
polymers

Article

Coaxial Printing of Silicone Elastomer Composite
Fibers for Stretchable and Wearable
Piezoresistive Sensors

Zhenhua Tang , Shuhai Jia *, Xuesong Shi, Bo Li and Chenghao Zhou

School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China; zhtangy@163.com (Z.T.);
xuesongshisxs@163.com (X.S.); polee00@163.com (B.L.); francklinson@163.com (C.Z.)
* Correspondence: shjia@mail.xjtu.edu.cn

Received: 15 March 2019; Accepted: 9 April 2019; Published: 11 April 2019
����������
�������

Abstract: Despite the tremendous efforts dedicated to developing various wearable piezoresistive
sensors with sufficient stretchability and high sensitivity, challenges remain pertaining to fabrication
scalability, cost, and efficiency. In this study, a facile, scalable, and low-cost coaxial printing strategy is
employed to fabricate stretchable and flexible fibers with a core–sheath structure for wearable strain
sensors. The highly viscous silica-modified silicone elastomer solution is used to print the insulating
sheath layer, and the silicone elastomer solutions containing multi-walled carbon nanotubes (CNTs)
are used as the core inks to print the conductive inner layer. With the addition of silica powders as
viscosifiers, silica-filled silicone ink (sheath ink) converts to printable ink. The dimensions of the
printed coaxial fibers can be flexibly controlled via adjusting the extrusion pressure of the inks. In
addition, the electro-mechanical responses of the fiber-shaped strain sensors are investigated. The
printed stretchable and wearable fiber-like CNT-based strain sensor exhibits outstanding sensitivities
with gauge factors (GFs) of 1.4 to 2.5 × 106, a large stretchability of 150%, and excellent waterproof
performance. Furthermore, the sensor can detect a strain of 0.1% and showed stable responses for
over 15,000 cycles (high durability). The printed fiber-shaped sensor demonstrated capabilities of
detecting and differentiating human joint movements and monitoring balloon inflation. These results
obtained demonstrate that the one-step printed fiber-like strain sensors have potential applications in
wearable devices, soft robotics, and electronic skins.

Keywords: coaxial printing; carbon nanotube; silicone elastomer; strain sensor; human motion
monitoring

1. Introduction

Soft and flexible piezoresistive sensors, as a key component of soft electronic devices, have
recently become prevalent in various research fields, such as soft robotics, wearable electronics, healthy
monitoring, and human–machine interfaces [1]. In particular, stretchable fiber-based sensors, which are
expected to be flexible, wearable, and light-weight, are promising as a platform for wearable electronic
devices [2]. Furthermore, a fibrous or wire-shaped device can be easily integrated into stretchable
fabrics to fulfill a more practical demand of wearable electronics in our daily life [3]. Therefore,
tremendous efforts have been made to develop fiber-like piezoresistive sensors [4–7].

