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Abstract

Ribosomes are highly abundant in cells and comprise, besides RNAs of varying lengths, 55–80 similarly sized, short proteins. This

seemingly unusual composition is thought to have resulted from selection for rapid autocatalytic ribosome production. Here, we

demonstrate that ribosomalprotein-splittingmutationscannotaccelerate ribosomeproduction.Theautocatalytic explanation is also

unnecessary, because protein lengths generally decline with expression levels. Although ribosomal proteins are shorter than

expected from their expression levels, they are not outliers among members of large protein complexes in mean protein length

or coefficient of variation. These observations are explainable because 1) shortening proteins lowers their synthetic cost and reduces

the waste from mistranslation-induced protein dysfunction and degradation, 2) such benefits rise with expression levels, and 3)

members of large complexes participate in more protein–protein interactions so are less tolerant to mistranslation. These and other

considerations suggest that the compositional features of ribosomes originate from cellular energy economics.
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Compositional Features of Ribosomes

Ribosomes synthesize peptides from amino acids according to

the instruction of messenger RNAs and are one of the

most important molecular machines of cellular life. A ri-

bosome is made up of a large subunit and a small subunit,

together consisting of three to four ribosomal RNAs

(rRNAs) and dozens of ribosomal proteins (r-proteins).

Ribosomes are highly abundant in cells. For instance, in

rapidly growing cells, �80% of all RNAs belong to rRNAs

and �30% of the total proteome is r-proteins (Warner

1999). As a result, ribosome production demands a large

fraction of the energy budget of the cell. Reuveni et al.

(2017) recently noted that 20–70% of the ribosome mass

is in the few rRNAs of varying lengths, while the remaining

mass is divided into 55–80 similarly sized, short r-proteins.

Because dosage balance among members of a large com-

plex is important and because the balance is more difficult

to achieve with more proteins, these authors believed that

ribosome’s unusual composition must have a special rea-

son. They proposed that this reason is ribosome’s auto-

catalytic production; synthesizing many similarly short

proteins instead of a few long ones minimizes the idle

time of r-proteins (Reuveni et al. 2017). Here, we show

that this model is neither valid nor needed. Instead, we

propose general principles of protein length evolution

governed by cellular energy economics and demonstrate

that the compositional features of ribosomes are explain-

able by these principles.

Ribosome’s Compositional Features
Cannot Result from Optimization for
Autocatalytic Production

Autocatalytic production refers to the fact that the ribosome

production rate rises as more ribosomes are made. Given that

r-proteins have different lengths, the optimal state in Reuveni

et al.’s model is when the synthesis time for each r-protein is

short and the instantaneous production rates of all r-proteins

are balanced such that amino acids incorporated into r-pro-

teins quickly become part of an assembled functional ribo-

some for making new ribosomes (i.e., minimal idle time). Such

balanced r-protein productions require a set of optimized rel-

ative translation initiation rates (measured by number of ini-

tiations per mRNA molecule per second) for the r-proteins,

which are determined by the r-protein stoichiometry, lengths,

translation elongation speeds (measured by number of

codons per second), and corresponding mRNA concentra-

tions. These optimized initiation rates are mechanistically re-

alized by specific mRNA sequences, especially in the

50-untranslated region (Gu et al. 2010; Mutalik et al. 2013).

Now let us consider a mutation that divides one of the r-

proteins into two shorter proteins without altering the sum of
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their functions (see below). This length change demands a

new set of optimal relative initiation rates, which cannot be

realized by the protein-fission mutation. It is reasonable to

assume that, upon the protein-fission mutation, the two

shorter r-proteins inherit their mother protein’s relative initia-

tion rate, while all other r-proteins maintain their original rel-

ative initiation rates. These relative initiation rates ensure

balanced amounts of production of all r-proteins, because

the production rate equals the initiation rate under the as-

sumption of no ribosome falloff during elongation. Thus, the

dosages of all r-proteins remain overall balanced. However,

because the newly created shorter proteins each take less

time to synthesize than their mother protein, the synthesized

shorter proteins must be idle until all of the other r-proteins

are synthesized for new ribosomes to be assembled. In other

words, because a ribosome is functional only when all of its

components become available, a mutation must simulta-

neously split all r-proteins to be advantageous. Any mutation

splitting only one of many r-proteins is neutral to the autocat-

alytic production of ribosomes, and an example involving

breaking one of three r-proteins originally produced with

equal rates is provided in figure 1 to illustrate the above ar-

gument. Note that, in eukaryotes, even splitting one protein

likely requires multiple mutations. The most probable scenario

would include duplication of an r-protein gene followed by

subfunctionalization via degenerate mutations (Force et al.

