded if they reported that they or a
first-degree relative had received a diagnosis of a psychiatric
or neurological disorder, or if they reported magnetic reso-
nance imaging (MRI) contraindications such as metal in the
body. COVID-19 questionnaires were sent 9 months into the
pandemic to all eligible participants (N = 286) in both studies
and completed by a subgroup of 111 (60 females) participants
(see demographics in Figure S1). There were no significant
differences in the age (b = 20.0034, p = .91), sex (F1,278 = 0.14,
p = .71), or race (F4,269 = 0.59, p = .67) of responders compared
with nonresponders.

COVID-19 Questionnaire

Participants completed a COVID-19 questionnaire that was
developed by the ABCD Study, a longitudinal study examining
brain development in 11,878 children across the United States
(24). The questionnaire includes 109 questions for adults and
91 questions for children, which ask about the direct impacts
of the pandemic, such as job loss, and about effects on mood,
anxiety, stress, and sleep. For participants younger than 18
284 Biological Psychiatry: Global Open Science December 2021; 1:28
years, a questionnaire was also sent to parents of the partici-
pants to ask about topics such as financial hardship and
severity of COVID-19 illness in the participants’ families.

Five measures were used from the ABCD COVID-19
assessment, including Worry and Sadness measures from the
National Institutes of Health (NIH) Toolbox Child forms (25), the
4-item Perceived Stress Scale (26), a COVID Stress score,
and a Positive Affect score (for specific items included, see
Figure S2).

� Worry Score: ratings from 8 questions (taken from the NIH
Toolbox Fear measure) on a 5-point Likert scale were
summed, and the equivalent t-score was used from the
unstandardized t-score table for Fear in the NIH Toolbox
Scoring Manual.

� Sadness Score: ratings from 9 questions (taken from the NIH
Toolbox Sadness measure) on a 5-point Likert scale were
summed, and the equivalent t-score was used from the
unstandardized t-score table for Sadness in the NIH Toolbox
Scoring Manual.

� COVID Stress Score: ratings from 5 questions on a 5-point
Likert scale were z-scored and summed.

� Perceived Stress Score: ratings from 4 questions (taken
from the Perceived Stress Scale – 4 Item) on a 0–4 point
scale were summed.

� Positive Affect Score: ratings from 9 questions (taken from
the NIH Toolbox Positive Affect measure) on a 4-point Likert
scale were z-scored and summed. The unstandardized
t-scores for the NIH Toolbox measure could not be used due
to differences in the rating scales.
MR Data Acquisition

Imaging data were acquired from two ongoing neuroimaging
studies. In the first study (n = 150 participants; n = 33 with
COVID-19 questionnaire data), MRI data were acquired on a 3T
Siemens Biograph molecular MR positron emission tomogra-
phy/MRI scanner with a 12-channel head coil. Structural im-
ages were acquired using a T1-weighted magnetization
prepared rapid acquisition gradient-echo sequence (repetition
time [TR] = 2300 ms; echo time [TE] = 2.98 ms; flip angle = 9�;
inversion time = 900 ms, voxel size = 1.0 3 1.0 3 1.0 mm).
Functional images were acquired using a blood oxygen level–
dependent signal from an echo-planar sequence (TR = 1500
ms; TE = 30 ms; flip angle 50�; voxel size, 2.3 3 2.3-mm in-
plane resolution; 33 multiband acceleration) with contiguous
2.3-mm-thick slices aligned to maximally cover the whole
brain. The resting-state acquisition included 320 volumes for a
total duration of 8 minutes (eyes open; blank screen).

In the second study (n = 136 participants; n = 74 with
COVID-19 questionnaire data), data were acquired on a 7T
Siemens Magnetom scanner. Structural images were acquired
using an MP2RAGE T1-weighted acquisition (1.0-mm isotropic
resolution, TR = 6000 ms; TE = 2.87 ms; flip angle 1 = 4�, flip
angle 2 = 5�). Functional images were acquired using a three-
dimensional blood oxygen level–dependent echo-planar im-
aging sequence (TR = 2180 ms; TE = 23 ms; flip angle = 7�;
voxel size = 2.0 3 2.0 3 2.0 mm). The resting-state acquisition
included 220 volumes for a total duration of 8 minutes (eyes
open; blank screen).
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Figure 1. Regions of interest selected for computing pairwise connec-
tivity values between (top) amygdala and hippocampus (HPC) subdivisions
and (bottom) prefrontal cortex (PFC) and anterior cingulate cortex (ACC)
subdivisions. aHPC, anterior HPC; amOFC, anterior medial orbitofrontal
cortex; avmPFC, anterior ventromedial PFC; BL, basolateral; CM, cen-
tromedial; dACC, dorsal ACC; dlPFC, dorsolateral PFC; pHPC, posterior
HPC; pmOFC, posterior medial OFC; rACC, rostral ACC; sgACC, subgenual
ACC; vACC, ventral ACC; vlPFC, ventrolateral PFC.
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Functional MRI Preprocessing

