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This paper develops a new design scheme for the phase response of an all-pass recursive digital filter. A variant of particle swarm
optimization (PSO) algorithm will be utilized for solving this kind of filter design problem. It is here called the modified PSO
(MPSO) algorithm in which another adjusting factor is more introduced in the velocity updating formula of the algorithm in
order to improve the searching ability. In the proposed method, all of the designed filter coefficients are firstly collected to be
a parameter vector and this vector is regarded as a particle of the algorithm. The MPSO with a modified velocity formula will
force all particles into moving toward the optimal or near optimal solution by minimizing some defined objective function of
the optimization problem. To show the effectiveness of the proposed method, two different kinds of linear phase response design
examples are illustrated and the general PSO algorithm is compared as well. The obtained results show that the MPSO is superior
to the general PSO for the phase response design of digital recursive all-pass filter.

1. Introduction

An all-pass filter means that its magnitude response is
exactly equal to some constant value at all frequencies and
independent of frequencies.The function of the all-pass filter
is mainly to offer a phase modification without changing the
magnitude on a given filter. It is rather useful in the theory
of minimum-phase systems, in transforming frequency-
selective low-pass filters into other frequency-selective forms,
and in obtaining variable-cutoff frequency-selective filters [1].
Due to these advantages, the all-pass filter has been applied
in many signal processing applications, including the group-
delay equalization, complementary filter banks, multirate
filtering, and other fields [2–8]. A large number of methods
for designing all-pass filter have been developed in recent
years. In [2], for example, the author proposed a new design
method for an all-pass filter where it has a least squares or an
equiripple phase-error response. It is based on formulating
a weighted error between the desired and the actual phase
responses in a quadratic form. Filter coefficients can be solved
by using a Toeplitz-plus-Hankel matrix. In [3], an IIR all-
pass filter with equiripple phase response was designed based

on the eigenvalue problem and this design problem can be
formulated as the representation of an eigenvalue problem via
the Remez exchange algorithm. A Hopfield neural network
was combined to the design of IIR all-pass digital filters [5].
In the case, filter coefficients can be evaluated by Hopfield
neural networks in a parallelism manner in accordance with
the error function that is formulated as a Lyapunov energy
function. In addition, the authors developed a digital linear
phase notch filter design scheme based on IIR all-pass filter.
The designed filter can be realized by parallel connection
of two IIR all-pass filters with approximately linear phase.
Design algorithms exhibit fast convergence and easy initial
values determination [7].

Unlike the above-mentioned design schemes, this paper
attempts to utilize a modified particle optimization (MPSO)
algorithm to solve the digital recursive all-pass filter design
problem.This developed algorithm is a variant of the general
PSObut it has a better searching capacity in solving optimized
problems.The detailed description for suchMPSO algorithm
will be addressed later. The remainder of this paper is
summarized as follows. Section 2 gives a brief description for
the recursive all-pass digital filter. In Section 3, a modified
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PSO algorithm is introduced in detail and the MPSO-based
design steps for all-pass digital filter are also given. Section 4
will provide two different kinds of examples to confirm the
applicability of the proposed method and some comparisons
with the general PSO are further made. Finally, a conclusion
about the proposed method is simply described in Section 5.

2. Recursive All-Pass Digital Filter

Let us consider a recursive all-pass digital filterwhose transfer
function is expressed by
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substituting it into (1) to derive the frequency response. The
following magnitude response can be easily obtained:
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It is seen from (2) that the magnitude response is equal to
one at all frequencies; that is, it is independent of the filter
coefficients. Furthermore, its phase response is derived by
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where s(Ω) ≡ [sin(Ω), sin(2Ω), . . . , sin(𝑁Ω)], c(Ω) ≡

[cos(Ω), cos(2Ω), . . . , cos(𝑁Ω)], and
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is a parameter vector consisting of all filter coefficients. This
vector fully dominates the phase response behavior of the
digital filter. In this paper, we want to design the parameter
vector a such that the phase response achieves certain design
specification. Moreover, this vector a is called the particle or
individual of the PSO algorithm andmany such particles then
form a population. Some adjusting mechanisms are utilized
on the full population. Moreover, it can be easily seen from
(3) that a highly complicated nonlinear function arctan(⋅) is
involved and it is difficult to solve.Thus, (3) always needs to be
modified as another form for the phase response design [3–5].
However, the proposed method in this paper can directly use
(3) for the phase response design of recursive all-pass filter.

