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Abstract: Advances in information technology have harnessed the application of Quick Response
(QR) codes in day-to-day activities, simplifying information exchange. QR codes are witnessed
almost everywhere, on consumables, newspapers, information bulletins, etc. The simplicity of QR
code creation and ease of scanning with free software have tremendously influenced their wide usage,
and since QR codes place information on an object they are a tool for the IoT. Many healthcare IoT
applications are deployed with QR codes for data-labeling and quick transfer of clinical data for rapid
diagnosis. However, these codes can be duplicated and tampered with easily, attributed to open-
source QR code generators and scanners. This paper presents a novel (n,n) secret-sharing scheme
based on Nonnegative Matrix Factorization (NMF) for secured transfer of QR codes as multiple
shares and their reconstruction with a regularized Super Resolution Convolutional Neural Network
(SRCNN). This scheme is an alternative to the existing polynomial and visual cryptography-based
schemes, exploiting NMF in part-based data representation and structural regularized SRCNN to
capture the structural elements of the QR code in the super-resolved image. The experimental results
and theoretical analyses show that the proposed method is a potential solution for secured exchange
of QR codes with different error correction levels. The security of the proposed approach is evaluated
with the difficulty in launching security attacks to recover and decode the secret QR code. The
experimental results show that an adversary must try 258 additional combinations of shares and
perform 3 × 288 additional computations, compared to a representative approach, to compromise the
proposed system.

Keywords: secret sharing; quick response code; Nonnegative Matrix Factorization; super resolution;
convolutional neural network; structural regularization; basis matrix; coefficient matrix

1. Introduction

Modern commercial applications employ QR codes in brand promotion, enriching
consumer usage experience, interactive labeling for sharing product information, including
promotional videos, web links, etc. In addition, QR codes are integrated with service
platforms of governments for the effective delivery of utilization and administrative services
to the public. The simplicity of QR code generation and scanning with cheap smart
phones and IoT has harnessed their extensive adaptation by commercial and nonprofit
organizations [1]. For an example, QR codes allow the consumer to connect to the IoT
with a simple smartphone or tablet scan. Having all objects marked with a QR code or
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barcode means improving the retail environment for consumers because they will be more
educated about the item before purchasing, and they will be able to check for an item’s
availability. On the other hand, they are also susceptible to tampering and duplications
for illegal financial benefits and counterfeiting authentic goods [2]. Security investigations
have reported huge losses to commercial organizations that are ascribed to the flooding of
fake goods carrying authentic QR codes. Several mechanisms have been proposed so far
for protecting the QR codes against attacks.

The primitive QR code security approaches embedded the QR codes within cover
images in the spatial or frequency domain [3,4]. Later, watermarks were embedded in the
frequency domain of the codes employing standard image transformations [5,6] such as
Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT) and Discrete Fourier
Transform (DFT). Later, spatial domain watermarking schemes exploiting the structure and
error correction [7,8] capabilities of the QR codes were proposed. In these schemes, the
QR codes with distortions were not readable and required additional morphological and
interpolation operations to be recovered for reading. Further, if the error correction level
was high and the embedded data was not encrypted, the QR code and the hidden data
could be read by the attacker. In a similar method proposed by Chen [9], the QR code was
embedded with message authentication code and cryptographic signature, exploiting the
redundancy of error correction codes. Scanned with a conventional barcode scanner, this
stego QR code revealed only the public information. The authentication data embedded
within the code could be retrieved only if the barcode structure and embedding procedure
was known. On successful extraction, the authenticity of the QR was verified. Of late,
secret-sharing schemes are widely used in securing the QR codes from malicious attacks.
These approaches share the QR code as secret shares among participants and recover the
QR code from the shares. With these schemes, better robustness can be achieved. The
schematic of the (n,n) secret-sharing scheme for sharing a QR code as a secret is shown in
Figure 1.
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The effectiveness of QR codes in healthcare applications has been demonstrated
by various researchers recently [10,11]. Earlier, Feng [12] and co-workers demonstrated
the fabrication of an immune-chromatographic assay labeled with QR codes for rapid
biomedical diagnosis with Google Glass. In this approach, a QR code generator creates a
QR code identifier for one or more diagnostic tests. Attaching a QR code label facilitates the
automatic identification of the test of interest and other relevant data such as the patient
details. Jamu [13] and co-workers evaluated the feasibility of utilizing the QR codes in
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capturing the real-time clinical data in an inpatient clinical environment and reported their
effectiveness. A QR code-based diagnostic assay for detection and tracking of malaria has
been proposed by Mthembu [14] et al. The QR codes signifying positive, negative and
invalid test results integrated with diagnostic kits facilitate the immediate acquisition of
clinical data from the point of study to the central laboratories, with the aid of Google
Analytics. This approach is found to be effective in the surveillance investigations of
diseases. In addition, many researchers have started exploring the integration of QR codes
in various clinical applications.

In this intriguing context, this paper proposes a novel approach for sharing QR codes
based on NMF [15] and SRCNN [16]. Particularly, we introduce variants of these classical
approaches called the multi-layer NMF and structure regularized SRCNN in realizing the
proposed system. The inherent characteristic of the NMF in creating component matrices
with nonnegative elements is exploited in this work, in the creation of secret shares from
QR codes at the sender side. These shares are combined to reconstruct the QR codes at
the other end. The proposed scheme is featured as an (n,n) secret-sharing approach, in
which all the shares are essential for reconstruction of the secret QR code. The structure
regularization constraint ensures that the structural elements of the reconstructed QR code
are intact. This scheme is ideal for sharing secret data as QR codes, to establish trust among
a group of participants, creating a secured environment.

The contributions of this research are as below.

1. This paper proposes a novel secret-sharing mechanism for sharing QR codes as basis
and coefficient matrices constructed by a multi-layer NMF as secret shares.

2. The QR codes are recovered by computationally less expensive Nonnegative Matrix
Reconstruction operations and structure regularized SRCNN on the secrets.

3. The proposed approach eliminates the need for an explicit carrier image to embed
the secret shares, as the individual shares do not carry significant information for
an attacker.

4. This approach is free from pixel-expansion problems as the shares are not embedded
for sharing.

5. The security of the secret can be improved by increasing the number stages of NMF
for decomposition of the shares.

6. This approach is suitable for QR codes with different error correction levels as the
secret-sharing and reconstruction operations are the same for all sizes of secrets.

Pixel expansion problems encountered in conventional secret-sharing schemes are
completely averted in the proposed scheme, as NMF generates the shares by factorization.
The SRCNN is applied to recover the QR code from the approximate version obtained from
the secret shares. Experimental results with a standard dataset show that the proposed sys-
tem is an eventual solution towards the realization of anti-counterfeit QR codes. This paper
is organized with a review on conventional secret-sharing schemes and QR code-based
secret-sharing schemes in Section 2. The mathematical foundations of the proposed system
are described in Section 3 and the architecture of the proposed system is given in Section 4.
The experimental results, comparative analyses, security analyses and interpretations are
given in Section 5. The paper is concluded in Section 6.

2. Literature Review

Secret Image Sharing (SIS) schemes share a secret image as a number of secret shares or
shadow images among the participants and recover the secret image, combining sufficient
number of shares. Visual Secret Sharing (VSS) and Polynomial-based Secret Sharing (PSS)
are the popular SIS approaches. VSS schemes reconstruct the secret image simply stacking
the secret shares. These schemes based on the logical XOR operations are characterized by
lossy recovery and low visual quality of reconstructed secret images [17]. In the earliest
(k,n) PSS scheme proposed by Naor and Shamir [18], the secret image is divided into n
shares, where at least k out of n shares are required for secret image reconstruction. Though
this scheme is secure, it is characterized by storage overheads, as each shadow image is
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of the size of the secret image. A variant of this scheme proposed by Thien and Lin [19]
reduced the size of each shadow image by 1/k of the secret image. However, in this method,
traces of the secret image are evidenced in the shares and the secret can be reconstructed
from insufficient number of shares, forsaking security. Though lossless recovery of secret
image is achieved by this method, it suffers from random pixel expansion. Further, other
PSS schemes have also been proposed featuring lossless recovery. The scheme proposed by
Yang et al. [20] based on polynomials in the Galois Field, exhibits higher computational
costs compared to other methods. Similarly, a lossless scheme proposed by Ding et al. [21]
also suffers from limitations such as random shape changes, large shadow size and high
computational complexity. In a (k,n) PSS scheme proposed by Zhou et al. [22], the shadow
size is reduced to 1/k− 1 of the secret image. This method embeds the first k− 1 coefficients
to reduce the shadow size. A (n,n) visual secret-sharing scheme based on XOR operations
is proposed in [23], which shares the secret as n meaningful shares among n participants.
The authors of this paper claim that this method is superior to conventional methods as the
drawbacks such as pixel expansion, alignment of shares for reconstruction, loss of contrast,
need for an explicit codebook for construction, etc., are mitigated.