Recently, conductive materials such as carbon nanotubes (CNTs) [8], graphene [9], liquid alloy [10],
and metal nanowire solutions [11] infiltrated into or coated on stretchable elastomer fibers have
been widely used to fabricate fiber-shaped sensors. For example, Cao et al. [11] demonstrated a
silver nanowire/polyurethane composite fiber sensor with high sensitivity, but the fabricate method
is complex. Zhang et al. [12] fabricated a highly stretchable conductive fiber by dip-coating a layer
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of liquid metal on silicone elastomer filaments, but the separation between the surface layer and the
filament as the fiber bends, stretches, and shrinks is inevitable. To obtain a high-performance wire-like
strain sensor, Boland et al. reported a simple method to fabricate graphene-infused elastic bands to
produce highly stretchable and sensitive strain sensors [9]. On the other hand, soft and elastic tubes
encapsulating conductive fillers have also been used to fabricate fiber-like piezoresistive sensors. For
instance, conductive stretchable fibers were fabricated by injecting liquid alloys into elastic polymer
tubes [10]. Although large stretchability was achieved, the injection method and the liquid leakage
may limit the practical application of this type of fiber-like sensor. Luo et al. [13] filled expanded
graphite into an elastic rubber tube to fabricate a high-performance stretchable tubular conductor,
but this fabrication strategy is uncontrollable. Zhou et al. [14] combined the wet-spinning approach
with a post-treatment process to prepare thermoplastic elastomer-wrapped CNT fiber-like strain
sensors, which exhibited high sensitivity, high stretchability, and high linearity, but the fabrication
process was complex and time-consuming. In our previous study [5,15], CNT-based coaxial fibers
were fabricated via a one-step wet-spinning assembly approach. The sheath layer and core layer of the
fibers were pure silicone elastomer and CNT-filled silicone elastic composite, respectively. Due to the
elastic nature of silicone elastomer, the stretchability of the coaxial fiber was above 500%. Moreover,
the insulating property of the sheath layer of the coaxial fiber avoided the risk of short-circuiting.
Various conductive materials and fabrication methods have been employed to fabricate fiber-based
piezoresistive sensors. However, most conducting fibers in previous studies were fabricated by
physically deposited fillers or solution-coated conducting materials [7–9,12]. The common methods
such as dip-coating, spray-coating, and a layer-by-layer assembly method have some limitations, such
as complex processes, high costs, and manual interventions. Moreover, the conductive surfaces of
the aforementioned fibers being exposed and the risk of short-circuiting when used as strain sensors
needed to be considered [4,6–9,12]. The effect of sweat and water in the vicinity on the sensors are
also challenges for practical applications. Therefore, the development of wearable and waterproof
fiber-like sensors via a simple, efficient, and scalable fabrication process still needs to be addressed.
Direct ink writing (DIW) is one of the 3D printing techniques that has drawn much attention, due to
its simple printing mechanisms, low cost, and large-scale production. DIW has been applied to print
sensors, actuators, energy storage devices, and so on [16–18]. For example, Wang et al. [19] fabricated
CNT/polydimethylsiloxane(PDMS) strain sensors by layer-by-layer printing CNT dispersion on a
PDMS substrate. Kim et al. [20] employed the DIW technique to fabricate eutectic gallium–indium
(EGaIn)-based soft sensors. More recently, Cheng et al. [21] fabricated hybrid solid-state electrolytes
by using the DIW technique without any additional processing steps. These explorations show that
DIW has huge potential in fabricating advanced devices with low-cost, high-efficiency, and mass
production properties.

Here, we employed DIW printing technology to print coaxial CNT-based polymeric composites for
superelastic fiber-shaped piezoresistive sensors. The core layer ink was composed of CNTs and silicone
elastomer solution, and the sheath layer ink was a viscoelastic silica-filled silicone elastomer mixture.
Silica nanoparticles were added into the silicone elastomer solutions to modify their rheological
properties and reinforce the mechanical properties. A coaxial nozzle was used in this method, of
which the out nozzle and inner nozzle were used to extrude the silica-filled silicone elastomer and
CNT/silicone inks, respectively. Appropriate process parameters were selected to ensure a successful
printing process. The printed coaxial fibers exhibited excellent mechanical and electrical properties,
which could be used as stretchable and wearable piezorisitive sensors. The printed fiber-like sensor
exhibited an ultrahigh sensitivity (gauge factor (GF) of 2.5 × 106 at a strain of 90–150%), a large
stretchability (150%), and excellent durability and repeatability (over 15,000 cycles). Furthermore, we
demonstrated the waterproof property and the detection of various human motions with the printed
sensor. The combination of one-dimensional (1D) coaxial fiber design and the easy, low-cost, and
scalable DIW printing technology can offer a promising solution for wearable and high-performance
electronic devices.
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2. Materials and Methods

