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Automated segmentation of newmultiple sclerosis (MS) lesions in 3D MRI data

is an essential prerequisite for monitoring and quantifying MS progression.

Manual delineation of such lesions is time-consuming and expensive,

especially because raters need to deal with 3D images and several modalities.

In this paper, we propose Pre-U-Net, a 3D encoder-decoder architecture with

pre-activation residual blocks, for the segmentation and detection of new

MS lesions. Due to the limited training set and the class imbalance problem,

we apply intensive data augmentation and use deep supervision to train our

models e�ectively. Following the same U-shaped architecture but di�erent

blocks, Pre-U-Net outperformsU-Net and Res-U-Net on theMSSEG-2 dataset,

achieving a Dice score of 40.3% on new lesion segmentation and an F1 score

of 48.1% on new lesion detection. The codes and trained models are publicly

available at https://github.com/pashtari/xunet.
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1. Introduction

Multiple sclerosis (MS) is a common chronic, autoimmune demyelinating disease

of the central nervous system (CNS), which causes inflammatory lesions in the brain,

particularly in white matter (WM). Multi-parametric MRI is widely used to diagnose

and assess MS lesions in clinical practice. Particularly, FLuid Attenuated Inversion

Recovery (FLAIR) images provide high contrast for white matter lesions appearing as

high-intensity regions. It is highly relevant to monitor lesion activities, especially the

appearance of new lesions and the enlargement of existing lesions, for several purposes,

including prognosis and follow-up. More specifically, lesional changes between two

longitudinal MRI scans from an MS patient are the most important markers for tracking

disease progression and inflammatory changes. To this end, the accurate segmentation

of new lesions is an essential prerequisite to quantifying lesional changes and measuring

features, such as new lesion volumes and locations. However, manual delineation of such

lesions is tedious, time-consuming, and expensive, especially because experts need to deal

with 3D images and several modalities; therefore, accurate computer-assisted methods

are needed to automatically perform this task.
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Longitudinal MS lesion segmentation, however, remains

very challenging since MS images often change subtly over time

within a patient, and new lesions can be very small although

they vary dramatically in shape, structure, and location across

patients. The MSSEG-2 MICCAI 2021 challenge (Confavreux

et al., 1992; Vukusic et al., 2020) aims to develop effective data-

driven algorithms for the segmentation of new MS lesions by

providing a dataset of 40 pairs of 3D FLAIR images acquired at

two different time points (with varying intervals) and registered

in the intermediate space between the two time points. For each

pair, new lesions are manually annotated by multiple raters, and

the consensus ground truths are obtained through a voxel-wise

majority voting (see Figure 1).

Over the past decade, convolution neural networks (CNNs)

with an encoder-decoder architecture, known as U-Net

(Ronneberger et al., 2015), have dominated medical image

segmentation. In contrast to a hand-crafted approach, U-Net

can automatically learn high-level task-specific features for MS

lesion segmentation. This work extends our previous effort

(Ashtari et al., 2021a) in the MSSEG-2 and proposes Pre-U-

Net, a 3D U-Net architecture with pre-activation residual blocks

(He et al., 2016a,b), for segmenting new MS lesions. We use

deep supervision (Lee et al., 2015) and perform intensive data

augmentation to effectively train our models. In contrast to

FIGURE 1

Qualitative results on new MS lesion segmentation. The three examples are from three di�erent patients in the test set. The new lesions are

shown in red in the segmentation maps. The new lesions circled in yellow (rows 2-3 and column 6) are successfully detected only by Pre-U-Net,

while the new lesion circled in blue (row 3 and column 3) is not captured by any of the models, representing a very di�cult case. The

patient-wise Dice score for each example is displayed on the segmentation map.

the existing methods, our models directly segment new MS

lesions on longitudinal 3D FLAIR images in an end-to-end

fashion in contrast to the common two-step approach, where

cross-sectional segmentation is first performed individually

for each time point, and new lesions are then extracted by

comparing the longitudinal segmentation maps and applying

further post-processing. Depending on the metric used, the

MSSEG-2 challenge has four leaderboards. Our Pre-U-Net

model achieved competitive scores, and our team, LYLE, was

ranked first in two of the leaderboards among 30 participating

teams in the challenge.

