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A B S T R A C T   

Severe COVID-19 patients frequently present thrombotic complications which commonly lead to multiorgan 
failure and increase the risk of death. Severe SARS-CoV-2 infection induces the cytokine storm and is often 
associated with coagulation dysfunction. D-dimer, a hallmark of venous thromboembolism (VTE), is observed at 
a higher level in the majority of hospitalized COVID-19 patients. The precise molecular mechanism of the 
disproportionate effect of SARS-CoV-2 infection on the coagulation system is largely undefined. SARS-CoV-2 
–induced endotheliopathy and, induction of cytokines and growth factors (GFs) most likely play important 
roles in platelet activation, coagulopathy, and VTE. Generally, viral infections lead to systemic inflammation and 
induction of numerous cytokines and GFs and many of them are reported to be associated with increased VTE. 
Most importantly, platelets play key thromboinflammatory roles linking coagulation to immune mediators in a 
variety of infections including response to viral infection. Since the pathomechanism of coagulopathy and VTE in 
COVID-19 is largely undefined, herein we highlight the association of dysregulated inflammatory cytokines and 
GFs with thrombotic complications and coagulopathy in COVID-19.   

1. Introduction 

COVID-19 is caused by a newly identified severe acute respiratory 
syndrome coronavirus-2 (SARS-CoV-2) [1,2]. SARS-CoV-2 infection is a 
huge challenge to the healthcare system due to the lack of immunity in 
the human population. There is no effective antiviral treatment so far 
available and effective immunization is the only option to combat this 
pandemic. The majority of SARS-CoV-2 -infected individuals are either 
asymptomatic or develop mild to moderate symptoms like soar-throat, 
dry cough, fever, and fatigue. However, some cases present severe res-
piratory conditions like acute respiratory distress syndrome (ARDS) and 
pneumonia resulting in severe hypoxic conditions and progressive res-
piratory failure [3,4]. A relatively higher incidence (35–45%) of venous 
thromboembolism (VTE, thrombi formation followed by dissolution in 
veins) is reported in critically ill COVID-19 patients [5,6]. 

Acute respiratory disease progression includes an early infection 
phase, a pulmonary phase, and a severe hyper-inflammation phase [7]. 
The binding of SARS-CoV-2 to angiotensin-converting enzyme-2 (ACE2) 
promotes alveolar epithelial damage that in turn triggers a local immune 

response by recruiting macrophages and monocytes [8]. Inflammatory 
cells recruitment help minimizing the infection in the lung and limit 
immune response, and ultimately help the patient recover. In contrast, a 
dysfunctional immune response triggers a cytokine storm which induces 
an extensive inflammatory reaction in the lung of severe cases. The 
hospitalized COVID-19 patients requiring intensive care mostly present 
elevated levels of plasma inflammatory cytokines like interleukin-2 
(IL-2), IL-6, IL-10, macrophage inflammatory protein 1α (MIP1α) and 
tumor necrosis factor (TNF) [9]. Most importantly, IL-6 levels in severe 
cases continue to increase as the disease progresses and are observed 
comparatively at a higher level in non-survivors vs. survivors [10]. 
Evolving datasets indicate that cytokines like IL-1β, IL-6, IL-17A, IL-9, 
transforming growth factor-β (TGF-β) and C-C chemokine ligand 2 
(CCL-2) promote thrombosis, and other cytokines such as IL-8, IL-10 and 
TNF-α help in thrombus resolution [11]. Moreover, growth factors (GFs) 
including vascular endothelial growth factor (VEGF), platelet-derived 
growth factor (PDGF), insulin growth factor-1 (IGF-1) and TGF-β play 
critical roles in coagulation dysfunction and are reported to be dysre-
gulated in severe COVID-19. 
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Post-viral and other types of infections, endothelial cells release in-
flammatory markers like TNF, IL-1 and IL-6 which in turn induce tissue 
factor (TF) expression on the endothelial lining. TF plays a critical role in 
the activation of the extrinsic coagulation pathway including activation 
of downstream clotting factors VII, X, II and, protease-activated re-
ceptors (PARs) that ultimately trigger pro-inflammatory response [12]. 
Viral endotoxin-induced TF and plasminogen activator inhibitor-1 
(PAI-1) expression on endothelium likely provide a stimulus to 
thrombin generation which activates PARs and ultimately contribute to 
thrombosis [13,14]. Moreover, activated endothelial cells expose 
P-selectin and secrete procoagulant components like thromboxane A2 
(TXA2) and von Willebrand factor (VWF) and, antifibrinolytic compo-
nents like PAI-1 [15,16] which are linked to inflammation. Viral in-
fections like dengue and influenza are also reported to induce 
inflammation and platelet activation [17]. Not only SARS-CoV-2 
–infected but also previously reported SARS-CoV-1 or MERS –infected 
patients displayed thrombi formation in the lung vasculature [18]. 