2.1. Materials and Characterizations

Unless otherwise specified, all materials were used as received. Multi-walled carbon nanotubes
(CNTs, average diameter: 12 nm, length: 10–30 µm, and purity: >98%) were purchased from Chengdu
Organic Chemicals Co., Ltd. of the Chinese Academy of Science, Chengdu, China. Silica nanoparticles
(Si NPs) with 7–40 nm particle size and 300 m2/g specific surface area were supplied by Shanghai
Aladdin Biochemical Technology Co., Ltd. Commercially available silicone elastomer Ecoflex 0030 was
purchased from Smooth-On (Macungie, PA, USA). The surface morphology of CNTs was characterized
by a field-emission scanning electron microscope (SEM) (Zeiss GenimiSEM 500, Oberkochen, Germany).
The quality of CNTs was analyzed by Raman spectroscopy HR800 (Jobin Yvon Horiba, Paris, France)
with a laser excitation wavelength of 633 nm. The sizes of the fibers were obtained using an optical
microscope (GP–300C, Kunshan Gaopin Precision Instrument Co., Ltd., Kunshan, China).

2.2. Preparation of the Printable Inks

Homogeneous printable inks were prepared as follows: The sheath silicone elastomeric ink was
synthesized by mixing 1 Ecoflex 0030 Part A to 1 Part B with a certain amount of Si NP, which was
added as a rheological modifier [22]. To achieve appropriate rheological properties for a 3D printing
ink, the Si NP content of the sheath ink was optimized to be 5.5 wt %. The core inks were prepared
as follows: Ecoflex 0030 Part A and B were mixed at a 1:1 ratio, followed by the addition of a proper
amount of CNT powders. The inks were mixed using a planetary centrifugal mixer (HM800, Shenzhen
Hasai Technology Co., Ltd., Shenzhen, China) at 2000 rpm for 5 min.

2.3. Rheological Measurements

The rheological properties of the inks were characterized using a stress-controlled rheometer
(MCR302, Anton Paar, Graz, Austria) with a 25-mm diameter parallel plate at room temperature. The
viscosity of the inks was measured through a shear-rate sweep from 0.1 to 100 s−1. Dynamic stress
sweeps were performed at a fixed frequency of 1 Hz to get storage modulus (G′) and loss modulus
(G′′) as a function of the shear stress sweep from 0.1 to 1000 Pa.

2.4. Coaxial Printing

Coaxial printing was carried out using a homemade 3D printing system, which consisted
of a computer-controlled 3-axis movement platform. All printing paths were determined using
G-code commands, which were generated by commercial software (CuraEngine, Geldermalsen, The
Netherlands) from designed 3D models (SolidWorks, MA, USA). Two 20 mL pneumatic syringes were
used to store the core and sheath inks individually. An air cylinder connected to an air compressor and
two pressure regulators were used to provide the appropriate pressure to extrude the ink through
the coaxial nozzle. The inks were extruded through a coaxial nozzle at a distance of 1.5 mm from
the substrate. The coaxial printing nozzle was fabricated by inserting a 19 G stainless steel needle
(diameter: 0.67 mm) into a 13 G stainless steel needle (diameter: 1.9 mm). The usual printing speed
was about 2 mm s−1, and the printing pressure of the sheath ink was about 0.64 MPa, which were
the optimized parameters. The flow rate of the core ink was controlled by an air pressure governing
valve that could flexibly adjust the pressure (range from 10 to 90 kPa) of the air to drive the inks.
After printing, the final obtained fibers were fully dried in an oven at 40 ◦C for 1 h. Unless otherwise
specified, the samples for all experiments in this research were printed at 70 kPa and 0.64 MPa for core
ink and sheath ink, respectively.
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2.5. Elecreomechanical Response Measurement

Copper wires were connected to the two ends of the printed coaxial fiber as external electrodes
with the help of conductive silver paste and silicone adhesive (Sil-Poxy, Smooth-On). The gauge length
between the copper wires was 20 mm. The silicone adhesive was used to cover the silver electrodes to
avoid mechanical failure between the soft fiber and rigid electrodes. A computer-controlled homemade
stretching stage was used to apply the desired strains. Piezoresistive responses of the printed sensors
were measured by recording the current at a constant voltage of 1 V. The electrical responses of the
sensors were acquired with a data acquisition module (NI USB-6341, National Instruments, Austin,
TX, USA) and transmitted to a computer. All experiments in this study were conducted at room
temperature (about 24 ◦C).