The rest of this paper is organized as follows: Section 2 briefly

reviews relevant semantic segmentation techniques. Section 3

presents our approach to longitudinal MS lesion segmentation.

Experiments are presented in Section 5. We conclude this paper

in Section 6.

2. Related work

Over the past few years, considerable efforts have been

made in the development of fully convolutional neural networks

for semantic segmentation. Encoder-decoder architectures, in

particular U-Net (Ronneberger et al., 2015) and its variants,
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FIGURE 2

The proposed encoder-decoder architecture. The two lower-resolution auxiliary maps are only used in the training phase as deep supervisions.

are dominant in the segmentation of brain lesions. nnU-Net

(Isensee et al., 2019) makes minor modifications to the standard

3D U-Net (Çiçek et al., 2016), automatically configuring the

key design choices. It has been successfully applied to many

medical image segmentation tasks, including longitudinal MS

lesion segmentation (Isensee et al., 2020). McKinley et al.

(2018) proposed an architecture, in which dense blocks (Huang

et al., 2017) of dilated convolutions are embedded in a shallow

encoder-decoder network. Myronenko (2019) proposed a U-

Net-style architecture with a heavier encoder but a lighter

decoder for brain tumor segmentation, taking a variational auto-

encoder (VAE) approach by adding a branch to the encoder

endpoint. Ashtari et al. (2021b) proposed a lightweight CNN for

glioma segmentation, with low-rank constraints being imposed

on the kernel weights of the convolutional layers in order

to reduce overfitting. Aslani et al. (2019) proposed a deep

architecture made up of multiple branches of convolutional

encoder-decoder networks that perform slice-based MS lesion

segmentation. La Rosa et al. (2020) proposed a U-Net-like

model, to automatically segment cortical and white matter

lesions based on 3D FLAIR andMP2RAGE images. These works

and most of the MS research in medical imaging have focused

on the cross-sectional segmentation of lesions, while only a few

efforts have been made to detect and segment new lesions on

longitudinalMRI scans. For example, Nills et al. (2020) proposed

a two-path CNN jointly processing two FLAIR images from

two time points to address longitudinal segmentation of new

and enlarged lesions. In contrast, this paper proposes a single-

path U-shaped architecture whose input is the 2-channel image

constructed simply by concatenating two longitudinal FLAIR

images which are co-registered.

3. Method

In this section, we describe the proposed encoder-decoder

architecture, called Pre-U-Net, and its building blocks.

3.1. Overall architecture

The overall architecture, as shown in Figure 2, follows a

U-Net-like style made up of encoder and decoder parts. A

3 × 3 × 3 convolution is used as the stem layer. The network

takes a 2-channel image of size 128 × 128 × 128 and outputs

a probability map with the same spatial size. The network has
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FIGURE 3

The proposed blocks. (A) U-Net block. (B) Res-U-Net block. (C) Pre-U-Net block.

4 levels, at each of which in the encoder (decoder), the input

tensor is downsampled (upsampled) by a factor of two while

the number of channels is doubled (halved). Downsampling

and upsampling are performed via strided convolution and

transposed convolution, respectively. The kernel size of all

downsamplers and upsamplers is 2 × 2 × 2. We use deep

supervision at the three highest resolutions in the decoder,

applying pointwise convolutions (head blocks) to get three

auxiliary logit tensors.

3.2. Baseline models

Depending on which block is used, we build and compare

three baselines: (i) U-Net, (ii) Res-U-Net, and (iii) Pre-U-

Net. All these variants follow the same overall architecture as

explained in Section 3.1 but differ in their encoder/decoder

blocks. The block for each model is detailed in the following.

3.2.1. U-Net block

The U-Net block used here is similar to that of nnU-Net

(Isensee et al., 2019) except for some minor modifications. As

shown in Figure 3A, this block is composed of two convolutional

layers with kernel sizes of 3×3×3. A Group Normalization (Wu

and He, 2018) layer (with a group size of 8) comes after each

convolutional layer and before LeakyReLU activation.