FIG. 1.—The autocatalytic production of ribosomes is not accelerated by breaking one of the r-proteins into two shorter ones, illustrated by a toy

example in which the ribosome comprises three r-proteins of equal doses, equal translation elongation speeds, but different lengths. The actual ribosome

contains 55–80 r-proteins. (A) Ribosome densities before protein fission. Ribosome density (# of ribosomes per codon in all mRNAs of a gene) rises from the

30 to 50 of mRNAs, because the number of ribosomes in the cell is increasing with time due to the continuous production of ribosomes. At the optimal state,

ribosome density at the 30 end is the same among the three mRNA species, ensuring equal production rates of the three r-proteins at any time. The ribosome

density at the 50 end must be higher for longer proteins to ensure equal ribosome densities at the 30 end among all r-proteins. (B) Ribosome densities after

protein fission. When one r-protein is split into two, the ribosome densities at the 50 end are equal for the two new proteins, because protein fission does not

alter their relative translation initiation rates. Because the synthesis of each newly created short protein completes earlier than that of the original mother

protein, these short proteins are useless until all other r-proteins complete synthesis. Hence, splitting one of the r-proteins does not accelerate the autocatalytic

production of ribosomes. Regardless of the r-protein split, all existing ribosomes function continuously and the doses of all r-proteins synthesized are balanced,

so r-protein fission does not decelerate ribosome production either. Ribosome densities can be compared within each panel but not between panels.
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1999; Zhang 2013). In prokaryotes, a gene may be broken

into two functional genes in the same operon by one non-

sense mutation at an appropriate position, if sequence ele-

ments necessary for translational initiation fortuitously exist

downstream of the position experiencing the nonsense mu-

tation. Regardless, the above analysis demonstrates that

Reuveni et al.’s model does not work because no mutation

spliting one r-protein can improve the autocatalytic produc-

tion of ribosomes.

Ribosomal Proteins Follow Two General
Trends of Protein Length

But do we need a ribosome-specific model to explain its com-

positional features aforementioned? Reuveni et al. showed

that r-proteins are unusually short when compared with av-

erage proteins encoded in a genome. This comparison is,

however, unfair, because highly expressed proteins tend to

be shorter than lowly expressed ones (Akashi 2003; Urrutia

and Hurst 2003; Subramanian and Kumar 2004). We thus ask

whether r-proteins are significantly shorter than other pro-

teins of similar expression levels. To this end, we first corre-

lated protein length with its mRNA expression level among

5008 proteins of the budding yeast Saccharomyces cerevisiae,

a well-studied eukaryotic model organism. We quantified the

mRNA level by RNA sequencing read number per kilobase of

transcript per million mapped reads (RPKM). Indeed, a signif-

icant, negative correlation is present (Spearman’s q ¼ �0.16,

P¼ 7.4� 10�32; fig. 2A). To examine if r-proteins are shorter

than expected from their expression levels, we first artificially

FIG. 2.—Protein length tends to decline with its mRNA expression level. (A) Relationship between protein length and mRNA expression level in yeast.

Each dot represents one protein. Red and green colors indicate cytoplasmic and mitochondrial r-proteins, respectively. (B) Relationship between protein

length and mRNA level in Escherichia coli. Red color indicates r-proteins. (C) Relationship between mean protein length and mean mRNA level of members of

large protein complexes in yeast. Each dot represents one complex. The two red dots indicate the two subunits of the cytoplasmic ribosome, whereas the

two green dots indicate the two subunits of the mitochondrial ribosome. The black line shows the linear regression. (D) Relationship between the mean

protein length and mean mRNA level of large protein complexes in E. coli. The two red dots indicate the two subunits of the ribosome.
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constructed the small subunit of the yeast cytoplasmic ribo-

some by randomly drawing from the entire pool of 5008

proteins (with replacement) the same number of proteins as

the number of r-proteins in the subunit, under the condition

that each protein drawn has<5% expression-level difference

from the corresponding r-protein. This was repeated 1000

times, and each of the 1000 randomly constructed small sub-

unit has a mean protein length greater than the observed

mean length, suggesting that r-proteins of the small subunit

are shorter than expected from their expression levels

(P< 0.001). The same is true for the large subunit of the cy-

toplasmic ribosome (P< 0.001). Mitochondrial ribosomes do

not make themselves, so are not subject to autocatalytic pro-

duction. Yet, for both the small and large subunits of the yeast

mitochondrial ribosome, the mean protein length is shorter

than expected from their expression levels (both P< 0.001).