Though creation and recognition of QR codes are simple, incorporating them in the
business workflow of enterprises poses severe security risks, as QR codes are vulnerable to
copy–paste attacks. A QR code can allegedly be used as an attack vector for threatening the
reputation of an organization. Sharing a QR code securely among a group of people as secret
shares and recovering the QR code from the shares will be a potential solution to enforce
trust among a group of people. The significant difference between sharing images and QR
codes is that the QR codes must be decodable after recovery. This requirement imposes a
stringent constraint on the implementation of the QR code secret-sharing schemes.

Several attack scenarios such as Cross-Site Request Forgery attack (CSRF) [24], Cross-
Site Scripting (XSS) attack [25], social engineering, phishing and pharming attacks can be
launched, making minimal changes to genuine QR codes. Various empirical studies on
the use of QR code as an attack vector are demonstrated in [26]. In order to prevent these
attacks, QR code-sharing schemes must avoid information leakage in the secret shares,
making reconstruction difficult. In addition, limitations of conventional secret-sharing
schemes such as pixel expansion, memory overheads and computational costs must also be
reduced or overcome in these schemes. Further, readability requirements also make QR
secret-sharing a challenging task. Hence, there are only very few works in this context,
discussed in this section.

Lin [27] proposed an (n,n) secret-sharing scheme in which the secret is divided into n
shadows. Each shadow along with the authentication code is embedded as a pair (si,vi) into
the data codewords of each cover QR code QRi. At the other end, (si,vi) pair is extracted
from each QRi and all the shares are combined to reveal the secret. This scheme verifies
the integrity of each share with the verification code, generated using a master key and a
hashing function. A (k,n) secret-sharing scheme proposed in [28] shares a secret image as n
QR code shares and provides two approaches for revealing the secret, one by stacking the
QR code shares and the other by performing XOR operations. This approach called a VSS-
based QR code (VSSQR) scheme, exploits the error correction capabilities of the QR codes
to generate QR code shares to share images. The secret image can be revealed by stacking a
sufficient number of QR-code shares in low-resource settings. Further, this method also
facilitates lossless recovery of a secret image by XOR operations among the shares. In an
(n,n) secret-sharing mechanism proposed in [29], a secret message is encoded as a secret QR
code and shared among n participants as QR code shares. The secret message is decoded
from the QR code revealed by combining these n shares. Similarly, a cooperative secret-
sharing protocol proposed in [30], embeds secret messages within QR codes and distributes
them to n participants such that each QR code carries both public and private information.
Public information is readable by conventional QR scanners while the private message is
extracted using a symmetric key. This message is then decoded with the private key of a
participant to extract the share. These shares are combined to extract the secret messages.
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Liu et al. [31] have proposed a (3,3) threshold secret-sharing scheme called the VSS-QR
code. This approach encodes the binary QR codes into three color shares and recovers
the QR code by stacking them. Yu et al. [32] present a three-level QR coding scheme,
embedding sensitive information within a carrier QR code in three steps, revealing only
the public information of the carrier at the first layer.

Recently, Huang et al. [33] presented an (n,n) threshold QR code secret-sharing scheme,
exploiting the error-correction capability of QR codes to enhance the security of the code.
In this approach, a secret message encoded as a QR code is shared as n shares among n
participants, where all the shares have the same version and error correction level similar
to the secret QR code. A codeword is associated with each secret share such that each
codeword comprises a data codeword and error-correction codeword. The secret is revealed
by applying XOR operation on the codewords. This approach successfully decodes the
secret from the tampered codewords, exploiting their error correction ability.

In a similar scheme, VSS is extended to the security of web services by Chen et al. [34].
WeChat is one of the most popular messaging apps to send messages, pay bills, share
photos and browse news. WeChat Mini-Programs allow developers to run web services, get
feedback from users and even monetize their services. By scanning a WeChat Mini Program
code, the corresponding program can be accessed. Security of these codes is a concern
for users and developers. An (n,n) Mini Program Visual Secret-Sharing Scheme (MPVSS)
proposed by the authors is used for identification and control of the program users. In this
scheme, a secret program code is encoded into n shares using n cover codes. The secret
code is decoded by XOR operation on the shares, exploiting the error-correction abilities of
the code. A comparison of the representative VSS schemes is presented in Table 1.

Researchers have shown that nonnegativity is a useful constraint for matrix factoriza-
tion to learn parts representation of the data. The nonnegative-basis vectors obtained by
factorization are used in distributed and sparse combinations to improve expressiveness
in reconstructions. NMF is a classical mathematical tool employed in various domains to
analyze data from different perspectives. Due to its demonstrated flexibility in the design of
scalable and efficient approaches for solving large-scale problems and accuracy of solutions
for real-world problems with noisy data, the Frobenius [35] norm-based NMF is widely
applied as in [36].

Effectiveness of NMF in capturing the intrinsic geometric properties of images in
image-classification problems was demonstrated by Cai and Sun [37]. Shan et al. [38]
employed rank adaptive NMF in handwritten character recognition to extract local features
of images. In combination with the Extreme Learning Machine (ELM) and k-Nearest
Neighbor (KNN) algorithms, NMF was found to significantly reduce the image dimensions
and improve classification accuracies. Symmetric Sparse NonNegative Matrix Factorization
(ssNMF), a variant of NMF proposed by Li et al. [39], in combination with sparse coding
was demonstrated to be effective in the detection of community structure of the brain from
magnetic resonance images.

The effectiveness of NMF in digital-content security applications has also been demon-
strated in various research papers. The earlier works in this context are digital watermark-
ing schemes for audio, image and video data. In these schemes, NMF is combined with
other mathematical transformations such as Singular Value Decomposition (SVD), DFT,
DWT, etc., to physically embed a watermark. In a VSS scheme proposed by Wang [40]
based on Discrete Fractional Fourier Transform (DFRFT) and NMF, the master and secret
shares are constructed by applying NMF on the secret image. Similarly, a secret-sharing
scheme for sharing Chinese characters represented as binary images was proposed in [41].
In this work, the authors employed a modified NMF in which the elements of W and H
were closer to 1 or 0. Though this paper claims that the Chinese characters could be shared
as multiple parts, experimental results were shown for 1-stage NMF only. Further, no
quality metrics were reported in this paper. However, similar works were not reported so
far in this context.
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Table 1. Comparative analysis of visual secret-sharing schemes.

Reference Method Employed Pros Cons

Naor & Shamir [18] (1994) Polynomial
Secrets are converted into
unconditionally secure
shadow image

Requires additional storage as
each shadow image is of the
size of the secret image

Thien & Lin [19] (lossy)
(2002) Polynomial Size of shadow image is

smaller than secret image

• Traces of secret image
are visible in the
shadow images

• Method suffers from
random pixel expansion

Yang et al. [20] (2007) Polynomials in the Galois Field Lossless recovery without
pixel expansion High Computational Cost

Ding et al. [21] (2018) Polynomial scheme and modular
algebraic recovery Fully lossless recovery

• Random shape changes
• Large shadow size
• High computational

complexity

Zhou et al. [22] (2018) Polynomial sharing and
generalized Arnold permutation

• Two adjacent pixels are
used as secrets

• Leakage of secret
information into the
shares is prevented

The model is not tested
under attacks

Singh et al. [23] (2018) Basis matrices and
error diffusion

• No pixel expansion
• Alignment of shares not

required for
reconstruction

• No need of explicit
codebook for
construction

Construction of the secret
shares is performed in three
steps adding to computational
complexity

Huang et al. [33] (2021)
Basis matrices and error
correction mechanism of

QR codes

The approach is tested with a
wide range of attacks

• The secret code and all
the shares are of
same version.