3. Results

Figure 1a shows the SEM image of the pristine CNT powders, which had an average diameter of
12 nm. Figure 1b shows the Raman spectrum for the raw CNTs. The D peak at 1320 cm−1, G peak
at 1580 cm−1, and the 2D peak at 2640 cm−1 were observed. The D peak is attributed to the disorder
of the carbonaceous structures. The G peak is associated with the sp2 vibration of a perfect graphite
crystal [23]. In general, the less disordered the graphite-based systems are, the weaker the intensity
of the D peak (relative to the intensity of the G peak) is expected to be. As shown in Figure 1b, the
calculated intensity ratio of the D peak to the G peak (ID/IG) turned out to be about 1.5, indicating a high
level of impurity or defect density in the purchased CNTs. To prepare inks for printing, the rheological
properties should be taken into account.Figure 1c shows the curves of viscosity as a function of shear
rate for various inks. The apparent viscosity value of pure silicone solutions is less than 10 Pa·s, which
is much lower than the printable inks we used, indicating inferior printability. Unlike the pure silicone
inks, the addition of CNTs or Si NPs makes the silicone-based composite inks exhibit a remarkable
shear-thinning behavior, which is critical for controllable extrusion during printing. Figure 1d shows
the storage modulus (G′) and loss modulus (G′′) as a function of shear stress for various inks. Storage
modulus describes the solidification behavior of the ink in low shear stress conditions, while the loss
modulus reflects the liquid-like response. A high storage modulus at low shear stress helped the inks
retain their filamentary form after printing. For sheath ink, the content of Si NPs for sheath inks was
optimized to be 5.5 wt %, considering the high shape retention at various printing conditions. As
shown in Figure 1d, the storage modulus (G′) of pure silicone solution is much lower than its loss
modulus (G′′), indicating a liquid-like behavior. The storage modulus (G′) of silica-filled silicone
inks plateaus above 104 Pa which is much higher than the relevant loss modulus range. These results
indicate that silica-filled silicone inks were transformed into a solid-like fluid, due to the formation
of a strong silica network at this filler loading, which facilitated the shape retention of the printed
patterns. Moreover, the core ink shows a high G′ over 103 Pa, which is higher than G′′ in the low shear
stress region. This result indicated that the CNT/silicone ink was also transformed into a solid-like
fluid, due to the interaction between CNTs and polymer chains. It should be noticed that the G′ and
G′′ of the sheath ink are much higher than those of the core ink. The higher G′ indicated a stiffer
nature of the silica-filled silicone ink, which is desirable for printing self-supported structures without
deformation. In fact, owing to the coaxial structural feature of the fiber composite, the higher G′ of the
sheath ink was able to lower the requirements for rheological properties of the core ink. That is to say,
the rheological properties of the core inks don’t need to meet the printing requirements (shear-thinning
and larger storage modulus) in this study.
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Figure 1. (a) SEM image of carbon nanotubes (CNTs). (b) Raman spectra for raw CNTs. (c) Apparent
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Figure 2a briefly shows the preparation process of the silicone-based inks. The silica-filled silicone
ink for the sheath layer was formulated by simply mixing Si NPs and silicone solution in a certain
weight proportion to create a uniformly dispersed and high-viscosity composite ink. Similarly, the
core layer ink was fabricated by mixing CNTs and silicone solution in a certain weight content. The
prepared silica-filled silicone ink and CNT/silicone ink were mixed using a planetary centrifugal mixer
at 2000 rpm for 5 min. Then the prepared inks were housed in separate syringes (20 mL volume) for
coaxial printing. As shown in Figure 2b, the loaded syringes attached with the coaxial nozzle were
then mounted onto the specially designed 3D DIW printer. The coaxial printing process is illustrated in
Figure 2c. Figure 2d shows the optical images of the loaded syringes with the prepared inks. Figure 2e
shows the optical image of the extruding process of the inks through the coaxial nozzle. From this
figure, it can be seen that the extruded filament exhibited a clear core–sheath structure and could
maintain its shape without breakdown, indicating the printability of the inks. The flow rates of core
layer ink and sheath layer ink were separately controlled by air pressure governing valves that could
flexibly adjust the injection pressure of air to drive the inks. The movement speed of the nozzle and
the printing pressure of the sheath ink were about 2 mm s−1 and 0.64 MPa, respectively, which were
the optimized parameters. The pressure of the core layer ink was adjusted from 10 to 90 kPa. Figure 2f
shows the digital optical image of the printing process of a coaxial fiber. Finally, the printed samples
were cured at 40 ◦C for 1 h and removed from the substrate after cooling down to room temperature.
Figure 2g shows that the printed fibers can be stretched to above 100% of tensile strain, demonstrating
their high flexibility and stretchability.