3. Modified Particle Swarm Optimization
(MPSO) Algorithm

Kennedy and Eberhart initially proposed the PSO algorithm
in 1995 and recently it became one of the popular and efficient

optimization algorithms [9]. Like most swarm intelligence
algorithms, PSO is also a population-based search algorithm.
It simulates the social behavior of organisms, such as fish
schooling and bird flocking. Each fish or bird, viewed as
a particle or an individual, represents a candidate solution
to the optimized problem. By the velocity and position
updating formulas, each particle moves through the search
space toward the global solution. Based on the PSO algo-
rithm, various engineering optimization applications have
been successively developed and explored in recent years,
such as power system stabilizer design [10], PID controller
design [11, 12], FPGA implementations [13, 14], Volterra filter
modeling [15], QRD-based multirelay system design [16],
automatic clustering [17], multifault classification [18], and
aeroengine nonlinear programming model [19]. Besides, the
authors developed a novel PSO algorithm inwhich the inertia
weight is modified to enhance its search capability [20]. The
proposed method has successfully been applied in the high
pass FIR digital filter design. Another design method for the
lowpass FIRdigital filterwith linear phase propertieswas also
developed [21]. A new definition for the velocity vector and
swarm updating of the PSO algorithm was proposed.

At the beginning, PSO algorithm requires an objective
function to judge the performance of the particle and also to
guide the search direction of the algorithm. To solve the phase
response design problem for the recursive all-pass digital
filter, the objective function (OF) is defined by

OF = ∫

Ωmax

Ωmin

󵄨󵄨󵄨󵄨𝜃𝑑 (Ω) − 𝜃 (Ω)
󵄨󵄨󵄨󵄨 𝑑Ω, (5)

where 𝜃
𝑑
is the desired phase response given by the designer,

𝜃 is the actual phase response of the all-pass digital filter as
described by (3), and Ωmin and Ωmax are the integral lower
and upper bounds, respectively. The algorithm is utilized to
minimize this objective function OF to achieve the optimal
phase response design. Each particle is changed according to
the following velocity formula of (6) and position formula of
(7) for original PSO algorithm:
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,
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represent the velocity, position, and individual

best position for the 𝑖th particle with respect to the 𝑗th
dimension, respectively, 𝑔

𝑗
represents the global best position

with respect to the 𝑗th dimension among the population,
𝑤 is called the inertia weight, 𝑐

1
and 𝑐

2
are two positive

acceleration coefficients that pull each particle toward the
individual best and the global best positions, respectively,
and 𝑟
1
and 𝑟
2
are two uniform distribution random numbers

chosen from the interval [0, 1].The PSO algorithm uses these
two updating mechanisms to achieve the optimization.

In this study, a modified PSO (MPSO) algorithm is
taken into the phase response design of recursive all-pass
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digital filter [11, 15]. The difference between the original and
modification is to change the velocity formula. In the MPSO,
the population needs to be further divided into some sub-
populations at the beginning; for example, suppose that the
initial population includes 50 particles and it will be divided
into five subpopulations. Thus, the first subpopulation is
composed of particles from number one to number ten,
and the second then contains particles from number eleven
to number twenty, and so forth. The best particle of each
subpopulation needs to be recorded according to its objective
function. Instead of the velocity formula of (6), the MPSO
algorithm uses the following improved version:
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where 𝑠
𝑗
is a new variable called the local best and represents

the position of the best particle of the subpopulation where
the 𝑖th particle is located, 𝑐

3
is also a positive acceleration

coefficient, and 𝑟
3
is a random number selected from the

range [0, 1] uniformly.
Design steps of MPSO-based for the phase response

design of the recursive all-pass digital filter can be summa-
rized in the following.

Data. Filter order 𝑁 in (1) and (3), desired phase response
𝜃
𝑑
and integral lower and upper bounds Ωmin and Ωmax

in (5), number of particles (population size) Ps, number of
subpopulations 𝑆, number of generations𝐺, inertia weight𝑤,
and positive constants 𝑐

1
, 𝑐
2
, and 𝑐

3
in (8).

Goal. Derive a recursive all-pass digital filter with the phase
response approaching the desired response 𝜃

𝑑
.