Platelets have long been known for their pro-adhesive function and 
later studies revealed their pro-coagulant roles [19,20]. Besides these, 
platelets are increasingly recognized as circulating immune cells and 
identified to play proinflammatory roles particularly upon endothelial 
damage or activation [21]. A variety of platelet characteristics including 
surface receptors and secretion of immunoregulatory chemokines, cy-
tokines and GFs help perform this function [22]. Platelets play critical 
roles in the progression of COVID-19 pathogenesis, however, it is largely 
unknown how precisely platelet communicate with inflammatory 
markers and contribute to SARS-CoV-2 –mediated inflammation and 
coagulopathy. In this review, we highlight the cross-talk between 
platelets, coagulation factors and inflammatory markers and, establish a 
potential molecular mechanism of thromboembolism in COVID-19. 

2. Association of inflammation and coagulopathy in viral 
pandemics 

Coagulation and inflammation are highly connected pathways and 
work closely in the event of pathogenesis such as injury and invasion of 
pathogens [23,24]. A variety of severe infections are often associated 
with excessive inflammation and dysregulated hemostatic balance that 
promote coagulation dysfunction and thrombosis. 
Inflammation-induced coagulation activation is characterized by 
disseminated intravascular coagulation (DIC) which is associated with 
enhanced intravascular fibrin generation and deposition, and impaired 
fibrin degradation [25,26]. Such excessive activation of the coagulation 
pathway is accompanied by inhibition of anticoagulant thrombomodu-
lin, protein S, protein C and components of the fibrinolytic pathway 
[26]. 

Early reports suggest patients with severe COVD-19 frequently pre-
sent DIC [27,28] and severe inflammatory response (cytokine storm) 
[29]. The coagulopathy in COVID-19 is characterized by elevated levels 
of fibrinogen and D-dimer with mild prolongation in prothrombin and 
activated partial thromboplastin times [27,30]. Studies suggest that 
induction of inflammatory response likely plays critical roles in the 
modulation of coagulation factors expression which possibly induces 
VTE. Therefore, a correlation between the pattern of inflammatory 
markers dysregulation and aberrant coagulation factor levels in a vari-
ety of viral pandemics is required. 

2.1. SARS-COV-1 and MERS-CoV –induced cytokine and growth factor 
dysregulation and coagulopathy 

Similar to COVID-19 pathogenesis, SARS-COV-1 also induces a 
cytokine storm, coagulopathy and deep vein thrombosis (DVT) [18, 
31–33] though limited clinical data is available in comparison to 
COVID-19. The postmortem analysis revealed that the SARS-CoV-1 -in-
duces prothrombotic effects mainly in the pulmonary vasculature [18, 
31,32]. The pulmonary thrombosis in SARS-CoV-1 infected patients was 

accompanied by a low count of CD4 and CD8 positive T cells which were 
likely associated with disease severity and adverse outcomes [31]. 
Studies employing in vitro model revealed the increased expression of 
procoagulant genes including factors II, III and X, fibrinogen, and serine 
protease inhibitors (SERPINs) in SARS-CoV-1 infected peripheral blood 
mononuclear cells (PBMCs) [34]. Interestingly, dysregulation of coag-
ulation factors was accompanied by upregulation of chemokines 
including CCL4, CCL20, CCL22, CCL25, and CCL27, and their receptors 
(CCR4 and CCR7) along with IL8 and IL17. Additionally, the throm-
boxane synthase (TBXAS) gene and Toll-like receptor 9 (TLR9) were also 
found to be upregulated in the infected cells [34]. Consistent with these 
observations, SARS-CoV-1 infected hepatoma cells displayed an 
increased expression of tissue factor pathway inhibitor 2 (TFPI2), PAI1, 
THBS1 and phospholipid scramblase 1 (PLSCR1) which were accom-
panied by induction of nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-kB), TGF-β, TNF-α, IL-1β, IL-8 and a variety of 
chemokine ligands CXCL1, − 2, − 3, − 5, − 6, and − 10 [35]. Studies 
with SARS-CoV-1 infected mice models further validated the abnormal 
expression of procoagulant genes such as thrombin, VII, XI, XII, and 
plasminogen activators especially in those who had fatal consequences 
[36,37]. Moreover, SARS-CoV-1 infection induces the expression of 
well-known pro-inflammatory markers IL-1β, IL-6 and TNF-α [36]. 
Another in vitro study revealed the dysregulation of inflammatory 
markers in SARS-CoV-1 infected primary macrophages. This study re-
ported a minimal induction of beta-interferon (IFN-β), however, 
elevated expression of chemokines such as CXCL10/IFN-γ-inducible 
protein-10 and CCL2/monocyte chemotactic protein-1 (MCP-1) [38]. In 
contrast, Okabayashi et al., [39] reported that SARS-CoV-1 induces the 
expression of a variety of IFN isoforms in CACO2 cells. Additionally, 
SARS-CoV-1 mediated induction of cytokine IL6 and, TLR4 and TLR9 
was also observed in CACO2 cells [39] and, CCL3, CCL5, CCL2, and 
CXCL10 in infected airway epithelial cells [40]. 