3.2.2. Res-U-Net block

Inspired by the basic ResNet block (He et al., 2016a), a

Res-U-Net block is, as shown in Figure 3B, similar to U-Net

block except that a shortcut connection is used between the last

GroupNormalization layer and the last LeakyReLU activation. A

pointwise convolution (i.e., a kernel size of 1×1×1)may be used

in the shortcut connection to match the input dimension with

the output dimension of the residual mapping. As investigated

by He et al. (2016a), residual connections have been proven

effective to avoid vanishing/exploding gradients and speed up

the convergence, especially in very deep networks.

3.2.3. Pre-U-Net block

Similar to the pre-activation residual block (He et al.,

2016b), a pre-U-Net block consists of two convolutional layers

with kernel sizes of 3 × 3 × 3, with LeakyReLU activation

coming before each convolutional layer and after Group

Normalization (with a group size of 8). Note that the pre-U-Net

block, in contrast to U-Net and Res-U-Net blocks, starts with

normalization, applying convolution-activation-normalization

in reverse order (see Figure 3C). He et al. (2016b) suggest that

such a pre-activation design together with identity mappings

as the shortcut connections makes information propagate more

smoothly than the post-activation design (which is used in

the basic ResNet block). Through ablation experiments, they

show that the pre-activation design reduces overfitting more

significantly, meaning that it leads to slightly higher training

loss at convergence but lower test error compared to the post-

activation design.

4. Experiments

All themodels are implemented using PyTorch (Paszke et al.,

2019) and PyTorch Lighting (Falcon, 2019) frameworks and

trained onNVIDIA P100 GPUs.We evaluate the performance of

Pre-U-Net for MS lesion segmentation on the MSSEG-2 dataset.

We follow the same training workflow in all the experiments. In

the following, we first provide the details of this workflow, then

present the evaluation protocol and the results.

4.1. Setup

4.1.1. Data

A total of 40 and 60 MS patients are represented in the

MSSEG-2 training and test set, respectively. For each patient,

two longitudinal 3D FLAIR images are acquired at different

time intervals (e.g., 1 year, 3 years) and registered in the

intermediate space between the two time points. New lesions

that a patient developed between the two time points were

manually delineated by multiple raters, and the consensus
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TABLE 1 An overview of the MSSEG-2 dataset.

Data Modality Median voxel size (mm) Median shape No. of total

cases

No.

with-new-lesion

cases

No.

without-new-lesion

cases

Training FLAIR (0.53, 0.98, 0.98) (320, 256, 256) 40 29 11

Test FLAIR (0.65, 0.98, 0.98) (280, 256, 256) 60 32 28

All FLAIR (0.60, 0.98, 0.98) (297, 256, 256) 100 61 39

The third column indicates the median value of voxel size for each axis. The fourth column indicates the median number of voxels along each axis.

ground truths were obtained through a voxel-wise majority

voting (see Figure 1). The training (test) set includes images that

have no new lesions since, in real clinical practice, many patients

under treatment do not develop any new lesions during the time

interval. Further details on the MSSEG-2 dataset are reported

in Table 1. Note that both the training and test sets were fixed

across our experiments as well as for all the challengers.

4.1.2. Preprocessing

For each case, we first concatenate the two FLAIR images

to form a 2-channel 3D image as the input. This is valid

since the two FLAIR images are co-registered, and therefore,

spatially aligned. The resulting image and its ground truth are

then cropped with a minimal box filtering out zero regions.

MSSEG-2 data are heterogeneous in the sense that the images

may be acquired with different protocols in multiple institutes

using different scanners, making intensity values greatly vary

across patients and even across time points within the same

patient. Therefore, we normalize each image channel-wise

using a z-score to have intensities with zero mean and unit

variance. Moreover, all the images and their ground truths

are then resampled to the same voxel size of 1 mm3 using

trilinear interpolation.

4.1.3. Data augmentation

To reduce overfitting caused by data insufficiency and

heterogeneity, it is crucial to perform an effective data

augmentation workflow before feeding the data into the

network. P3During training, the data preprocessing and

augmentation are integrated into a single pipeline operating on

a batch of 2 samples at each step on the fly. From each sample,

we first crop a random 128 × 128 × 128 patch whose center

lies within the foreground (i.e., new lesions) with a probability

of 66%. Such an oversampling technique ensures that at least

66% of the patches contain some lesion, which in turn alleviates

the class imbalance problem caused by the relatively small size

of new lesions. The patches then undergo spatial transforms,

including random affine and random flip along each spatial

dimension, and intensity transforms, including random additive

Gaussian noise, random Gaussian smoothing, random intensity

scaling and shifting, random bias field, and random contrast

adjusting. All the preprocessing operations and augmentation

transforms are computed on CPU using the MONAI library ().