Figure 3a shows the optical microscopy images of the transverse cross-sectional areas of the
printed fibers. From this figure, it can be seen that the printed coaxial fibers consisted of conductive
CNT/silicone elastomer composites (black areas), which were encapsulated by elastomeric insulating
layers made up of fumed silica-filled silicone elastomer. The cross-section areas were measured form
the optical microscopy images with respect to different extrusion pressures. Figure 3b shows the
diameter variation of the printed samples under different extrusion pressures of core inks. From this
figure, it can be noted that the core diameter of the coaxial fibers increased with the corresponding
extrusion pressure. The diameters of the coaxial fibers, however, show only a slight variation, as
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depicted in Figure 3b. The total diameter of the fiber slightly increased when increasing the core ink
injection pressure to approximately 50 kPa, and then the fiber diameter decreased slightly with the
increasing pressure. This may be attributed to the thickness of the sheath layer decreasing as the
diameter of the core layer increased. The higher the extruding pressure of core ink, the larger the core
diameter, but increasing the core ink injection pressure too much would result in the thickness of the
sheath layer decreasing quickly. Therefore, the total diameter of the printed fibers exhibited a reducing
trend under a certain high extrusion pressure.
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Figure 2. (a) Schematic showing the preparation of the printable inks. (b) Schematic illustration of
the coaxial printing system. (c) Schematic illustration of the coaxial printing process and the coaxial
structure of the printed fiber. (d) Digital optical images of silica-filled silicone ink (left) and CNT/silicone
ink (right). (e) Digital optical image of ink-extruding. (f) Photograph showing the coaxial printing
process. (g) Digital optical images of the printed fiber under original (left) and stretched (right) state,
showing the excellent stretchability of the fiber.
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Figure 4 shows the current–voltage (I–V) curves of the printed fiber-like sensor under various
static strains, ranging from 0 to 40%. From this figure, it can be noted that the I–V curves all appeared
to have a linear tendency, indicating the ohmic behavior and constant conductivity of the sensor under
static loading. Therefore, the resistance of the device is independent of the applied voltage. The
piezoresistive behavior of the sensor was investigated by monitoring the relative changes in electrical
resistance for the applied strain. The resistance of the sensor increased with the applied strain, and the
electric connection was lost under a strain above 150%. It should be noted that the fracture strain of the
coaxial fiber was about 400%. Figure 4b shows the relative changes in electrical resistance (∆R/R0) of
the sensor under various strains. The gauge factor (GF) is a characteristic parameter representing the
sensitivity of the sensor and can be calculated from (∆R/R0)/ε, where ∆R, R0, and ε denote the change
in resistance, initial resistance, and applied strain, respectively. The calculated GFs of the sensor were
1.4 and 2.5 × 106 for strains ranging from 0 to 25% and 90 to 150%, respectively. Figure 4c shows the
normalized resistance changes of the sensor under various cyclic strains of 20%, 40%, 60%, and 80%.
From this figure, it can be noted that the sensor exhibits a uniform and repeated response according to
the applied strain. A shoulder peak pattern was observed during strain releasing. The shoulder peak
originates from the competition between the destruction and reconstruction of the conductive networks
during the releasing process. A similar behavior has been previously reported [24,25]. Here, the
shoulder peaks for larger strain of 60% and 80% were negligible. In addition, as shown in Figure 4d, the
sensor could successfully differentiate strain from 0.1% to 0.5%, indicating the capability of detecting
subtle strains. The dynamic response of the sensor under a square wave loading signal is shown in
Figure 4e. From this figure, it can be seen that the sensor exhibited a consistent change in resistance,
indicating excellent repeatability. During stretching, the response of the sensor showed overshooting in
response to acceleration. A similar phenomenon has been previously reported for CNT-based polymer
composites [5,26]. This behavior may be attributed to the viscoelasticity of the silicone elastomer.
Figure 4f shows the response time of the sensor. The response time is estimated to be around 300 ms. If
the relay of the measurement system were considered, the actual response time for the sensor itself
would be even shorter than this value. For the frequency response test, we applied a strain of 50% at a
varying strain rate of 0.5 to 3.6 Hz. Figure 4g shows the relative change of the resistance for the sensor
at various frequencies. From this figure, it can be noted that the sensor retained its performance until a
strain rate of 3.6 Hz, showing a stable variation in resistance. The relative resistance change slightly
increases with an increase of the frequency of the applied strain. This may be attribute to that the
higher strain rate causes greater stress in the materials, which leads to an increase in the amplitude of
relative resistance change at high frequencies [5]. Moreover, the dynamic durability of the sensor was
investigated by monitoring the response of the sensor under cyclic stretching at a strain of 50% at 1 Hz.
As shown in Figure 4h, the sensor maintained the sensing performance for 15,000 cycles, indicating
that the sensor had a long working life and excellent repeatability.