(1) Create an initial population consisting of Ps particles
from the interval [−1, 1] randomly.

(2) Divide the population into 𝑆 subpopulations by parti-
cle serial numbers.

(3) If a prescribed number 𝐺 of iterations are achieved,
then the algorithm stops.

(4) Evaluate the objective function of (5) for each particle
and record the related individual best, local best, and
global best positions.

(5) Update each particle’s velocity and position using (8)
and (7).

(6) Go back to Step (3).

4. Simulation Results

In this section, we consider two different examples with
linear phase design to show the applicability of our proposed
method [2, 5]. Some comparisons with the general PSO are
also performed. In the PSO and MPSO, the variables of the
algorithm are given by 𝑤 = 0.8, 𝑐

1
= 𝑐
2

= 0.5, and 𝑤 = 0.8,
𝑐
1

= 𝑐
2

= 𝑐
3

= 0.5, respectively, for all of the following
simulations.
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Figure 1: Magnitude response of Example 1.
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Figure 2: Trajectories of objective function (OF) for Run 1 of
Example 1.

Example 1. In this example, the recursive all-pass filter is
designed to approximate a desiredHilbert transformerwhose
phase response is given by

𝜃
𝑑 (Ω) = −𝑁Ω −

𝜋

2
, Ωmin ≤ Ω ≤ Ωmax, (9)

where the lower bound and upper bound are set to Ωmin =

0.04𝜋 and Ωmax = 0.94𝜋, respectively; 𝑁 means the filter
order and here it is chosen by 𝑁 = 10. The magnitude
response of such a recursive all-pass filter is plotted in
Figure 1. In addition, the population size and number of
generations are given by Ps = 20 and 𝐺 = 1000 for the PSO
and MPSO algorithm, and the number of subpopulations
is simply set to 𝑆 = 4 only for the MPSO. To verify
the algorithm’s robustness and efficiency, 20 independent
runs with different initial conditions are executed for both
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Table 1: Objective function values evaluated for Example 1.

PSO algorithm MPSO algorithm
Run 1 0.20570301 0.13606212

Run 2 0.13627085 0.13620043

Run 3 0.35740401 0.13679522

Run 4 0.13738652 0.13650124

Run 5 0.13672965 0.13680452

Run 6 0.14521057 0.13601797

Run 7 0.13619628 0.13673623

Run 8 0.15390549 0.13606745

Run 9 0.13755478 0.13762322

Run 10 0.14286368 0.13602069

Run 11 0.14405732 0.16636761

Run 12 0.14924150 0.13679615

Run 13 0.13622616 0.13703487

Run 14 0.13707200 0.13680303

Run 15 0.13634390 0.13701766

Run 16 0.21968176 0.22009637

Run 17 0.14488212 0.13649137

Run 18 0.14857613 0.13703097

Run 19 0.14250406 0.13624831

Run 20 0.27376677 0.14515192

Mean 0.16607883 0.14269337

Variance 0.00313722 0.00035958

Table 2: Digital filter coefficients derived by Run 1 of Example 1.

Filter coefficients PSO algorithm MPSO algorithm
𝑎
1

−0.974 −0.9853

𝑎
2

0.4350 0.4685

𝑎
3

−0.3959 −0.4388

𝑎
4

0.2323 0.2959

𝑎
5

−0.1912 −0.2625

𝑎
6

0.1048 0.1830

𝑎
7

−0.0743 −0.1485

𝑎
8

0.0268 0.0975

𝑎
9

−0.0153 −0.0646

𝑎
10

−0.0106 0.0290

algorithms. Final simulation results are listed in Tables 1
and 2 and shown in Figures 2–4, respectively. Table 1 lists
the objective function values of 20 independent runs and
it clearly reveals that the results by the MPSO are better
than those by the PSO for most of independent runs. The
mean and variance are evaluated by 𝑢 = 0.14269337 and
𝜎
2

= 0.00035958 for the MPSO and 𝑢 = 0.16607883 and
𝜎
2
= 0.00313722 for the PSO, respectively. To show the design

outcomes, Figure 2 displays the convergence trajectories of
the objective function for Run 1 of the proposed MPSO and
PSO algorithms. As can be seen from Figure 2, the MPSO
algorithm has a quicker convergence and lower objective
function value than the PSO algorithm. Both phase responses
and errors are further shown in Figures 3 and 4, respectively.
A better simulation result can be obtained by the proposed
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Figure 3: Phase responses for Run 1 of Example 1.
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Figure 4: Phase response errors for Run 1 of Example 1.

method. In addition, all of digital filter coefficients derived by
Run 1 of the PSO and MPSO algorithm are listed in Table 2
for comparisons.