Patients infected with SARS-CoV-1, particularly the severe ones, 
have shown the cytokine storm which includes induction of pro- 
inflammatory cytokines TGF-β, IFN-γ, IL-1, IL-6 and IL-12, and chemo-
kines IL-8, CCL2, CXCL9, and CXCL10 [33,41,42]. Moreover, an 
anti-inflammatory cytokine, IL-10 was profoundly downregulated in 
severe SARS patients [43]. Interestingly, a higher level of IFN and IFN- 
stimulated chemokines (CCL2, and CXCL10) was correlated with 
SARS-CoV-1 -mediated deaths [44,45]. Though none of these inflam-
matory markers (IFN, CCL2, and CXCL10) are reported to be directly 
associated with coagulopathy, SARS-CoV-1 infected PBMCs, as stated 
above, have shown increased levels of procoagulant proteins along with 
pro-inflammatory markers [34,46]. 

Inflammatory response to MERS-CoV was largely similar to SARS- 
CoV-1 infection. As observed in SARS-CoV-1 infection, the expression 
levels of cytokine IL-1β, IL-6 and IL-8 were also upregulated in the 
MERS-CoV infected alveolar cells [47]. Clinical studies revealed the 
induction of pro-inflammatory markers IL-6, IL-8, IFN-α, CXCL-10, and 
CCL5 which were associated with an increased number of neutrophils 
and monocytes particularly in severe MERS cases [48,49]. These studies 
have clearly shown the higher levels of some common serum 
pro-inflammatory markers both in SARS as well as MERS cases. 

Dysregulated pro-inflammatory cytokines play important roles in the 
activation of the coagulation system and inhibition of important phys-
iological anticoagulants [50]. As discussed above induction of 
pro-inflammatory markers particularly, IL-1β, IL-6 and IL-8 have been 
consistently identified in both SARS and MERS infections and their roles 
are quite prominent in the modulation of coagulation profile and 
dysfunction of platelets and erythrocytes. All three ILs have been re-
ported to increase platelet activation and spreading. Moreover, eryth-
rocytes distortion and apoptosis were observed particularly in the 
presence of IL-8. Studies have shown that IL-8 had the most prominent 
effect on coagulation compared to IL-1β and IL-6 in thromboelastog-
raphy [51,52]. Another study has shown that IL-6 may activate coagu-
lation but have a minimum effect on fibrinolysis [53]. When it comes to 

F. Ahmad et al.                                                                                                                                                                                                                                  



Cytokine and Growth Factor Reviews 63 (2022) 58–68

60

IL-1β, it regulates platelets aggregation through its receptor IL-1R1 
expressed on platelets [54]. 

3. SARS-CoV-2 induced inflammation and coagulopathy 

SARS-CoV-2 primarily invades alveolar epithelial cells and induces 
early immune reactions which subsequently orchestrate inflammatory 
and coagulation processes. Early immune response to the virus and 
virus-derived products including secretion of type 1 interferons (IFNs) 
eventfully trigger the host inflammatory responses [55]. This leads to 
activation and infiltration of various innate and adaptive immune cells 
to the site of infection leading to hyper inflammation. Production and 
release of proinflammatory mediators by the epithelial, endothelial, and 
infiltrated immune cells eventually contribute to lung tissue damage and 
coagulopathy (Fig. 1). Several inflammatory mediators are linked to 
coagulation factor regulation, thereby interplay between these two 
factors play a critical role in COVID-19 disease manifestation and 
severity.  

a. SARS-CoV-2 mediated alveolar epithelium and endothelial 
damage, and inflammation 

Infection of alveolar epithelial cells by SARS-CoV-2 triggers the 
production of proinflammatory mediators including chemokines and 
cytokines. Chemokines promote infiltration of innate monocyte/ 
macrophages, natural killer (NK) cells, dendritic cells and neutro-
phils, and adaptive immune cells (CD4 + and CD8 + T cells) to the 
site of infection [56], thereby contributing to the cytokine storm in 

severe COVID-19 patients [13,57]. One of the early 
pro-inflammatory cytokines released by the epithelial cells is 
recognized by the inflammatory myeloid cells such as mono-
cyte/macrophages and dendritic cells leading to inflammasomes 
activation to trigger an inflammatory cascade. 