Structural MRI data preprocessing included skull stripping and
warping to the Montreal Neurological Institute standard brain
using both linear (FLIRT) and nonlinear (FNIRT) transformations
(27). Functional images were processed using a pipeline pre-
viously developed by our group to reduce the effects of head
motion (28), including four-dimensional slice-timing and head
motion correction (29), wavelet despiking (30), coregistration to
the structural image and nonlinear warping to Montreal
Neurological Institute space (27,31), local spatial smoothing
with a 4-mm Gaussian kernel, intensity normalization, nuisance
regression based on head motion (based on 6 degree-of-
freedom motion estimates and their derivatives) and nongray
matter signal (white matter, cerebrospinal fluid, and their de-
rivatives), and bandpass filtering between 0.009 and 0.08 Hz
(32). Framewise motion estimates were computed, and vol-
umes containing framewise displacement (FD) . 0.3 mm were
censored from connectivity computations. To ensure that any
residual motion effects were not driving age-related findings,
all analyses included mean FD as a covariate (see Figure S3 for
distribution of mean FD across age).

Regions of Interest

Hippocampal regions were defined as in Calabro et al. (19)
(Figure 1). Briefly, following Murty et al. (33) and Staresina et al.
(34), the Harvard-Oxford Atlas HPC region was divided into
thirds, with the anterior and posterior thirds defined as the
anterior HPC and posterior HPC (pHPC), respectively. The
middle subdivision was excluded to minimize possible signal
overlap between these regions. Given the distinct functions of
basolateral (BL) and centromedial amygdala, we identified
each using stereotaxic probabilistic maps based on
cytoarchitectonic boundaries (35) as in Jalbrzikowski et al. (18)
(Figure 1). PFC regions of interest (ROIs) included anatomically
defined subdivisions of the vmPFC (36), as well as vlPFC
(Brodmann area [BA] 44, BA 45, and BA 47) and dlPFC (the
middle frontal gyrus bordered by the superior frontal and
precentral sulci including BA 9 and BA 46) as defined in Cal-
abro et al. (19) (Figure 1). We additionally included regions of
the ACC based on anatomical definitions specified in the
Brainnetome Atlas (37) (Figure 1).

Statistical Analysis

For each ROI, time courses were extracted from each sub-
ject’s data by taking the first principal component across all
voxels within the ROI from the preprocessed and head motion–
censored time courses. Pearson correlation coefficients were
computed between the eight HPC (left and right hemispheres,
anterior and posterior) and amygdala (left and right BL and
centromedial) seeds and each of the PFC ROIs.

Effects of age on affective scores and pairwise connectivity
values, as well as interaction effects of age and connectivity on
affective scores, were evaluated using linear regression in R
(38). Linear regression models included age, connectivity, or
the interaction of age and connectivity as independent vari-
ables, and connectivity or affective scores as the dependent
variable. Connectivity values were averaged across hemi-
spheres before including in all regression models. In addition,
all models included sex, mean FD, and study as covariates. In
Biological Psychiatry: Global Op
the significant interaction model, a Johnson-Neyman plot was
generated using the R package ‘interactions’ to determine the
age range in which the association between connectivity and
affective score was significant (39). Statistical correction for
multiple comparisons was done using false discovery rate
(FDR) correction with the Benjamini-Hochberg procedure
through the ‘stats’ R package (38).