• Though it is the
underlying working
principle of the method,
when the number of
shares increase more
memory and
transmission bandwidth
will be required

Chen et al. [34] (2022) (n,n) threshold and error
correction mechanism

Facilitates sharing of WeChat
Mini Program codes

Robustness of the approach is
demonstrated with attacks

An image-hashing approach proposed by Karsh et al. [42], employing Projected
Gradient Nonnegative Matrix Factorization (PG-NMF) for capturing local features of an
image was demonstrated to effectively localize the counterfeit area in an attacked image.
In an image encryption and multiplexing system proposed by Chang et al. [43], NMF and
digital holography were employed in the secured exchange of keys for protecting the digital
images. In this method, NMF was applied on noise-like digital holograms generated out
of the candidate image, resulting in basis and weighted image matrices. The basis images
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were secured as encrypted data while the column vectors in the weighting matrix served as
the keys distributed among participants. In a digital watermarking scheme proposed by
Chen [44] et al., generalized NMF that does not impose a dimension- matching constraint,
was employed to embed an image within an image. In this approach, the host image was
factored into a basis matrix A and a coefficient matrix B. Though the authors claimed that
the dimension of A was (1,n), which reduces the number of basis components, it was found
that each element in the row vector A was a 2-dimensional representation of the original
host image. Watermark embedding was performed by directly replacing the smallest image
component of A. This scheme resulted in severe pixel expansion.

Loss of resolution in reconstructed images is a major drawback of visual cryptographic
schemes, as discussed in the work of Weir and Yan [45]. Effectiveness of super resolution
algorithms in the construction of High-Resolution (HR) images from Low-Resolution (LR)
images in pan-sharpening of aerial images, medical image analysis for minimum invasive
robotic surgery, sign and number plate reading, iris recognition, etc., is demonstrated in
the literature. Loss of quality in a reconstructed image was attributed to pixel expansion
rate and relative difference in weights of the shares generated from different color levels
as discussed in the work of Wu et al. [46]. Loss of resolution of a reconstructed image
can be reduced by minimizing pixel expansion and maximizing the relative difference
between the weights of the shares. However, this issue can be resolved by improving
the resolution of the recovered images with single-image, super-resolution algorithms.
These algorithms are broadly classified as statistical, prediction-based, edge and patch or
example-based methods.

A thorough investigation of these methods by Yang et al. [47] showed that example-
based methods reported in [48,49] achieve state-of-the-art performance. Conventional
example-based methods exploit the internal similarities of a given image to perform a
mapping between LR images and relevant HR images in a dataset for construction of
HR images. Sparse coding is a kind of example-based, super-resolution method, which
employs dictionaries in the construction of HR images. In this method, initially, overlapping
patches densely cropped from the LR image are encoded into an intermediate sparse
representation using an LR image dictionary. HR images are reconstructed from HR
image patches estimated from HR dictionaries, using sparse coefficients. This method
involves optimization of learning operations from dictionaries and mapping functions,
which is realized using the SRCNN, which optimizes the learning, mapping and patch
aggregation operations.

Our extensive review reveals that QR codes are employed mostly as carriers in QR
code-based secret-sharing schemes. Further, the structure of the cover QR codes and the
nature of error correction mechanisms play a vital role in determining the embedding
capacity of the cover QR codes, which requires lengthy computations. It is also evident
that NMF-based VSS schemes have not been explored extensively. In pursuit of new
secret-sharing approaches, the proposed work intends to exploit the property of NMF in
representation of image parts for creating secret shares from a QR code and recovering it
from the shares. Further SRCNNs are demonstrated to effectively capture the relationship
between LR and HR patches.

3. Materials and Methods

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. Dataset and Implementation Details

The proposed system is tested with the dataset accompanying [50], which contains
34 QR codes with error-correction levels L, M, Q and H. The QR codes are of dimensions
29 × 29, 33 × 33, 41 × 41, 45 × 45, 53 × 53, 57 × 57, 61 × 61 and 77 × 77 in PNG format.
Demonstrating the ability of the proposed QR code-sharing approach to reconstruct the
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QR codes of varied sizes from the secrets shared is essential to demonstrate the robustness
of the system. This evaluation is required to prove the flexibility, reliability and general-
ization ability of the secret-sharing scheme. Further, it also facilitates the identification of
prospective applications of the system based on the requirements of applications such as
medicine, science, engineering and finance. The size of the QR codes is a major concern
in realizing security mechanisms such as privacy, data integrity and authentication. This
dataset has QR codes of sufficiently varying sizes with different error-correction levels to
test the system.

The secret-share construction and secret-reconstruction processes of the proposed
system are implemented with Matlab2020b software. The Zxing [51] library is used for de-
coding the reconstructed QR codes super-resolved with the structure regularized SRCNN.

3.2. Multi-Layer Nonnegative Matrix Factorization

NMF is a class of techniques for approximately factorizing a matrix V of size mxn into
two nonnegative matrices W and H, each of size m × k and k × n as shown in Equation (1),
where W is the basis matrix and H is the coefficient matrix. In linear algebra, a basis
vector is used to represent a concise and finite description of an infinite vector space. The
reconstruction of V is shown in Figure 2.

V ≈WH (1)
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The factorization of V into W and H is not unique, as different values of k yield
different W and H matrices. It has been shown empirically that for any matrix V, better
approximation of V is achieved when the condition is satisfied as in the expression (2).

k ≤ min(m, n) (2)

The smallest value of k, resulting in V = WH is called the nonnegative rank of V,
expressed as rank+(V) as in (3).

rank(V) ≤ rank+(V) ≤ min(m, n) (3)

Based on the cost functions used in the divergence measure between V and WH, there
exist variants of NMF. The squared-error version of NMF employs iterative update rules
for minimizing the divergence as given in Equation (4).

F(W, H) = ‖V −WH‖2
F (4)

where F is called the Frobenius norm.
This paper proposes a QR code secret-sharing scheme realized with a two-layer

NMF model as shown in Figure 3. This model is based on the multi-layer NMF [52],
mathematically represented as in Equation (5).

V ≈WH1H2 . . . Hn (5)
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where
[W, H] = NMF(V)

[H1, H2] = NMF(H)
[H3, H4] = NMF(H2)
[H5, H6] = NMF(H4)

. . .

[Hn−1, Hn] = NMF(Hn−2)
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From the above it can be seen that, in every stage of decomposition, the basis com-
ponents are preserved and the coefficient matrices are factorized. By generalization, the
mathematical model of the 2-stage NMF is given in Equation (6).

V ≈WH1H2 (6)

3.3. SRCNN with Structural Regularization

The SRCNN features a simple convolutional neural network structure, which directly
learns an end-to-end mapping between LR and HR images, without the need of any pre-
and post-processing operations. Given a ground-truth image X and its LR representation Y,
the SRCNN constructs an HR image Y’ from Y such that it is equivalent to X. Image super
resolution is performed by the SRCNN in three steps as below, illustrated with Figure 4.
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(1) Patch extraction and representation: In this operation, patches called feature
maps representing essential features of Y’ are created by convolving a filter with Y and are
represented as a high-dimensional vector.

(2) Nonlinear mapping: This operation nonlinearly maps each feature map into a
high-dimensional space.

In this step, a convolution filter introduces a high degree of non-linearity to achieve
higher accuracy.

(3) Reconstruction: This operation aggregates the feature maps to generate the final
HR image Y’, which is expected to be similar to the ground-truth image X.

In this research, we introduce a structural regularization constraint to ensure that the
structural details captured from Y to Y’ are intact. The problem of reconstruction of Y’ from
Y is formulated as in (7), where D, S and N refer to the down-sampling operator, blurring
operator and the noise, respectively.

Y = DSY′ + N (7)

The super-resolved image Y’, which closely matches the ground truth X, is obtained by
minimizing the mathematical model of (7) as in Equation (8). The first term in this equation
is called the fidelity term, which penalizes the difference between the reconstructed image
Y’ and the LR image Y. The second term is called the structural regularization term, where
Rs is regularization factor and λs is the weight factor that balances the trade-off between
fidelity and structural similarity.

X = minY(‖DSY′ −Y‖2
) + λsRs (8)

We enforce structural similarity between Y and Y’ by defining Rs as a cross-gradient
term in Equation (9), which aligns the gradients of the individual image patches in yi and
yi’ of the images Y and Y’.

R(yi, y′i) =
1
2

∫
Ω

∣∣∣∇yi∇y′i

∣∣∣2dy (9)

SRCNNs focus only on the details within a patch without considering the structural
relationship between an image patch and neighboring regions. Introduction of the struc-
tural constraint ensures that the structural components from the LR image are preserved in
the HR image.

4. Proposed System

The proposed work is implemented in three phases viz. secret-share construction,
secret reconstruction and image super resolution, described in the following subsections
with schematic diagrams and algorithms.