The stability of the sensor in a wet environment is necessary for practical application. The electrical
response of the sensor to water was monitored for one hour by soaking the sensor in water (Figure 5a).
Figure 5b shows the relative changes in resistance of the sensor as a function of the soaking time. From
this figure, it can be noted that there were no significant changes in the electrical resistance after soaking
in water for 60 min. In addition, the sensor was attached onto the back of the index finger by bonding
the two ends with a stretchable tape (Figure 5c), and the dynamic response of the sensor in water at
room temperature was recorded. The electrical resistance was recorded by the source meter (Model
2450, Keithley, Cleveland, OH, USA). Owing to the flexibility of the sensor, conformal attachment to
uneven skin can be achieved. Figure 5d shows the relative changes in resistance of the sensor during
the bending motions of the finger in air and water at room temperature. From this figure, it is clearly
seen that the dynamic responses of the sensor in air and water were similar, indicating that the sensor
exhibited excellent waterproof properties. This can be attributed to the conductive core being fully
sealed with hydrophobic silicone rubber, which prevented water molecules from being absorbed into
the sensor surface. Therefore, the sheath layer effectively reduced the effect of the water on the sensors.
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Figure 4 shows the current–voltage (I–V) curves of the printed fiber-like sensor under various 244 
static strains, ranging from 0 to 40%. From this figure, it can be noted that the I–V curves all appeared 245 
to have a linear tendency, indicating the ohmic behavior and constant conductivity of the sensor 246 
under static loading. Therefore, the resistance of the device is independent of the applied voltage. 247 
The piezoresistive behavior of the sensor was investigated by monitoring the relative changes in 248 
electrical resistance for the applied strain. The resistance of the sensor increased with the applied 249 
strain, and the electric connection was lost under a strain above 150%. It should be noted that the 250 
fracture strain of the coaxial fiber was about 400%. Figure 4b shows the relative changes in electrical 251 
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Figure 4. (a) Current–voltage (I–V) curves of the printed sensor with applied various strains.
(b) Normalized resistance changes of the sensor under tensile strain. The insets show the normalized
resistance changes of the sensor at low strain ranges. (c) Dynamic responses of the sensor to repeated
strains of 20%, 40%, 60%, and 80%. (d) Normalized resistance changes of the sensor under strains of 0.1
to 0.4%. (e) Normalized resistance changes of the sensor upon applying a quasi-transient step strain
from ε = 0% to ε = 50%. (f) Magnified sensor responses extracted from (e) to show the response time.
(g) Relative resistance changes of the sensor vs. a tensile strain of 50% at frequencies of 0.5, 1, 2, and
3.6 Hz. (h) Normalized resistance changes of the sensor under repeated stretching/releasing cycles with
50% strain at a frequency of 1 Hz for 15,000 cycles, demonstrating the durability of the printed sensor.
The insets show the normalized resistance changes of the sensor from 90 to 100 s and 1490 to 1500 s.
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Figure 5. (a) The fiber sensor system while soaking in water. (b) Relative changes in electrical resistance
of the sensor as a function of the soaking time. (c) Photographs of the sensor directly attached to the
index finger. (d) A comparison of the dynamic responses of the printed sensors during finger bending
movements in air and water at room temperature.