4.1.4. Optimization

All networks are trained for 100,000 steps with a batch size of

2 (each patch is processed on oneGPU) using AdamWoptimizer

with an initial learning rate of 1e−5, weight decay of 1e−2,

and cosine annealing scheduler. P3Therefore, each network in

training is fed by a total of 200,000 different patches of size

128 × 128 × 128. It is worth mentioning that since the training

set consists of 40 subjects, there are 5,000 = 200,000/40 patches

per subject, among which around 3,300 = 5,000 ×0.66 patches

are expected to contain new lesions.

The loss Ltotal is computed by incorporating the three

deep supervision outputs and the corresponding downsampled

ground truths, according to

Ltotal = λ0L(G0,P0)+ λ1L(G1,P1)+ λ2L(G2,P2), (1)

where λ0 = 1, λ1 = 0.5, and λ2 = 0.25; Gi and Pi correspond

to the deep supervision at resolution [128/(2i)]3; and the loss

function L(·, ·) is the sum of soft Dice (Milletari et al., 2016) and

Focal loss (Lin et al., 2017), that is

L(G,P) = LDice(G,P)+ LFocal(G,P), (2)

where

LDice(G,P) = 1−
2〈G,P〉 + ǫ

‖G‖2 + ‖P‖2 + ǫ
,

LFocal(G,P) = −
1

N
〈G, (1− P)γ log(P)〉, (3)

where G ∈ {0, 1}J×N and P ∈ [0, 1]J×N represent the one-

hot encoded ground truth and the predicted probability map

for each voxel, respectively, with J denoting the number of

segmentation classes and N denoting the number of voxels

in the patch. The small constant ǫ = 10−5 is commonly

used to smooth the soft Dice loss and avoid division by zero.
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The focusing parameter γ = 2 smoothly controls the rate

at which well-classified voxels are suppressed in the Focal

loss, and 1 denotes a J × N matrix of ones. The Focal loss

has proved effective in tackling the class imbalance problem,

which is present in the MSSEG-2 training set since the total

volume of new lesions is generally much smaller than that of

the background, and nearly one-third of the patients have no

new lesions.

4.1.5. Inference

A test image in the inference is first subjected to z-score

intensity normalization and resampled to a voxel size of 1 mm3.

The prediction is then made using a sliding window approach

with a 50% overlap and a window size of 128×128×128 (which

is equal to the patch size used in training). For a given voxel

from overlapping windows, themean of the predictions is simply

taken as the final value (the SlidingWindowInferer

module from MONAI was used to perform the sliding window

inference). The resulting probability map is resampled back to

the original voxel size and finally thresholded by 0.5 to obtain a

binary segmentation map.

4.1.6. Evaluation

The Dice score and Hausdorff Distance (HD) are used

as metrics to assess the performance of segmentation for the

patients that have some new lesions in their ground truths. The

Dice score measures the voxel-wise overlap between the ground

truth and the prediction, defined as

Dice(g, y) =
2
∑N

n=1 gnyn
∑N

n=1 gn +
∑N

n=1 yn
(4)

where gn ∈ {0, 1} and yn ∈ {0, 1} represent the ground truth

and the binary prediction for a voxel, respectively, and N is

the number of voxels. Hausdorff Distance (HD) evaluates the

distance between the boundaries of ground truth and prediction,

computed according to:

HD(G,Y) = max{max
g∈G

min
y∈Y

‖g− y‖, max
y∈Y

min
g∈G

‖y− g‖}, (5)

where G and Y denote the set of all voxels on the surface of

ground truth and prediction, respectively.