4.1. Secret-Share Construction

Construction of secret shares from the QR code is illustrated with Figure 5. Initially,
the QR code Q is scrambled with Arnold Transform to generate the scrambled QR code QA
and the rank of the matrix k1 is determined. QA is then factored into basis matrix W and
coefficient matrix H of dimensions m × k1 and k1 × n, respectively. The basis component W
is secured as secret share S1. The rank k2 of H is determined and it is further factored in
to H1 and H2 of dimensions k1 × k2 and k2 × n, respectively, which are secured as secret
shares S2 and S3, respectively. The steps for implementation of this process are given as
Algorithm 1.
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Algorithm 1. Secret Sharing

Input: QR code Q, number of iterations i
Output: Secret shares S1, S2 & S3

Method:
1. Apply Arnold Transform on Q

QA ← Arnold Transform(Q,i)
2. Find the rank of QA

k1←rank(QA)
3. Factor QA into base and coefficient matrices

[W,H]←NMF(QA,k1)
4. Find the rank of H

k2←rank(H)
5. Factor H into base and coefficient matrices

[H1, H2]←NMF(QA,k2)
6. Construct the Secret Shares

a. S1←W
b. S2← H1
c. S3← H2

4.2. Secret Reconstruction

Extraction of the QR code from the secret shares is shown in Figure 6. Initially, the
shares S2 and S3 are multiplied to generate H’, the approximation of H. The secret share S1
is multiplied with H’ to get the approximation QA’, of the scrambled QR code Q. Inverse
Arnold Transform is applied on QA’ to retrieve the unscrambled QR code. The SRCNN
is applied on the reconstructed QR code Q’ to generate a high-resolution QR code Q”.
Algorithm 2 lists the steps for implementing this process.
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Algorithm 2. Secret Reconstruction

Input: Secret shares S1, S2 & S3, number of iterations i
Output: Reconstructed secret Q”

Method:
1. Reconstruct the coefficient matrix H’

H’← S2* S3
2. Reconstruct the Arnold Transformed Secret Q’A

Q’A← S1* H’
3. Apply Inverse Arnold Transform on Q’A

Q’← Arnold Transform(Q’A,i)
4. Reconstruct the secret by Super Resolution

a. Q”←SRCNN(Q’)
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Experimental results have shown that image reconstruction from the NMF component
matrices provides an approximation of the original image. Since the image is subjected
to two levels of decomposition in the proposed system, the reconstructed image cannot
provide a best approximation of the original image. The SRCNN-based reconstruction
algorithm is implemented in this system to improve the quality and in turn the readability
of the reconstructed QR code.

4.3. Image Super Resolution

The schematic of the SRCNN is shown in Figure 7 for reconstruction of an HR QR
code from its LR version. In the proposed work, we employ the SRCNN constrained
by structural regularization in recovering the readable QR code from the approximate
version reconstructed by combining the secret shares constructed with NMF. Initially, the
binary QR codes in the dataset are transformed to RGB to enhance the image resolution.
The first stage of the SRCNN convolves the LR image with filters of size f 1 × f 1 for n1
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times to represent each patch as an n1 dimensional vector. In the second stage, each n1
dimensional vector is transformed into an n2 dimensional vector by convolution with n2
filters of size f 2 × f 2. Each n2 dimensional vector is the HR representation of a patch in the
LR image. Finally, these vectors are convolved with filters of size f 3 × f 3 to construct the
super-resolved image.
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5. Experimental Results and Discussions

The proposed system was run in an Intel i5 processor with NVIDIA GeForce 920 MX
GPU on the QR codes in the dataset described in Section 3.1. The number of iterations i
for Arnold transform is assumed to be 4, while rank values k1 and k2 depend on the input
matrix. The 9-5-5 SRCNN model with hyper parameters f 1 = 9, f 2 = 5, f 3 = 5, n1 = 32 and
n2 = 64 is employed in the QR code reconstruction. For structural regularization, λs is
initialized to 0.2 after empirical evaluations. In Table 2, the QR codes, secret shares, and
reconstructed QR codes along with image quality metrics are shown for 10 best samples in
terms of SSIM values in decreasing order.

From the results in Table 2, it is seen that the reconstructed QR codes possess reasonable
visual quality from the PSNR values. The SSIM values also signify the similarity between
the original and reconstructed QR codes. However, readability of the QR code is the
prime requirement compared to the visual quality and similarity metrics. Secret sharing is
accomplished in the proposed system only if the reconstructed secret is decodable. It has
been verified that all the QR codes with different error-correction levels are decodable by
the Zxing decoder. Finally, the decoded QR codes are transformed as binary images for
performance evaluation of the system as the original dataset contains binary QR codes.

It is seen that the highest SSIM value of 0.9373 is achieved for a QR code of size
29 × 29, while the highest PSNR of 32.3889 dB is attained on recovering a QR code of
53 × 53. Further, analysis of the smallest values of the metrics show that least PSNR and
SSIM values of 30.4143 dB and 0.8669 are attained on reconstruction of a 61 × 61 QR
code. This result shows that performance metrics are irrespective of the size of the code.
However, ability of the system to reconstruct decodable QR codes for all the test samples
demonstrates the reliability of the system.



Sensors 2022, 22, 2959 14 of 25

Table 2. Experimental results for QR code sharing and reconstruction.

Original QR
Code

Secret Share
S1

Secret Share
S2

Secret Share
S3

Reconstructed
QR Code PSNR in dB SSIM Readability
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32.3889 0.9297 Yes 

     

32.2646 0.9265 Yes 

     

31.5443 0.9201 Yes 

     

31.6609 0.9128 Yes 
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It is seen that the highest SSIM value of 0.9373 is achieved for a QR code of size 29 × 
29, while the highest PSNR of 32.3889 dB is attained on recovering a QR code of 53 × 53. 
Further, analysis of the smallest values of the metrics show that least PSNR and SSIM 
values of 30.4143 dB and 0.8669 are attained on reconstruction of a 61 × 61 QR code. This 
result shows that performance metrics are irrespective of the size of the code. However, 
ability of the system to reconstruct decodable QR codes for all the test samples demon-
strates the reliability of the system. 

Table 2. Experimental results for QR code sharing and reconstruction. 

Original QR 
Code 

Secret Share S1 Secret Share S2 Secret Share 
S3 

Reconstructed 
QR Code 

PSNR in dB SSIM Readability 

     

32.3639 0.9373 Yes 

     

32.0880 0.9313 Yes 

     

32.2787 0.9310 Yes 

     

32.2555 0.9298 Yes 

 
 

   

32.3889 0.9297 Yes 

     

32.2646 0.9265 Yes 

     

31.5443 0.9201 Yes 

     

31.6609 0.9128 Yes 
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It is seen that the highest SSIM value of 0.9373 is achieved for a QR code of size 29 × 
29, while the highest PSNR of 32.3889 dB is attained on recovering a QR code of 53 × 53. 
Further, analysis of the smallest values of the metrics show that least PSNR and SSIM 
values of 30.4143 dB and 0.8669 are attained on reconstruction of a 61 × 61 QR code. This 
result shows that performance metrics are irrespective of the size of the code. However, 
ability of the system to reconstruct decodable QR codes for all the test samples demon-
strates the reliability of the system. 

Table 2. Experimental results for QR code sharing and reconstruction. 

Original QR 
Code 

Secret Share S1 Secret Share S2 Secret Share 
S3 

Reconstructed 
QR Code 

PSNR in dB SSIM Readability 

     

32.3639 0.9373 Yes 

     

32.0880 0.9313 Yes 

     

32.2787 0.9310 Yes 

     

32.2555 0.9298 Yes 

 
 

   

32.3889 0.9297 Yes 

     

32.2646 0.9265 Yes 

     

31.5443 0.9201 Yes 

     

31.6609 0.9128 Yes 

32.0880 0.9313 Yes
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result shows that performance metrics are irrespective of the size of the code. However, 
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strates the reliability of the system. 

Table 2. Experimental results for QR code sharing and reconstruction. 

Original QR 
Code 

Secret Share S1 Secret Share S2 Secret Share 
S3 

Reconstructed 
QR Code 

PSNR in dB SSIM Readability 

     

32.3639 0.9373 Yes 

     

32.0880 0.9313 Yes 

     

32.2787 0.9310 Yes 

     

32.2555 0.9298 Yes 
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Further, analysis of the smallest values of the metrics show that least PSNR and SSIM 
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result shows that performance metrics are irrespective of the size of the code. However, 
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strates the reliability of the system. 

Table 2. Experimental results for QR code sharing and reconstruction. 
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Secret Share S1 Secret Share S2 Secret Share 
S3 

Reconstructed 
QR Code 

PSNR in dB SSIM Readability 

     

32.3639 0.9373 Yes 
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32.2787 0.9310 Yes 

     

32.2555 0.9298 Yes 
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It is seen that the highest SSIM value of 0.9373 is achieved for a QR code of size 29 × 
29, while the highest PSNR of 32.3889 dB is attained on recovering a QR code of 53 × 53. 
Further, analysis of the smallest values of the metrics show that least PSNR and SSIM 
values of 30.4143 dB and 0.8669 are attained on reconstruction of a 61 × 61 QR code. This 
result shows that performance metrics are irrespective of the size of the code. However, 
ability of the system to reconstruct decodable QR codes for all the test samples demon-
strates the reliability of the system. 