Example 2. This example will design a recursive all-pass dig-
ital filter with a desired sinusoidal phase response expressed
by

𝜃
𝑑 (Ω) = 4𝜋 (cosΩ − 1) − 52Ω, Ωmin ≤ Ω ≤ Ωmax, (10)

where Ωmin = 0 and Ωmax = 𝜋 are given. Its corresponding
magnitude response is shown in Figure 5. In the simulation,
a digital recursive filter with 𝑁 = 60 is adopted and the
population size and iterative number of the algorithms are
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Figure 5: Magnitude response of Example 2.
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Figure 6: Trajectories of objective function (OF) for Run 1 of
Example 2.

set to Ps = 40 and 𝐺 = 2000, respectively, for solving such
a higher-order digital filter. Moreover, as given in Example 1,
the number of subpopulations is chosen by 𝑆 = 4 and 20
independent runs with different sets of initial conditions are
also performed for certifying the robustness of the algorithm.
Table 3 lists a comparison of the objective function values
evaluated by the proposed MPSO and PSO for Run 1 to Run
20, respectively. Some of digital filter coefficients derived are
listed in Table 4 for comparisons. Figures 6–8 then show
the related design outcomes only for Run 1 of the PSO and
proposed algorithm. Again, it can be concluded from these
results that the proposed MPSO is superior to the general
PSO in the phase response design of recursive all-pass digital
filter.

0 0.5 1 1.5 2 2.5 3 3.5
−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

Ph
as

e r
es

po
ns

es

Desired response
Response by PSO
Response by MPSO

Digital frequency Ω

Figure 7: Phase responses for Run 1 of Example 2.
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Figure 8: Phase response errors for Run 1 of Example 2.

5. Conclusions

This paper has developed a new design method for the phase
response design of recursive all-pass digital filter. A modified
PSO (MPSO) algorithm is suggested to design the filter coef-
ficients such that the obtained phase response can approx-
imate the desired response that is given previously. The
difference between the MPSO and PSO is to modify the
velocity updating formula of the algorithm. To improve the
search capacity, a new factor of local-best particle for each
subpopulation is introduced in themodified velocity formula.
Finally, two different kinds of examples have been illustrated
to verify the efficiency of the proposed method as compared
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Table 3: Objective function values evaluated for Example 2.

PSO algorithm MPSO algorithm
Run 1 1.56939914 0.62645705

Run 2 1.85475888 0.57827778

Run 3 1.55263227 0.67573844

Run 4 1.57989126 0.67840205

Run 5 2.03270089 0.75624957

Run 6 1.63204094 0.67220282

Run 7 1.34828024 0.52125315

Run 8 1.65465543 1.18349923

Run 9 1.39729362 0.86232224

Run 10 1.55541996 0.65710581

Run 11 1.82677089 1.14715629

Run 12 1.68802195 0.62355711

Run 13 1.94169732 0.65469452

Run 14 1.61249872 0.48998564

Run 15 1.78693672 1.17072011

Run 16 1.75210045 1.02655545

Run 17 1.57667970 0.76927394

Run 18 1.64655678 0.80753180

Run 19 1.84461988 1.10135973

Run 20 1.56655437 0.44814752

Mean 1.67097547 0.77252451

Variance 0.02816276 0.05174895

Table 4: Digital filter coefficients derived by Run 1 of Example 2.

Filter coefficients PSO algorithm MPSO algorithm
𝑎
1

0.0464 −0.1479

𝑎
2

0.8023 1.1317

𝑎
3

0.3584 0.0022

𝑎
4

0.8848 0.8390

𝑎
5

0.0292 −0.0636

𝑎
6

0.4525 0.5609

.

.

.
.
.
.

.

.

.

𝑎
58

0.0093 0.0089

𝑎
59

−0.1014 0.1059

𝑎
60

0.1847 0.0181

with the general PSO algorithm. Simulation results have
sufficiently proven that the proposed MPSO has a better
design outcome than the PSO in the phase response design
of recursive all-pass digital filter.
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