Prokaryotic proteins are on an average substantially shorter

than eukaryotic proteins (Zhang 2000). Yet, the negative cor-

relation between protein length and mRNA expression level

persists in the prokaryotic model organism Escherichia coli (q
¼ �0.10, n¼ 3400 proteins, P¼ 2.0� 10�8; fig. 2B).

Furthermore, the r-proteins of E. coli are also significantly

shorter than expected from their expression levels

(P< 0.002 for both small and large subunits).

Because ribosomes are large protein complexes, we ask

whether their unusually short r-proteins are related to this prop-

erty. Following previous studies (Pessia et al. 2012; Chen and

Zhang 2016), we define large protein complexes as those con-

taining at least seven proteins. Indeed, 7 of the 59 nonribosome

large protein complexes in yeast have a within-complex mean

protein length smaller than that expected from their expression

levels at the significance level of 0.001, despite that only 0.059

complex is expected to reach this level of significance by

chance. Apparently, members of large complexes tend to be

shorter than random proteins of similar expression levels.

The above finding suggests that r-proteins should be com-

pared with members of large complexes upon the control for

expression levels. To this end, we regressed the mean protein

length with mean mRNA level of a complex across the 63

large complexes in yeast using a linear model (fig. 2C). We

then computed the studentized residual in mean protein

length for each complex (see Materials and Methods).

A complex is considered to be an outlier at the 5% signifi-

cance level if the absolute value of its studentized residual

exceeds 1.96 (Belsley et al. 1980). The small and large sub-

units of the cytoplasmic ribosome have studentized residuals

of 0.465 and 0.179, respectively, whereas those of the mito-

chondrial ribosome have studentized residuals of�1.194 and

�1.450, respectively. Hence, none of them are outliers. We

did observe three outliers from nonribosome large complexes,

close to the expectation that 63� 5% ¼ 3.15 large com-

plexes are outliers by chance. Similar results were obtained

in E. coli (fig. 2D), although only 14 nonribosome large com-

plexes are currently known in this species. Specifically, the

small and large subunits of the E. coli ribosome, respectively,

have studentized residuals of�0.052 and�0.707, so neither

is an outlier. We observed one nonribosome large complex to

be an outlier, close to the random expectation of 16� 5% ¼
0.8. The yeast and E. coli results hold even when r-proteins are

excluded from the linear regressions. To examine the robust-

ness of our results, we repeated the linear regressions after

taking logarithms of both mean protein length and mean

expression level of protein complexes. We found the results

to be qualitatively unchanged (supplementary fig. S1,

Supplementary Material online). Together, these findings

demonstrate that r-proteins are not special in mean protein

length among large complexes upon the control of expression

levels.

Reuveni et al. (2017) claimed that r-proteins are more sim-

ilar in length than expected even after the control of the mean

length. This control is inappropriate, because members of the

same large complex tend to have similar expressions, which

would predict similar protein lengths, while a random set of

proteins of a fixed mean length can have widely different

expressions and hence lengths. In other words, the length

variation among r-proteins should be compared with that

among members of the same large complex. We computed

the coefficient of variation (CV) in protein length for each of

the 59 nonribosome large protein complexes in yeast. We

found that the CVs for the two cytoplasmic ribosomal sub-

units are not significantly different from those of nonribosome

large complexes (P¼ 0.09; Wilcoxon rank-sum test). A similar

result was obtained for the two mitochondrial ribosomal sub-

units (P¼ 0.11). The same is true in E. coli (P¼ 0.82) when the

two ribosomal subunits are compared with the 14 nonribo-

some large complexes.

The Mechanistic Basis of the Two General
Trends of Protein Length

Together, our results suggest that no ribosome-specific expla-

nation is needed for the short and homogeneous lengths of r-

proteins because they are not outliers among members of

large complexes upon the control of expression levels. But

why does the length of a protein generally decrease with its

expression level and why are members of large protein com-

plexes shorter than random proteins of similar expression lev-

els? We propose two mechanisms, both related to cellular

energy economics, to explain the origin of the negative cor-

relation between protein length and expression level. First, a

protein may contain unnecessary residues or segments; their

presence/absence does not impact the protein function, but

removing them saves the materials and energy in synthesizing

the mRNA and protein. Because materials can be measured in

terms of energy, hereinafter we use energy to refer to both

materials and energy. For example, a 1% reduction in the

length of a protein saves �1% of its synthesis energy. Note

that the total energy savings resulting from the removal of
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such superfluous residues in a protein rises with the number

of mRNA molecules and number of protein molecules synthe-

sized, which in turn rise with the mRNA expression level.