RESULTS

Effects of Age on Affective Scores

Linear regression was used to examine the association of
age with COVID-19 questionnaire measures, controlling for
the effect of sex and study (Figure 2 and Figure S4). We
found a significant main effect of age on COVID Stress score
(b = 0.34, puncorrected = .00037, pFDR = .0019), such that
greater COVID-related stress was associated with increasing
age. We also found a significant main effect of sex, with females
reporting more stress than males (b = 20.54, puncorrected =
.0023, pFDR = .012). Similarly, worry increased with age (b =
0.25, puncorrected = .014, pFDR = .036). For the Perceived Stress
Scale score, there was no age effect (b = 0.080, p = .43),
but females reported somewhat higher levels than males
(b = 20.39, puncorrected = .040, pFDR = .066). For the Sadness
score, there was no age effect (b = 0.16, p = .11), but females
reported greater levels of sadness (b = 20.45, puncorrected =
.017, pFDR = .042). There was no age effect of positive score
(b = 20.12, p = .24) and no associations with any covariates.
en Science December 2021; 1:283–290 www.sobp.org/GOS 285
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Figure 2. Significant age-associated changes in Worry score and COVID-
19 Stress score. Color of lines corresponds to the sex of participant. Age
corresponds to age at the time of questionnaire.
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Figure 3. Significant age-associated change with the anxiety composite
score. Color of lines corresponds to the sex of participant.
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For all models, there was no effect of study and no interactions
between age and other covariates.

Given the similarity between the Worry and COVID Stress
scores, both of which were significantly associated with age,
we examined the correlatedness of these two scores. The
Worry and COVID Stress scores were significantly correlated
(r = 0.58, p = 1.98 3 10211), even with age regressed out
(r = 0.55, p = 3.31 3 10210). Thus, a composite anxiety score
was created by z-scoring the Worry and COVID Stress scores
and calculating the per-subject mean. This anxiety composite
also showed significant increases with age (Figure 3) (b = 0.30,
p = .00070), in addition to a main effect of sex (b = 20.42,
p = .0089), with females reporting higher anxiety composite
scores than males. There was no effect of study and no
interaction between age and other covariates.

Effects of Age on Pairwise Connectivity Between
Amygdala, HPC, and PFC Subregions

To identify developmentally sensitive connectivity pairs that
may underlie age-related changes in anxiety, pairwise con-
nectivity values were computed for subregions of the amyg-
dala and HPC with subdivisions of the PFC (see Table S1 for
age effects with all ROI pairs). Connectivity between two ROI
pairs, anterior ventromedial PFC (avmPFC) and pHPC, as well
286 Biological Psychiatry: Global Open Science December 2021; 1:28
as rostral ACC (rACC) and BL amygdala, was significantly
associated with age (Figure 4) (p , .05). avmPFC-pHPC con-
nectivity increased with age (b = 0.16, puncorrected = .012), while
connectivity between the rACC and BL amygdala decreased
with age (b = 20.15, puncorrected = .023). While these findings
did not survive multiple comparisons correction, they were
consistent with our previous work from Calabro et al. (19) and
Jalbrzikowski et al. (18), respectively. We observed no effect of
sex, motion, or study in this effect.

Associations Between Age, Anxiety Composite
Score, and Connectivity

For connectivity pairs where an age effect was identified
(avmPFC-pHPC and rACC-BL amygdala), we investigated
associations between connectivity and anxiety composite
score (see Tables S2 and S3 for results from exploratory
analyses of associations between other connectivity pairs
and anxiety composite score, as well as the interaction with
age). Linear regression models were used to examine the
association between connectivity prior to the pandemic and
composite anxiety score during the pandemic, controlling for
age at scan and sex. To control for the effects of study and
head motion on connectivity, a linear regression model with
study and head motion as independent variables and con-
nectivity as the dependent variable was used to generate
residual connectivity values, which were used in all subse-
quent analyses.

Connectivity between the avmPFC and pHPC was signifi-
cantly associated with composite anxiety score (b = 0.22,
puncorrected = .0057, pFDR = .012), such that higher connectivity
was associated with higher composite anxiety scores. This
model also showed main effects of age (b = 0.26, puncorrected =
.0013, pFDR = .0026) and sex (b = 20.41, puncorrected = .011,
pFDR = .022) and no effect of motion or study. There was no
significant association between rACC-BL amygdala connec-
tivity and the anxiety composite score (b = 20.70, p = .10).
Post hoc analyses revealed a significant age-by-connectivity
interaction in the avmPFC and pHPC (Figure 5) (b = 20.16,
p = .027), such that in younger participants only, greater
connectivity was associated with a higher composite score.
3–290 www.sobp.org/GOS
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This interaction model included sex as a covariate and used
connectivity residuals, which controlled for the effects of study
and head motion. A Johnson-Neyman analysis revealed that
this association between avmPFC-pHPC connectivity and
anxiety composite score was significant only between the ages
of 10 and 18.59 (Figure 6). Notably, a pre-pandemic measure
of anxiety from the Youth Self-Report (YSR) and Adult Self-
Report (ASR) was also significantly associated with avmPFC-
pHPC connectivity (p = .026). Interestingly, the YSR/ASR
score was not associated with age, nor was there an age
interaction between this measure and connectivity (see
Supplemental Methods and Supplemental Results). Impor-
tantly, this difference suggests that the impacts of the
pandemic extended beyond individuals who were predisposed
to anxiety. Thus, avmPFC-pHPC connectivity may underlie a
broad range of affective reactivity to stress, including predis-
position for anxiety as well as reactive anxiety.
0.50 0.25 0.00 0.25 0.50