Table 2. Experimental results for QR code sharing and reconstruction. 

Original QR 
Code 

Secret Share S1 Secret Share S2 Secret Share 
S3 

Reconstructed 
QR Code 

PSNR in dB SSIM Readability 

     

32.3639 0.9373 Yes 

     

32.0880 0.9313 Yes 

     

32.2787 0.9310 Yes 

     

32.2555 0.9298 Yes 
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It is seen that the highest SSIM value of 0.9373 is achieved for a QR code of size 29 × 
29, while the highest PSNR of 32.3889 dB is attained on recovering a QR code of 53 × 53. 
Further, analysis of the smallest values of the metrics show that least PSNR and SSIM 
values of 30.4143 dB and 0.8669 are attained on reconstruction of a 61 × 61 QR code. This 
result shows that performance metrics are irrespective of the size of the code. However, 
ability of the system to reconstruct decodable QR codes for all the test samples demon-
strates the reliability of the system. 

Table 2. Experimental results for QR code sharing and reconstruction. 

Original QR 
Code 

Secret Share S1 Secret Share S2 Secret Share 
S3 

Reconstructed 
QR Code 

PSNR in dB SSIM Readability 

     

32.3639 0.9373 Yes 

     

32.0880 0.9313 Yes 

     

32.2787 0.9310 Yes 

     

32.2555 0.9298 Yes 

 
 

   

32.3889 0.9297 Yes 

     

32.2646 0.9265 Yes 

     

31.5443 0.9201 Yes 

     

31.6609 0.9128 Yes 
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It is seen that the highest SSIM value of 0.9373 is achieved for a QR code of size 29 × 
29, while the highest PSNR of 32.3889 dB is attained on recovering a QR code of 53 × 53. 
Further, analysis of the smallest values of the metrics show that least PSNR and SSIM 
values of 30.4143 dB and 0.8669 are attained on reconstruction of a 61 × 61 QR code. This 
result shows that performance metrics are irrespective of the size of the code. However, 
ability of the system to reconstruct decodable QR codes for all the test samples demon-
strates the reliability of the system. 

Table 2. Experimental results for QR code sharing and reconstruction. 

Original QR 
Code 

Secret Share S1 Secret Share S2 Secret Share 
S3 

Reconstructed 
QR Code 

PSNR in dB SSIM Readability 

     

32.3639 0.9373 Yes 

     

32.0880 0.9313 Yes 

     

32.2787 0.9310 Yes 

     

32.2555 0.9298 Yes 

 
 

   

32.3889 0.9297 Yes 

     

32.2646 0.9265 Yes 

     

31.5443 0.9201 Yes 

     

31.6609 0.9128 Yes 

32.2787 0.9310 Yes
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ability of the system to reconstruct decodable QR codes for all the test samples demon-
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Table 2. Experimental results for QR code sharing and reconstruction. 
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Secret Share S1 Secret Share S2 Secret Share 
S3 

Reconstructed 
QR Code 

PSNR in dB SSIM Readability 

     

32.3639 0.9373 Yes 

     

32.0880 0.9313 Yes 

     

32.2787 0.9310 Yes 

     

32.2555 0.9298 Yes 

 
 

   

32.3889 0.9297 Yes 

     

32.2646 0.9265 Yes 

     

31.5443 0.9201 Yes 

     

31.6609 0.9128 Yes 
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It is seen that the highest SSIM value of 0.9373 is achieved for a QR code of size 29 × 
29, while the highest PSNR of 32.3889 dB is attained on recovering a QR code of 53 × 53. 
Further, analysis of the smallest values of the metrics show that least PSNR and SSIM 
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result shows that performance metrics are irrespective of the size of the code. However, 
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strates the reliability of the system. 

Table 2. Experimental results for QR code sharing and reconstruction. 

Original QR 
Code 

Secret Share S1 Secret Share S2 Secret Share 
S3 

Reconstructed 
QR Code 

PSNR in dB SSIM Readability 

     

32.3639 0.9373 Yes 

     

32.0880 0.9313 Yes 

     

32.2787 0.9310 Yes 

     

32.2555 0.9298 Yes 

 
 

   

32.3889 0.9297 Yes 

     

32.2646 0.9265 Yes 

     

31.5443 0.9201 Yes 

     

31.6609 0.9128 Yes 
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It is seen that the highest SSIM value of 0.9373 is achieved for a QR code of size 29 × 
29, while the highest PSNR of 32.3889 dB is attained on recovering a QR code of 53 × 53. 
Further, analysis of the smallest values of the metrics show that least PSNR and SSIM 
values of 30.4143 dB and 0.8669 are attained on reconstruction of a 61 × 61 QR code. This 
result shows that performance metrics are irrespective of the size of the code. However, 
ability of the system to reconstruct decodable QR codes for all the test samples demon-
strates the reliability of the system. 

Table 2. Experimental results for QR code sharing and reconstruction. 

Original QR 
Code 

Secret Share S1 Secret Share S2 Secret Share 
S3 

Reconstructed 
QR Code 

PSNR in dB SSIM Readability 

     

32.3639 0.9373 Yes 

     

32.0880 0.9313 Yes 

     

32.2787 0.9310 Yes 

     

32.2555 0.9298 Yes 

 
 

   

32.3889 0.9297 Yes 

     

32.2646 0.9265 Yes 

     

31.5443 0.9201 Yes 

     

31.6609 0.9128 Yes 

Sensors 2022, 22, x FOR PEER REVIEW 14 of 27 
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It is seen that the highest SSIM value of 0.9373 is achieved for a QR code of size 29 × 
29, while the highest PSNR of 32.3889 dB is attained on recovering a QR code of 53 × 53. 
Further, analysis of the smallest values of the metrics show that least PSNR and SSIM 
values of 30.4143 dB and 0.8669 are attained on reconstruction of a 61 × 61 QR code. This 
result shows that performance metrics are irrespective of the size of the code. However, 
ability of the system to reconstruct decodable QR codes for all the test samples demon-
strates the reliability of the system. 

Table 2. Experimental results for QR code sharing and reconstruction. 

Original QR 
Code 

Secret Share S1 Secret Share S2 Secret Share 
S3 

Reconstructed 
QR Code 

PSNR in dB SSIM Readability 

     

32.3639 0.9373 Yes 

     

32.0880 0.9313 Yes 

     

32.2787 0.9310 Yes 

     

32.2555 0.9298 Yes 

 
 

   

32.3889 0.9297 Yes 

     

32.2646 0.9265 Yes 

     

31.5443 0.9201 Yes 

     

31.6609 0.9128 Yes 
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It is seen that the highest SSIM value of 0.9373 is achieved for a QR code of size 29 × 
29, while the highest PSNR of 32.3889 dB is attained on recovering a QR code of 53 × 53. 
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strates the reliability of the system. 

Table 2. Experimental results for QR code sharing and reconstruction. 
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Secret Share S1 Secret Share S2 Secret Share 
S3 

Reconstructed 
QR Code 

PSNR in dB SSIM Readability 

     

32.3639 0.9373 Yes 

     

32.0880 0.9313 Yes 

     

32.2787 0.9310 Yes 

     

32.2555 0.9298 Yes 

 
 

   

32.3889 0.9297 Yes 

     

32.2646 0.9265 Yes 

     

31.5443 0.9201 Yes 

     

31.6609 0.9128 Yes 

32.2555 0.9298 Yes
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S3 

Reconstructed 
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It is seen that the highest SSIM value of 0.9373 is achieved for a QR code of size 29 × 
29, while the highest PSNR of 32.3889 dB is attained on recovering a QR code of 53 × 53. 
Further, analysis of the smallest values of the metrics show that least PSNR and SSIM 
values of 30.4143 dB and 0.8669 are attained on reconstruction of a 61 × 61 QR code. This 
result shows that performance metrics are irrespective of the size of the code. However, 
ability of the system to reconstruct decodable QR codes for all the test samples demon-
strates the reliability of the system. 