Hence, natural selection for the removal of superfluous resi-

dues intensifies with the expression level, resulting in a nega-

tive correlation between mRNA expression level and protein

length (Akashi 2003; Urrutia and Hurst 2003). Protein length

is of course influenced by many factors, including protein

structure and function. That the length variation is much

greater among lowly expressed proteins than highly expressed

ones (fig. 2A and B) is consistent with the notation that se-

lection arising from cellular energetics is especially strong on

highly expressed proteins.

Second, it may be possible to divide a multidomain protein

into two or more smaller proteins without impacting the pro-

tein function. While the total protein length is unaffected,

having multiple shorter proteins instead of one long protein

makes a difference in the presence of mistranslation, which

either incorporates amino acids incorrectly or truncates the

protein. In E. coli, yeast, and other species, mistranslation

occurs at a rate of 10�5 to 10�2 per codon, depending on

the type of error (Drummond and Wilke 2009; Ribas de

Pouplana et al. 2014). While some mistranslation events prob-

ably have minimal functional impacts, the rest can cause func-

tional reduction, loss, or alteration (Yang et al. 2014). In

addition, mistranslated proteins may be misfolded and subse-

quently degraded (Goldberg 2003). Regardless of the specific

consequence, mistranslation wastes energy used in protein

synthesis. Because the amount of energy wasted owing to

mistranslation is proportional to the length of the mistrans-

lated protein molecule, breaking a long protein into several

smaller proteins can reduce the energy waste associated with

protein dysfunction or degradation upon mistranslation

(fig. 3A). To estimate this effect quantitatively, let us consider

a mutation that breaks a protein with L amino acids into two

proteins with bL and (1�b)L amino acids, respectively. Let the

mistranslation rate be l per codon. Before the protein fission,

the expected number of translational errors per protein mol-

ecule equals lL, and the expected fraction of error-containing

molecules is 1�e�lL � lL (when lL � 1). If on average a

mistranslated protein molecule is functionally equivalent to

only f (f< 1) error-free molecules due to functional reduction,

functional loss, or degradation, the energy waste owing to

mistranslation is W ¼ (1�f)lL(cEL) ¼ (1 �f)lcEL2, where c is

the protein synthetic cost per amino acid and E is the mRNA

expression level of the protein. Upon protein fission, the cor-

responding value becomes W0 ¼ (1�f)lcE[b2L2 þ(1 �b)2L2].

So, theamountof energy savings caused by the fission isDW¼
W�W0 ¼ 2(1�f)lcEb(1�b)L2> 0. Apparently, protein fission

reduces energy waste, so is beneficial. Furthermore, DW is

maximized when b ¼ 0.5. In other words, breaking the pro-

tein into two equal-size proteins is most beneficial in terms of

reducing mistranslation-associated energy waste. When

L¼ 400, l ¼ 5� 10�4, f¼ 0.9, b ¼ 0.5, DW equals 1% of

the synthetic cost of the original protein. For a yeast gene with

the median expression level, doubling the expression creates a

selective disadvantage>10�5 (Wagner 2005). Therefore, sav-

ing 1% of its synthetic cost will have a selective advantage

>10�7, approximately reciprocal of yeast’s effective popula-

tion size (Wagner 2005). Hence, for highly expressed proteins,

such a benefit is detectable by natural selection.

The above second mechanism can also explain why mem-

bers of large complexes tend to be shorter than random pro-

teins of comparable expression levels. Specifically, we propose

that, compared with random proteins of similar expression lev-

els, members of large complexes have lower f because they

participate in more protein–protein interactions and hence are

less tolerant to mistranslation (fig. 3B). For example, even when

atranslationalerrordoesnot influencethecatalytic functionofa

protein, it may affect its interaction with other members of the

large complex and prevent the protein from incorporation into

the complex. Because DW increases as f reduces, the selective

pressure for protein fission is stronger for members of large

complexes than random proteins of similar expressions, result-

ing in smaller lengths for the former than the latter. A large

complex may also evolve by recruiting new members. Upon

the recruitment, the new complex member will be subject to

stronger selection from the above second mechanism than that

when the protein is not part of any large complex.

Why Can Ribosomal RNAs Be Very Large?

Another compositional feature of ribosomes is the RNA con-

tent: three to four rRNAs with varying lengths. For instance,

the three E. coli rRNAs contain 120, 1,542, and 2904 nucleo-

tides, respectively. While rRNAs could be long because they

are synthesized much faster than r-proteins (Reuveni et al.