pHPC avmPFC Connectivity

Figure 5. Significant age-by-connectivity interaction on the Anxiety
score. Sample divided into two age groups based on a Johnson-Neyman
analysis. avmPFC, anterior ventromedial prefrontal cortex; pHPC, poste-
rior hippocampus.
DISCUSSION

In this study, we examined associations between the func-
tional connectivity of HPC and amygdala subregions with PFC
pre-pandemic and emotional responses during the COVID-19
Biological Psychiatry: Global Op
pandemic in a cohort of adolescents and young adults. We
found that older participants reported greater levels of COVID-
specific stress, worry, and anxiety during the pandemic. In
addition, females reported greater levels of anxiety and
sadness during the pandemic than males, independent of age.
Resting-state functional connectivity analyses revealed that
the presence of more adult-like connectivity between pHPC
and avmPFC prior to pandemic onset was associated with
greater levels of self-reported anxiety during the pandemic.

Stress hormone receptors are concentrated in the HPC (40),
and its prolonged neurogenesis is interrupted by glucocorti-
coids released during stress (41,42). In addition, one study
examined hippocampal BDNF (brain-derived neurotrophic
factor) expression, which promotes neurogenesis, during
stress in rodents (43). Results indicated that reduced BDNF in
the rodent analog of the pHPC was associated with prolonged
corticosterone elevation in young, but not adult, rats. Our re-
sults showed that the relationship with self-reported anxiety
during the pandemic was specific to PFC functional connec-
tivity with the pHPC, which primarily supports storing of
memories, in contrast to the anterior HPC, which supports
flexible representations of previous experiences (44,45). Ac-
tivity in the pHPC has been associated with trait anxiety levels
in humans, such that greater threat-related activation in the
pHPC is associated with greater trait anxiety (43). Studies
show that HPC-vmPFC connectivity plays a critical role in
stress response, such as that following stress exposure in
adults with posttraumatic stress disorder (12,44), childhood
trauma (45), and childhood institutionalization (46). Given this
literature and the association we see between HPC-vmPFC
connectivity and the ASR/YSR data gathered in our sample
prior to the pandemic, this connection’s influence on stress
may generalize beyond once-in-a-lifetime pandemics.

The results seen here were also specific to the vmPFC and
its connectivity with the pHPC. The vmPFC has been impli-
cated in many higher-order functions including decision mak-
ing and value judgment, but most relevant here is its role in
emotional, specifically fear, processing (46–49). Furthermore,
connectivity between the pHPC and vmPFC has been asso-
ciated with the construction of episodic memories and the
en Science December 2021; 1:283–290 www.sobp.org/GOS 287
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elaboration of emotional memories (50,51). Previous research
suggests that an individual’s episodic memory and episodic
future thinking may relate to anxiety symptoms (52–54). Our
previous findings indicate that age-related increases in pHPC-
vmPFC connectivity through adolescence support future
planning (19), suggesting that as cognitive processes mature,
there may be greater ability to think in a future-oriented
manner, thereby increasing potential for stress-related worry.
Taken together with our current results, this suggests that
adolescents with more mature pHPC-vmPFC connectivity may
have a greater ability to process stressful events in an adult-
like way, resulting in greater self-reported anxiety.