Table 2. Experimental results for QR code sharing and reconstruction. 
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Secret Share S1 Secret Share S2 Secret Share 
S3 

Reconstructed 
QR Code 

PSNR in dB SSIM Readability 

     

32.3639 0.9373 Yes 

     

32.0880 0.9313 Yes 

     

32.2787 0.9310 Yes 
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31.6609 0.9128 Yes 
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It has been verified that all the QR codes with different error-correction levels are de-
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It is seen that the highest SSIM value of 0.9373 is achieved for a QR code of size 29 × 
29, while the highest PSNR of 32.3889 dB is attained on recovering a QR code of 53 × 53. 
Further, analysis of the smallest values of the metrics show that least PSNR and SSIM 
values of 30.4143 dB and 0.8669 are attained on reconstruction of a 61 × 61 QR code. This 
result shows that performance metrics are irrespective of the size of the code. However, 
ability of the system to reconstruct decodable QR codes for all the test samples demon-
strates the reliability of the system. 

Table 2. Experimental results for QR code sharing and reconstruction. 

Original QR 
Code 

Secret Share S1 Secret Share S2 Secret Share 
S3 

Reconstructed 
QR Code 

PSNR in dB SSIM Readability 

     

32.3639 0.9373 Yes 

     

32.0880 0.9313 Yes 

     

32.2787 0.9310 Yes 

     

32.2555 0.9298 Yes 
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31.5443 0.9201 Yes 

     

31.6609 0.9128 Yes 
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It has been verified that all the QR codes with different error-correction levels are de-
codable by the Zxing decoder. Finally, the decoded QR codes are transformed as binary 
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It is seen that the highest SSIM value of 0.9373 is achieved for a QR code of size 29 × 
29, while the highest PSNR of 32.3889 dB is attained on recovering a QR code of 53 × 53. 
Further, analysis of the smallest values of the metrics show that least PSNR and SSIM 
values of 30.4143 dB and 0.8669 are attained on reconstruction of a 61 × 61 QR code. This 
result shows that performance metrics are irrespective of the size of the code. However, 
ability of the system to reconstruct decodable QR codes for all the test samples demon-
strates the reliability of the system. 

Table 2. Experimental results for QR code sharing and reconstruction. 

Original QR 
Code 

Secret Share S1 Secret Share S2 Secret Share 
S3 

Reconstructed 
QR Code 

PSNR in dB SSIM Readability 

     

32.3639 0.9373 Yes 

     

32.0880 0.9313 Yes 

     

32.2787 0.9310 Yes 

     

32.2555 0.9298 Yes 

 
 

   

32.3889 0.9297 Yes 

     

32.2646 0.9265 Yes 

     

31.5443 0.9201 Yes 

     

31.6609 0.9128 Yes 
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It has been verified that all the QR codes with different error-correction levels are de-
codable by the Zxing decoder. Finally, the decoded QR codes are transformed as binary 
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It is seen that the highest SSIM value of 0.9373 is achieved for a QR code of size 29 × 
29, while the highest PSNR of 32.3889 dB is attained on recovering a QR code of 53 × 53. 
Further, analysis of the smallest values of the metrics show that least PSNR and SSIM 
values of 30.4143 dB and 0.8669 are attained on reconstruction of a 61 × 61 QR code. This 
result shows that performance metrics are irrespective of the size of the code. However, 
ability of the system to reconstruct decodable QR codes for all the test samples demon-
strates the reliability of the system. 

Table 2. Experimental results for QR code sharing and reconstruction. 

Original QR 
Code 

Secret Share S1 Secret Share S2 Secret Share 
S3 

Reconstructed 
QR Code 

PSNR in dB SSIM Readability 

     

32.3639 0.9373 Yes 

     

32.0880 0.9313 Yes 

     

32.2787 0.9310 Yes 

     

32.2555 0.9298 Yes 

 
 

   

32.3889 0.9297 Yes 

     

32.2646 0.9265 Yes 

     

31.5443 0.9201 Yes 

     

31.6609 0.9128 Yes 

32.3889 0.9297 Yes
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Secret Share S1 Secret Share S2 Secret Share 
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Reconstructed 
QR Code 
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32.3639 0.9373 Yes 
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32.2787 0.9310 Yes 

     

32.2555 0.9298 Yes 
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32.2646 0.9265 Yes 

     

31.5443 0.9201 Yes 

     

31.6609 0.9128 Yes 
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It is seen that the highest SSIM value of 0.9373 is achieved for a QR code of size 29 × 
29, while the highest PSNR of 32.3889 dB is attained on recovering a QR code of 53 × 53. 
Further, analysis of the smallest values of the metrics show that least PSNR and SSIM 
values of 30.4143 dB and 0.8669 are attained on reconstruction of a 61 × 61 QR code. This 
result shows that performance metrics are irrespective of the size of the code. However, 
ability of the system to reconstruct decodable QR codes for all the test samples demon-
strates the reliability of the system. 

Table 2. Experimental results for QR code sharing and reconstruction. 
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S3 

Reconstructed 
QR Code 

PSNR in dB SSIM Readability 
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32.2555 0.9298 Yes 
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32.2646 0.9265 Yes 

     

31.5443 0.9201 Yes 

     

31.6609 0.9128 Yes 
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It has been verified that all the QR codes with different error-correction levels are de-
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It is seen that the highest SSIM value of 0.9373 is achieved for a QR code of size 29 × 
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Further, analysis of the smallest values of the metrics show that least PSNR and SSIM 
values of 30.4143 dB and 0.8669 are attained on reconstruction of a 61 × 61 QR code. This 
result shows that performance metrics are irrespective of the size of the code. However, 
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Original QR 
Code 

Secret Share S1 Secret Share S2 Secret Share 
S3 

Reconstructed 
QR Code 
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32.0880 0.9313 Yes 
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and recovery. Compared to the conventional secret-sharing schemes, which involve com-
plex mathematical operations for secret sharing and reconstruction, the proposed system 
is comparatively simpler as it involves only factorization and multiplication operations. 
Further, the proposed system is devoid of the pixel expansion, a major limitation of the 
conventional secret-sharing schemes. Detailed comparisons of the proposed system with 
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of the matrix k, which is less than min(m,n) for an mxn matrix. Hence the share size is either 
the same as or less than that of the secret. Similar to [21], the complexity of the proposed 
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the system is O(n). 

Table 3. Comparisons of significant attributes. 

Methods 
Recovery of 
Secret Image 

Shadow Size with Re-
spect to Secret Image Size 

Pixel Ex-
pansion 

Pre-Encryption 
& Decryption Complexity 

Naor & Shamir [18] Lossy 1 No No O(klog2k) 
Thien and Lin [19] 

(lossy) Lossy 1/k No Yes O(k3) 

Thien and Lin [19] 
(lossless) Lossless 1/k Yes Yes O(k3) 

Yang et al.[20] Lossless 1 No No High 
Ding et al.[21] Lossless 1 No No O(k3) 
Zhou et al.[22] Lossless 1/1 − k No Yes O(k3) 
Zhou et al.[22] 

(without permutation) 
Lossless 1/1 − k No No O(k3) 

Singh et al. [23] Lossless 1 No No O(n) 
Huang et al. [33] Lossless 1 No No O(n) 
Chen et al. [34] Lossless 1 No No O(n) 

Proposed Method Lossless <=1 No No O(n) 

The summary of the running times of the existing and proposed methods is pre-
sented in Table 4. For the proposed system, the time for secret-share creation and recon-
struction is the average values of the time taken for these operations on the 34 sample QR 
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5.1. Performance Analysis

The experimental results clearly show that NMF is a suitable tool for secret sharing and
recovery. Compared to the conventional secret-sharing schemes, which involve complex
mathematical operations for secret sharing and reconstruction, the proposed system is
comparatively simpler as it involves only factorization and multiplication operations.
Further, the proposed system is devoid of the pixel expansion, a major limitation of the
conventional secret-sharing schemes. Detailed comparisons of the proposed system with
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the existing secret-sharing systems with respect to different attributes are summarized in
Table 2. This comparison is an extension of the comparisons presented in [22], which is a
similar work in this context.

It has been shown that the complexity of NMF is O(kmn) in [53] and earlier literature,
where k is the rank of the matrix. It is seen from Table 3 that the proposed system exhibits
lossless recovery similar to few existing methods. Here, the shadow size depends on rank
of the matrix k, which is less than min(m,n) for an mxn matrix. Hence the share size is either
the same as or less than that of the secret. Similar to [21], the complexity of the proposed
system is proportional to the number of shares or participants. Hence the complexity of the
system is O(n).

Table 3. Comparisons of significant attributes.