2017), we investigated whether cellular energy economics

also allows long rRNAs. rRNAs are transcribed by RNA poly-

merase I (RNAP I) and III that are thousands of times more

accurate than RNAP II (Alic et al. 2007; Kuhn et al. 2007;

Sydow and Cramer 2009), which is in turn much more accu-

rate than translation (Lynch 2010). Hence, the error rate in

synthesizing rRNAs is at least 104 times lower than that in

synthesizing r-proteins. In yeast, the median cost of precursor

synthesis per nucleotide is 49.3 ATP molecules, whereas the

combined biosynthesis and polymerization cost per amino

acid is 30.3 ATP molecules (Wagner 2005). Comparing an

rRNA of 3000 nucleotides with an r-protein of 300 amino

acids, one can calculate using the DW formula derived earlier

that the energy savings from splitting the r-protein is at least

60 times that from splitting the rRNA. This may explain the

existence of much longer rRNAs than r-proteins. Having a

long rRNA may even be preferable to having multiple short

rRNAs, because dosage balance is easier to achieve in the

former than the latter except when distinct rRNAs are

encoded by genes of the same operon, as in many prokar-

yotes (Roller et al. 2016).
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Conclusion

In summary, we demonstrated that the compositional features

of ribosomes could not have resulted from potential selections

for their faster autocatalytic production. We showed that no

ribosome-specific hypothesis is necessary to account for the

existence of many similarly sized, short r-proteins. Cellular en-

ergy economics explains not only the compositional features of

ribosomes but also general relationships between mRNA ex-

pression levels and protein lengths, including for members of

large protein complexes. Of particular interest is the role of

transcriptional/translational errors in cellular energy econom-

ics. It appears to be a recurring theme that natural selection

minimizing the impacts of molecular errors results in general

patterns ingenome,molecular, andcellbiology (Warneckeand

Hurst 2011; Lynch et al. 2014; Zhang and Yang 2015).

FIG. 3.—Cellular energy economics explains why protein length declines with expression level and why members of large protein complexes are shorter

than expected from their expression levels. (A) Protein fission reduces the mistranslation-associated energy waste. Each rectangle represents a protein

molecule, with the length of the rectangle representing the protein length. Each red lightening symbol indicates a mistranslation event. Green rectangles are

error-free molecules, whereas black rectangles are error-containing molecules. The left side shows a long protein with three newly synthesized molecules,

including one that is error-containing. The right side shows the situation when the protein is split into two shorter ones (at the gene level). Now, a total of six

molecules are synthesized, including an error-containing one. Although the total number of mistranslation events is unchanged, only one short protein is

wasted in the right side compared with the waste of a long protein at the left side. Hence, energy waste is reduced by the protein fission. (B) Members of

large protein complexes are less tolerant to mistranslation. Each piece of the jigsaw puzzle represents a protein, whereas the assembled jigsaw puzzle

represents an assembled protein complex. To members of large protein complexes, mistranslation can not only impact its function but also its interactions

with other members of the complex.
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Materials and Methods

The gene expression data from wild-type yeast were obtained

from Table S1 of a recent study (Chou et al. 2017). We aver-

aged the RNA sequencing read counts among 12 replicates in

computing the number of reads per kilobase of transcript per

million mapped reads (RPKM). The RNA sequencing gene ex-

pression data of E. coli strain MG1655 in anaerobic growth

were obtained from Data S6 of a previous study (Monk et al.

2016), and the averages from three replicates were used to

compute RPKM. Yeast protein lengths were downloaded from

Ensembl Biomart by choosing “cds length” followed by con-

version to protein length. E. coli protein lengths were based on

https://www.uniprot.org/docs/ecoli.txt, last accessed August

5, 2018. Yeast protein complex data were from an early study

(Pu et al. 2009) and downloaded from http://wodaklab.org/

cyc2008/downloads, last accessed August 5, 2018. E.coli pro-

tein complex data were downloaded from Table S8 of a previ-

ous study (Rajagopala et al. 2014); we removed ribosomal

subunit L8 (a subset of ribosome large subunit and the only

partof ribosome included in their table) andadded information

of ribosomal small and large subunits gathered from EcoCyc

(Keseler et al. 2017). We performed linear regression using

Matlab-embedded function “fitlm” and the option “linear.”

Studentized residuals in linear regressions (Belsley et al. 1980)

were computed following Matlab instructions (https://www.

mathworks.com/help/stats/residuals.html, last accessed

August 5, 2018). Other analyses used custom Matlab scripts.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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