It is notable that age-related changes were not observed
in the connectivity of other pairs of regions besides the
pHPC-vmPFC and rACC-BL amygdala. This is in contrast to
previous studies, including ours, that have additionally found
age-related decreases between the centromedial amygdala
and the rACC, anterior vmPFC, and subgenual cingulate (18)
as well as age-related increases between the anterior HPC and
vmPFC (19). There are several possibilities as to why these
changes were not observed in these data. First, this study
used only cross-sectional data while these previous studies
incorporated longitudinal data. Because our goal was pro-
spective prediction, we chose to limit analyses to include a
single scan per subject to provide an individual pre-COVID
baseline. However, this limits our statistical power to detect
developmental change compared with these previous studies.
Second, while one of our included studies started at age 10,
the other began at age 12, and both had sparser sampling at
younger ages. Thus, compared with other studies that had
samples slightly younger than ours (18), our data may be less
powered to detect age-related change occurring in these early
developmental periods.

Many studies have examined the impact of stress during
development on the adolescent brain (55). Studies looking
specifically at the impact of stress on the maturation of
adolescent brain connectivity have shown that stress is asso-
ciated with accelerated development of fronto-amygdala
connectivity, which may be adaptive at the time but may later
confer risk for psychopathology such as anxiety (56,57). How-
ever, in this prospective study, accelerated development of
288 Biological Psychiatry: Global Open Science December 2021; 1:28
connectivity preceded the stress response, with more adult-like
connectivity between the pHPC and avmPFC during adoles-
cence associated with worse anxiety during the pandemic.

While it cannot be ruled out that pre-pandemic stress may
have already accelerated brain development in certain in-
dividuals, it may also be the case that having more adult-like
connectivity could predispose individuals to engage in anxio-
genic thought processes and behaviors. Some developmental
cognitive models of worry propose that a more adult-like ability
to imagine future outcomes may be a mechanism underlying
increased capacity for worry at younger ages (58,59). Thus,
having a more adult-like understanding of the pandemic and
ability to imagine future or large-scale outcomes may lead to
more adult-like emotional responses in younger participants,
i.e., greater anxiety and worry. Prospective studies that include
anxiety and brain connectivity measurements prior to stressful
events could better elucidate if the maturation of HPC-PFC
connectivity is predictive of stress reactivity.

In addition, consistent sex differences were observed
across multiple affective measures, indicating that the COVID-
19 pandemic is causing greater stress and sadness in females
than males, regardless of age. It should be noted that this
study did not collect these measures prior to pandemic onset,
so it is unclear whether these sex differences are directly
related to the pandemic. However, this result is consistent with
existing research showing worse mental health outcomes for
females worldwide during the pandemic (60–66). Greater
distress in females could be related to a number of factors,
such as increased child care burden, as well as the significantly
higher number of women in health care and other fields heavily
affected by the pandemic, such as the service industry (66,67).
Females are also known to experience higher rates of inter-
nalizing symptoms and may react differently to stressful events
(68–71). One possible explanation for these sex differences
that has been suggested is that earlier onset of puberty, as
seen in females, may confer risk for psychological distress
because of many social and biological factors (72–74). The
idea that earlier maturation may increase risk for greater
distress also supports the idea that more adult-like brain
connectivity may result in greater anxiety, as suggested above.

Certain limitations of this study should be noted. First,
COVID-19 affective measures were not collected prior to
pandemic onset, so we cannot confirm whether these differ-
ences were preexisting. By incorporating the ASR/YSR mea-
sure, we were able to look broadly at anxiety levels in this
sample prior to the pandemic, but this measure is more sen-
sitive to clinically significant levels of anxiety, and thus may not
pick up on less significant variability. Similarly, we did not
obtain stress reactivity to other life events, limiting our ability to
discern if reactivity to the pandemic generalizes to other situ-
ations. In addition, this study is cross-sectional, which limits
our ability to look at age-related change. Furthermore, we were
not able to obtain responses on the COVID-19 questionnaire
from every participant we collected MRI data from, thus
decreasing our sample size.
Conclusions

Our results indicate that during the transition to adulthood,
increasing age is associated with greater levels of stress and
3–290 www.sobp.org/GOS
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worry during the COVID-19 pandemic. This may relate to the
maturation of HPC-vmPFC connectivity, which may facilitate
future planning and episodic future thinking. While this study
investigated a normative sample with no clinical diagnoses of
mood disorders, it identifies HPC-vmPFC as an important
circuit underlying stress reactivity that could inform risk for the
development of anxiety or depression relating to chronically
stressful events. Given that adolescence is a period of not only
heightened brain plasticity but also heightened vulnerability for
the emergence of psychopathology, adolescence is a window
of opportunity for affecting mental health outcomes. Thus,
understanding the neural basis of variability in stress reactivity
may provide insight into who may be at greater risk, allowing
for earlier, more effective intervention.
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