Methods Recovery of
Secret Image

Shadow Size with Respect
to Secret Image Size Pixel Expansion Pre-Encryption

& Decryption Complexity

Naor & Shamir [18] Lossy 1 No No O(klog2k)

Thien and Lin [19]
(lossy) Lossy 1/k No Yes O(k3)

Thien and Lin [19]
(lossless) Lossless 1/k Yes Yes O(k3)

Yang et al. [20] Lossless 1 No No High

Ding et al. [21] Lossless 1 No No O(k3)

Zhou et al. [22] Lossless 1/1 − k No Yes O(k3)

Zhou et al. [22]
(without permutation) Lossless 1/1 − k No No O(k3)

Singh et al. [23] Lossless 1 No No O(n)

Huang et al. [33] Lossless 1 No No O(n)

Chen et al. [34] Lossless 1 No No O(n)

Proposed Method Lossless <=1 No No O(n)

The summary of the running times of the existing and proposed methods is presented
in Table 4. For the proposed system, the time for secret-share creation and reconstruction is
the average values of the time taken for these operations on the 34 sample QR codes.

Table 4. Comparison of execution times.

Method Sharing Time (s) Recovery Time (s)

Naor & Shamir [18] 7.721 7.831

Thien and Lin [19] (lossy) 1.792 2.764

Ding et al. [21] 138.219 10.585

Zhou et al. [22] 1.732 2.424

Zhou et al. [22] (mod 257) 2.714 3.205

Singh et al. [23] 1.3219 0.0615

Proposed Method 0.2436 0.0910

From Table 4, it is seen that the time taken by the proposed method is comparatively
very low. The comparisons presented in Tables 3 and 4 are meant to provide a summary
of the performance metrics only, as the proposed scheme is completely distinct from
others. The methods proposed in [17,18,20,21] were based on evaluation of polynomials
during secret-share construction and solving linear equations to reconstruct each pixel. The
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proposed scheme involves factorization for secret sharing, and reconstruction of secret is
based on multiplications of shares and convolution in the SRCNN. Hence, the proposed
method exhibits lower computational times with respect to [17,18,20,21] for both secret-
share creation and secret reconstruction.

The (n,n) method in [23] involved generation of basis matrices and random shares, and
conversion of random shares to meaningful shares for construction of secret shares. Hence,
the proposed system has lower computational time for secret creation. The decryption
involves only XOR operations between shares in [23] and therefore it is lower than the
proposed system. Further, CSRCNN the complexity of the SRCNN is given in Equation (10).

cSRCNN = O(( f 2
1 n1 + n1 f 2

2 n2 + n3 f 2
3 )SHR) (10)

where

fi is the filter size
ni is the number of filters
SHR is the size of the HR image

In the proposed system, the complexity of the construction of the HR QR code from
its LR representation is analogous to Equation (10). This complexity can be considerably
reduced by modifying the values of hyper parameters. Further, there are no security
constraints with the SRCNN.

As stated earlier, there are not many works reported on the sharing of QR codes, and for
one such method presented in [41] explicit results are not available. Unlike the conventional
secret-sharing methods that focus on the visual quality of the secret, the proposed system
has the rigorous requirement of the readability of the secret that is achieved with the
proposed system.

5.2. Security Analysis

The security of the proposed system relies on the imperceptibility of secret shares,
attributed to the NMF factorization. From the experimental results, it is seen that the secret
shares do not contain any trace of the secret. Further, the size of the shares depends on the
ranks k1 and k2 of the candidate matrices QA and H, respectively. It has been highlighted
in literature that NMF is not unique for a given matrix V, and determination of the rank
k is an NP hard problem. To recover the QR code from the shares, an attacker needs the
following:

• Secret Shares S1, S2 and S3.
• Sequence of combinations of shares.
• Number of iterations for inverse Arnold Transform i.

The QR code can be recovered only on combination of the shares in a particular
sequence, i.e., S2 and S3 must be combined to recover H’, which must be combined with S1.
In addition, the number of iterations i for scrambling the QR code and applying Arnold
Transform also governs the security of the QR code. Inverse Arnold Transform with an
erroneous number of iterations cannot recover the QR code. The degree of freedom for
choosing the number of iterations is very large, which makes the retrieval of QR code
difficult. In the proposed system, the ranks k1 and k2 are evaluated from the candidate
matrices, by determining the number of linearly independent rows or columns larger than
a tolerance, using the rank() function of MATLAB.

The information theoretical and computational security analysis of the proposed
system is as below.

Information Theoretic Security

Any (n,n) secret-sharing scheme is information theoretic secure, if the secret cannot be
revealed by any (n − 1) number of shares.

In the proposed system, the shares have no visible components of the secret. According
to the principle of NMF, the original matrix can be reconstructed only from the basis and
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coefficient matrices. In the proposed system, the secret shares are derived from the basis
and coefficient matrices of a QR code, without which the QR code cannot be constructed.
Hence, the proposed system is information theoretic secure.

Computational Security

Any (n,n) secret-sharing scheme is computationally secure, if it is infeasible to invert the
scheme from (n − 1) number of shares.

It is very much evident that all the shares S1, S2 and S3 must be combined for the
reconstruction of Q’. Hence, it is infeasible to recover the secret unless all the shares are
available. Generally, inversion of the secret-sharing scheme is associated with hardness as-
sumptions of the computational procedures involved, such as use of encryption algorithms
such as Advanced Encryption Standard (AES) and Cipher Block Chaining (CBC).

In the proposed system, the reconstruction involves only multiplication operations
and inverse Arnold Transform. With either one or two shares available out of the three
shares, it is not possible to construct the other shares and construct the secret, as each
share is incrementally constructed starting from the factorization of the secret. Further,
the security of the proposed system is demonstrated in this section with a quantitative
analysis on the difficulty of brute force attacks and construction of imperceptible secrets
from tampered shares.

5.2.1. Brute Force Attack

Here, for a given m×m secret, we evaluate the number of computations required to
generate the shares and reconstruct the secret. We arrive at the mathematical expressions
for various computations and evaluate them with respect to the dataset used in our experi-
ments. Similarly, we calculate the number of combinations required for brute-force attack
on the dataset by the approach proposed in [23] and present a comparison.

In the proposed system, the secret shares S1, S2 and S3 are of the dimensions m×k1,
k1×k2 and k2×n, respectively. For the entire data set m=n and hence the share dimensions
are m×k1, k1×k2 and k2×m, respectively for S1, S2 and S3.

The attacker needs to construct the individual shares by brute-force approach to
recover the secret. Representing each pixel by either 0 or 1, the number of combinations
for recovering the shares S1, S2 and S3 is given in Equation (11). Further, k1 and k2 can
assume any value from 1 to m according to Equation (2). This increases the number of
combinations, and C can be expressed as in Equation (12).

C = 2mk1+k1k2+k2m (11)

C = 2mk1+k1k2+k2m2m2m (12)

Substituting k1 and k2 by the minimum value 1 in Equation (12), the minimum number
of combinations is expressed as Cmin in Equation (13).

Cmin = 2m+1+m2121 = 22m+3 (13)

Similarly, substituting k1 and k2 by the maximum value m in Equation (12), the maxi-
mum number of combinations is expressed as Cmax as in Equation (14).

Cmax = 2m2+m2+m2
2m2m = 23m2+2m (14)

In the (n,n) secret-sharing scheme proposed in [23], 2m×m×n combinations are required
to construct n shares, each of size m×m. A comparison of the number of combinations for
constructing the shares in [23] and the proposed system is given in Table 4, for the secrets
of varying sizes in our dataset.

It is seen from Table 5 that the number of combinations for constructing 3 shares is very
high for the proposed system compared to that of [23]. A graphical illustration of the above
table in Figure 8 shows an identical pattern of the plots, which reveals that the number
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of combinations of shares linearly increases with the size of the secret. For a secret of size
29 × 29, the proposed method requires 258 additional combinations to be tried compared
to [23], which affirms the security of the proposed approach.

Table 5. No. of combinations for construction of shares.

Size of Secret m

No. of Combinations

Singh et al. [23]
Proposed Method

Minimum Maximum

23m2 22m+3 23m2+2m

29 × 29 29 22523 261 22581

33 × 33 33 23267 269 23333

41 × 41 41 25043 285 25125

45 × 45 45 26075 293 26165

53 × 53 53 28427 2109 28533

57 × 57 57 29747 2117 29861

61 × 61 61 211,163 2125 211,285

77 × 77 77 217,787 2157 217,941
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Figure 8. Brute-force attack—number of combinations of shares.

Further, the secret image is reconstructed by multiplying S2 and S3 first and the
resultant with S1 in the proposed system. As the attacker is unaware of the share labels, all
the possible combinations must be tried. For 3 shares, the number of combinations is 23.
Two multiplication operations are required between the shares to recover the secret. From
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the above, the minimum and maximum number of total computations Tmin and Tmax can
be expressed as in Equations (15) and (16).