Lesion-wise sensitivity (SEN), positive predictive value

(PPV), and F1 score are used as metrics to quantify the detection

rate of new lesions. Let G be the ground truth and Y be the

prediction. To compute these lesion level metrics, we follow

Commowick et al. (2018), according to which the connected

components of G and Y (with a 18-connectivity kernel) are first

extracted, and all new lesions smaller than 3 mm3 in size are

removed, yielding new tensors G̃ and Ỹ. The metrics are then

defined as

SEN =
TP

TP+ FN
, (6)

PPV =
TP

TP+ FP
,

F1 =
2TP

2TP+ FP+ FN
,

where TP, FP, and FN are the number of true positives, false

positives, and false negatives, respectively, in the detection

of new lesions (i.e., connected components). The rules by

which a lesion is considered detected are explained in

Commowick et al. (2018).

For cases without any new lesions in their ground truths, we

use the following two metrics:

• The Number of new Lesions Predicted (NLP) by the

algorithm. This is obtained by counting the number of

connected components in the predicted segmentation.

• The Volume of new Lesions Predicted (VLP) by the

algorithm. This is obtained by simply multiplying the

number of voxels in the predicted segmentation by the

voxel volume.

All the metrics mentioned above were computed using

animaSegPerfAnalyzer from the Anima toolbox

(available at https://anima.irisa.fr/, RRID: SCR_017017 and

RRID: SCR_01707).

5. Results and discussion

5.1. Quantitative evaluation

We performed five-fold cross-validation in all the

experiments to estimate how capable our models are in

generalizing to unseen data. The cross-validation results on

the MSSEG-2 training set are reported in Table 2. For each

network, we used an ensemble of the five models trained during

the cross-validation on the training set for predicting the test

set labels. The test results are reported in Table 3 and illustrated

by notched box plots in Figure 4, where pairwise Wilcoxon

signed-rank tests were used to identify the significant differences

in the test scores of baselines.

Pre-U-Net was superior to all the other models in terms

of both segmentation and detection performance for the test

cases with some new lesions, achieving a Dice score of 40.3%,

HD of 35.0, SEN of 47.5%, PPV of 53.6%, and F1 score of

48.1%. While having almost the same number of parameters

and the same computational complexity (FLOPS), Pre-U-Net

outperformed U-Net, the second-best baseline, and significantly

outperformed Res-U-Net, with p-value< 0.05 for the Dice score,

p-value < 0.01 for the F1 score, and p-value < 0.05 for HD.
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TABLE 2 Results obtained by five-fold cross-validation on the MSSEG-2 training set.

Model No. of params FLOPs With-new-lesion cases Without-new-lesion cases

Dice (%)↑ HD (mm)↓ SEN (%)↑ PPV (%)↑ F1 (%)↑ NLP↓ VLP (mm3)↓

U-Net 28.7 M 1264.7 G 45.2 (5.5) 39.0 (14.1) 51.0 (12.1) 52.9 (6.1) 48.9 (7.6) 0.1 (0.2) 9.2 (20.6)

Res-U-Net 28.9 M 1280.8 G 42.4 (11.4) 46.4 (15.9) 49.3 (22.9) 60.6 (6.6) 49.9 (14.8) 0.2 (0.4) 4.0 (9.0)

Pre-U-Net 28.9 M 1280.8 G 45.6 (9.5) 40.1 (13.2) 54.5 (13.8) 53.8 (6.8) 51.9 (11.3) 0.0 (0.0) 0.0 (0.0)

Symbols ↑ and ↓ indicate that a metric is desired to be higher and lower, respectively. The mean and standard deviation (SD) of a score across the folds are reported as “mean (SD).” The

best results are in boldface.

TABLE 3 Results on the MSSEG-2 test set.

Model No. of params FLOPs With-new-lesion cases Without-new-lesion cases

Dice (%)↑ HD (mm)↓ SEN (%)↑ PPV (%)↑ F1 (%)↑ NLP↓ VLP (mm3)↓

U-Net 28.7 M 1264.7 G 38.9 (31.1) 43.1 (27.3) 45.2 (36.8) 51.2 (39.6) 45.3 (35.7) 0.0 (0.2) 0.4 (2.3)

Res-U-Net 28.9 M 1280.8 G 34.9 (29.5) 44.2 (29.0) 43.6 (38.4) 38.4 (38.5) 33.7 (33.1) 0.0 (0.0) 0.0 (0.0)

Pre-U-Net 28.9 M 1280.8 G 40.3 (30.5) 35.0 (22.3) 47.5 (37.9) 53.6 (38.3) 48.1 (34.8) 0.0 (0.2) 0.5 (2.5)

Predictions were made using the five models from the cross-validation as an ensemble. Symbols ↑ and ↓ indicate that a metric is desired to be higher and lower, respectively. The mean

and standard deviation (SD) of a score across patients are reported as “mean (SD).” The best results are in boldface.