Furthermore, to demonstrate the potential of the printed fibers as wearable sensors, the fiber-shaped
sensor was woven into the index finger of a fabric glove, using a sewing method. Figure 6a shows the
photographs of a fiber sensor woven into a glove. Figure 6b shows the relative changes in resistance of
the sensor under cyclic bending motions (various bending angles). From this figure, it can be seen
that the sensor responded to the motion of the finger quickly and accurately. Moreover, the sensor
reliably detected resistance changes, depending on the degree of bending of the finger, and the sensor
distinguishably responded to different finger motions. Figure 6c shows dynamic resistance changes of
the sensor under consecutive step-and-hold tests. From this figure, it can be seen that the resistance
variation increased in a stepwise manner in real time as the bending angle of the finger increased step
by step. When the finger recovered to its original state gradually, the resistance decreased according to
the bending angles. The above results fully indicate that the as-printed sensor with high sensitivity
and excellent stability presents potential applications for monitoring and analyzing human motions.

Thanks to the excellent flexibility and ultra-light weight of the fiber, the sensors could be attached
conformally to various uneven surfaces. As a demonstration, the sensor was directly attached to the
surface of a flat balloon (Figure 6d). The balloon was blown to expand its surface, while the electrical
resistance was recording in real-time. Figure 6e shows the resistance changes of the sensor, depending
on the gas volume in the balloon. From this figure, it can be seen that the response curve of the
sensor in a stair-like pattern corresponds to the process of the blowing. When the expanding balloon
deflated, the electrical resistance reduced. Based on the above results and the wide sensing range and
remarkable sensitivity of the sensors, we believe that the printed fiber-like sensor demonstrates its
high potential for application as a wearable strain sensor.
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Figure 6. (a) Optical images of a sensor woven into a glove at different bending angles. (b) Relative
changes in resistance for bending/unbending motions of an index finger with various bending angles.
(c) Electrical resistance responses of the sensor under consecutive step-and-hold tests. (d) Photographs
of a strain sensor attached to a balloon at various inflating states. All scale bars represent 20 mm.
(e) Monitoring of tension changes on the balloon surface during inflation.

4. Conclusions

In summary, we demonstrated a simple and efficient strategy to construct a stretchable and
flexible fiber-shaped strain sensor with both high sensitivity and large sensing range, through a coaxial
printing technique. A series of novel printable silicone elastomer-based inks with shear-thinning
behavior was developed. Through the addition of fumed silica powders or CNTs as viscosifiers, silicone
elastomer-based inks became adaptable for DIW printing, and coaxial fibers were successfully printed
with high-throughput production capability. The printed coaxial fibers exhibited high stretchability and
excellent flexibility, which were used as wearable strain sensors. It was demonstrated that the fiber-like
strain sensors showed high sensitivity (maximum gauge factor of 2.5 × 106 at 90 to 150% strain),
large sensing area (0–150% strain), outstanding durability (15,000 cycles), and excellent waterproof
performance. Furthermore, the printed coaxial fiber-based sensors were proven to be capable of
detecting and differentiating human joint motions and other curved surface deformations. The one-step
coaxial printing and synthesis of the inks in this work could provide inspiration for the development
of conformal and readily fabricated lightweight wearable electronics.
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