Tmin = 2m+1+m2121232 = 22m+7 (15)

Tmax = 2m2+m2+m2
2m2m232 = 23m2+2m+4 (16)

Further, inverse Arnold Transform must be applied on the scrambled secret recon-
structed from the shares. Generally, an image of 2d pixels requires 3(2d−2)transformations
to return to its original position. The number of transformations required for the test data
set is given in Table 6. This further increases the number of computations to a greater extent.

Table 6. Number of iterations of Arnold Transform to unscramble the secret.

Size of Secret d No. of Iterations of Arnold Transform 3(2d−2)

29 × 29 29 3 × 227

33 × 33 33 3 × 231

41 × 41 41 3 × 239

45 × 45 45 3 × 243

53 × 53 53 3 × 251

57 × 57 57 3 × 255

61 × 61 61 3 × 259

77 × 77 77 3 × 275

Based on Equations (15) and (16) and column 3 of Table 6, the number of computations
to be performed to recover the unscrambled secret is evaluated and given in Table 7. For
a comparative analysis, this value is presented for [23], considering the XOR operations
between n shares. For 3 shares, 2 XOR operations are to be performed which results in
23m2+1 computations.

Table 7. Total number of computations to recover the secret.

Secret Size Singh et al. [23]
No. of Computations to Recover the Secret

[Proposed System]

Minimum Maximum

29 × 29 22524 3 × 292 3 × 22612

33 × 33 23268 3 × 2104 3 × 23368

41 × 41 25044 3 × 2128 3 × 25168

45 × 45 26076 3 × 2140 3 × 26212

53 × 53 28428 3 × 2164 3 × 28588

57 × 57 29748 3 × 2176 3 × 29920

61 × 61 211,164 3 × 2188 3 × 211,348

77 × 77 217,788 3 × 2236 3 × 218,020

A graphical representation of Table 7 shown in Figure 9 matches that of Figure 8,
signifying the consistent behavior of the proposed model compared to [23] with respect to
the number of combination of shares to be considered and the number of computations to
recover the secret by bruteforce attack. Observation of the number of computations for a
29 × 29 QR code shows that 3 × 288 additional computations are required to recover the
secret compared to [23]. However, it is seen that the number of computations required by
the proposed system is very high compared to [23] as the secret size increases.
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Finally, we present the number of computations evaluated with Equation (10) for the
generation of HR secret from the LR secret in Table 8.

Table 8. No. of computations for LR to HR conversion.

Secret Size No. of Computations

29 × 29 1.14 × 108

33 × 33 1.48 × 108

41 × 41 2.28 × 108

45 × 45 2.74 × 108

53 × 53 3.81 × 108

57 × 57 4.40 × 108

61 × 61 5.04 × 108

77 × 77 8.03 × 108

Graphical illustrations of Tables 6 and 8 are given in Figure 10, which summarizes the
number of iterations of Arnold Transform and the number of computations required for
super resolution of the secret obtained by brute-force attack. It is seen that the plots are
identical, reinstating a linear increase in computational complexities with respect to the
size of the secret.
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It is seen that the number of computations increases with the size of the secret. From
the number of computations required to construct a secret, it is seen that it is difficult for an
attacker to construct a secret even with extreme computational resources.

5.2.2. Attack on Shares

In secret-sharing schemes, the secrets are susceptible to intentional or accidental
attacks. These shares may be tampered with by noise addition to the entire secret or
selective modification of content. We show that the proposed system is resistant to these
attacks with three experiments.

The first attack is posed by completely replacing a secret share by other. It is seen
from Table 2 that the secret share S3 exhibits a similar geometric pattern with significant
values along the diagonals. This leads to an implication that S3 can be guessed and
constructed with arbitrary significant values, challenging the security of the system. We
experimented with this with the 5th and the 6th QR codes in [50], named cite_09_Q_small
and cite_10_Q_small, respectively, each with dimension 41 × 41. All the shares generated
from these QR codes have the same dimension. We have applied the reconstruction
procedure on S2 of the 5th QR code and S3 of the 6th QR code to generate H’. The QR code
Q’ is reconstructed by combining this H’ and S1 of the 5th QR code. The results of this
experiment are shown in Figure 11. It is seen that the reconstructed QR code is completely
indiscernible, testifying to the security of the proposed system.
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Figure 11. QR code reconstruction from tampered share (a) 5th QR code, (b) 6th QR code, (c) S1 (5th
QR code), (d) S2 (5th QR code), (e) S3 (6th QR code), (f) reconstructed QR code.

The second attack is launched by selective tampering of pixels in S1. The impact of this
attack is tested by flipping some of the pixels in S1 of the 6th QR code and assigning 0 a block
of 10 × 10 pixels. The shares corresponding to this QR code and the reconstructed secret
are shown in Figure 12. It is seen that the reconstructed QR code is completely distorted.
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Figure 12. QR code reconstruction from selectively tampered share (a) S1 (6th QR code), (b) S2 (6th
QR code), (c) S3 (6th QR code), (d) reconstructed QR code.

The third attack is performed by addition of noise to S2. Salt-and-pepper noise of
density 0.02 is added to the share S2 of the 6th QR code to study the effect of accidental
noise addition. The shares and the reconstructed secret are shown in Figure 13. In spite of
the secret being distorted, the structure of the secret is not completely lost. However, this
secret is not decodable by the QR code reader. A noise density of 0.02 affects 2% of pixels
in an image. We see that modification of a share by 2% introduces obvious distortions in
the secret, rendering it unreadable.
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5.3. Limitations and Future Works

Initially, we present the limitation of this research. This paper reports complete
reconstruction and successful decoding of the QR codes in the dataset and also presents
image-quality measures. However, most recent representative works do not contain such
explicit results for comparison. The authors report complete recovery and decoding of a
41 × 41 QR code in [31] without obvious performance analysis of the (3,3) secret-sharing
approach on a complete dataset. Similarly, in [32] only subjective results are presented



Sensors 2022, 22, 2959 23 of 25

for a small set of QR codes without objective results. Lack of comparative analysis with
a standard dataset and quantitative measures restricts further explorations regarding the
enhancement of the approaches. Further, due to lack of relevant works, security of the
proposed system is compared only with that of [23], which is an (n,n) secret-sharing scheme.
However, it shares the secret as meaningful shares.

From statistical evaluations and experiments by intentional modification of shares,
it is seen that the proposed system is secure against brute-force and tampering attacks.
However, appearance of uniform geometric patterns in all S3 is a vital security concern,
which requires further investigation. The security of the system can be further improved
by scrambling the shares and constructing meaningful shares, which do not raise suspicion.
The rank() function employed in secret creation evaluates the rank of the matrix as the
number of singular values of a matrix, greater than a default tolerance. Since NMF is
applied in two stages in this work, the tolerance values can also be used to enforce the
security by assuming suitable values. Further, the number of NMF stages can be increased
to improve the security of the system.

Of late, color QR codes that have high data capacity and flexibility of encoding are
widely used in product and service marketing. However, decoding them is a challenging
task due to variations in color maps, channel interferences and the resolution of the camera.
Further, applying VSS on color QR codes incurs additional costs, which increases the
complexity of the system. The proposed VSS scheme can be extended to color QR codes
with the same framework, using Nonnegative Tensor Factorization (NTF) in place of NMF.

6. Conclusions

While the existing secret-sharing systems employ QR codes as cover images to carry
secret data, we envision the need for sharing QR codes as secrets. Recent medical IoT
applications that transform real-time clinical data into QR codes require the protection
of QR codes from unauthorized access and tampering. This security requirement can be
realized with the proposed system, as demonstrated by our experimental works. This paper
presents a novel QR code-sharing scheme exploiting the potential of NMF in part-based
representation of images. It also harnesses the potential of SRCNN in the reconstruction
of QR codes, which has not been attempted so far. With a standard dataset containing
QR codes of varying error-correction levels, we have clearly demonstrated the efficacy of
our system with experimental results, theoretic analyses and empirical evaluations of the
security attacks. Though the first of its kind, this system imbibes the desirable features of
a cryptographic system for secured exchange of sensitive data among participants. This
research can be extended by customizing the proposed approach to diverse image classes
such as micro QR codes, finger-prints and multi-modal digital images. Recently, color QR
codes were introduced that can carry a relatively large amount of information. Though
these QR codes feature high data density, they are prone to several problems such as color
coding, detection, deblurring, etc., in reconstruction and decoding. The proposed system
can be extended to share color QR codes enforcing additional constraints with the NMF
and the SRCNN.
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