FIGURE 4

Comparison of di�erent models on the MSSEG-2 test set. (A–C) Show box plots of Dice score (%), F1 score (%), and Hausdor� Distance (mm),

respectively. The asterisks indicate how significantly a model score di�ers from those of the other baselines when using a pairwise Wilcoxon

signed-rank test (*p-value < 0.05, **p-value < 0.01).

Overall, Pre-U-Net proved more effective than the other models

at segmentation and detecting new lesions. Nevertheless, note

that Pre-U-Net was onlymarginally superior to U-Net, and there

was no statistically significant difference between the twomodels

in terms of the segmentation or detection metrics.

Res-U-Net, with an NLP of 0.0 and VLP of 0.0, performed

slightly better for the test cases that have no new lesions whereas

Pre-U-Net is the winner in terms of validation scores. In fact,

the differences in NLP and VLP scores are marginal, and all of

our models are sufficiently accurate to detect no lesions (i.e.,

produce a segmentation map in which all elements are zero)

for patients without any new lesions. Our team, LYLE, with the

Pre-U-Net model (Ashtari et al., 2021a) was ranked first in the

MSSEG-2 challenge in the two leaderboards based on the NLP

and VLP metrics. All the four leaderboards (based on Dice, F1
score, NLP, and VLP metrics) and the patient-wise scores for

each participating team can be found on https://portal.fli-iam.

irisa.fr/msseg-2/challenge-day/.

5.2. Qualitative evaluation

Figure 1 presents qualitative comparisons of baselines.

The top row exemplifies a patient with a single lesion
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that is detected by all the models. However, Pre-U-Net,

with a patient-wise Dice score of 61.1%, yields a lesion

that overlaps most with the lesion in the ground truth

compared to U-Net with a patient-wise Dice score of

51.9% and Res-U-Net with a patient-wise Dice score

of 36.9%.

Moreover, Pre-U-Net demonstrates superior performance

in detecting new lesions. This capability is evidenced in the

middle and bottom rows, where Pre-U-Net detects the two

new lesions circled in yellow whereas U-Net and Res-U-Net

fail to capture them. Note that as observed in the bottom row,

Pre-U-Net, with a patient-wise Dice score of 68.3%, shows

only a slight improvement in the segmentation performance

over U-Net, with a patient-wise Dice score of 66.6%; however,

Pre-U-Net indeed outperforms U-Net significantly when it

comes to new lesion detection. Nevertheless, some new

lesions are extremely challenging to detect even for experts,

and all the models fail to capture them. For example, the

lesion circled in blue on the ground truth (row 3 and

column 3 in Figure 1) is detected by none of the models

including Pre-U-Net.

Future work aims at improving new MS lesion detection,

especially in the presence of such difficult lesions. This might

include, for instance, incorporating the individual delineations

of raters into our models. Indeed, in cases where there

is more uncertainty due to a weaker consensus among

raters (e.g., three raters delineated a set of voxels differently

than the other one), our models are also more likely to

result in false predictions. Moreover, we will investigate

the possibility of transfer learning from a simpler lesion

segmentation task with a bigger dataset for further tackling

the data insufficiency and class imbalance problems faced in

this work.

6. Conclusion

We devised a U-Net-like architecture consisting of pre-

activation blocks, called Pre-U-Net, for longitudinal MS

lesion segmentation. We successfully trained our models by

using data augmentation and deep supervision, alleviating

the problem of data insufficiency and class imbalance. The

effectiveness of Pre-U-Net was evaluated in segmenting and

detecting new white matter lesions in 3D FLAIR images on

the MSSEG-2 dataset. Pre-U-Net achieved a Dice score of

40.3% and F1 score of 48.1%, outperforming the baselines, U-

Net and Res-U-Net. In particular, Pre-U-Net is, as reflected

by F1 scores, more effective than the baselines at detecting

new lesions, and it is competitive with U-Net in terms

of segmentation performance, as evidenced by Dice and

HD scores.
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