Epithelial cells are severely damaged by the virus as well as in-
flammatory mediators produced by immune cells in the lung. Some 
of the major cytokines such as IL-1α and IFNs are released to extra-
cellular space, and that further damage adjacent microvascular 
endothelial cells. Therefore, the crosstalk between epithelial and 
endothelial cells seems to play a vital role in lung tissue damage [57]. 
SARS-CoV-2 is efficiently replicate in the lung epithelial cells 
resulting in high viral load, inflammation, and cell damage. In 
addition, SARS-CoV-2 damaged alveolar epithelium releases uroki-
nase and PAI-1 to activate coagulation pathways leading to fibrin 
deposition [58]. Other inflammatory mediators such as TGF-β, PDGF 
and IL-6 released by the virus-infected epithelium, immune cells, and 
myofibroblast may contribute to lung fibrosis. 

The major functions of endothelium include serving as a me-
chanical barrier between circulating blood and the basement mem-
brane, controlling the vascular tone, and immunomodulation. 
SARS-CoV-2 has been shown to infect vascular endothelial cells 
both in vivo and ex vivo [59], thus affect multiple organs through 
virus dissemination after entering the systemic circulation. Virus 
infection of vascular endothelial cells has been confirmed recently in 
an autopsy case study [60]. It suggests that these cells are susceptible 
to virus infection and contribute to inflammation either directly or 

Fig. 1. SARS-CoV-2 -induced inflammation and thromboembolism: The schematic diagram shows the alveolar epithelial cell damage-induced secretion of cytokines 
and chemokines orchestrated immune reactions including infiltration of various immune cell types including macrophages (MP), neutrophils (NP), natural killer cells 
(NK) and T-cells to the site of infection or inflammation. Moreover, in addition to infection of alveolar epithelial cells, SARS-CoV-2 can also activate immune cells in 
general. The infiltration and activation of immune cells enhance the release of inflammatory mediators which are mainly responsible for causing the cytokine storm. 
Induction of inflammatory reaction activates endothelial cells as well, and triggers the tissue factor (TF) expression on a variety of cells and, at the same time, 
attenuates the level of plasma tissue factor pathway inhibitor (TFPI) which induces TF pathway activation and thrombin generation. SARS-CoV-2-induced systemic 
inflammation can trigger the release of P-selectin and soluble CD40 ligand (sCD40L) which, along with thrombin, activates platelets that further enhances the levels 
of thrombin, P-selectin and sCD40L and provide positive feedback to the platelet activation and thrombus formation. The attenuated level of factor XIII (FXIII) in 
severe COVID-19 can destabilize the clot and induce venous thromboembolism (VTE). Moreover, induction of tissue plasminogen activator (tPA), a known regulator 
of thrombus dissolution (fibrinolysis), potentially leads to hyperfibrinolysis and excessive D-dimer formation as observed in COVID-19 patients. 
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indirectly via inflammatory mediators released by other cells such as 
epithelial and immune cells [61]. 

Similar to epithelial cells, endothelial cell function is significantly 
affected by SARS-CoV-2 in multiple ways [62,63]. Some of the major 
endothelial dysfunction involves reduced endothelium-dependent 
vasodilation leading to proinflammatory, procoagulant and hyper-
proliferation [64,65]. Notably, inflammation may also trigger the 
release of endothelial PAI-1 to inhibit urokinase plasminogen acti-
vator (uPA) and tissue plasminogen activator (tPA) leading to 
attenuated fibrin degradation [66]. However, viral replication 
within endothelial cells may result in activation of the extrinsic 
coagulation pathway or the recruitment of platelets to the site of 
endothelial injury that further contributes to hypercoagulability. 
Among the key factors of endothelial cell dysfunction include 
reduced nitric oxide (NO) production, increased reactive oxygen 
species (ROS) generation, decreased anticoagulant heparin and 
dipeptidyl peptidase-4, and elevated VWF, TF, ICAM-1, E-selectin 
and P-selectin. Moreover, early production of proinflammatory 
cytokine IL-1α by endothelial cells, monocytes and activated plate-
lets is reported to bridge the coagulation process and inflammatory 
response [67,68]. Also, IL-1α is suggested to promote infiltration of 
granulocytes and inflammation-mediated thrombosis [69]. Given the 
role of the endothelium in regulating fibrinolysis, endothelial 
dysfunction can induce immunothrombosis and subsequently 
hypercoagulopathy in COVID-19 patients [70]. That means damaged 
alveolar epithelial cells and the pulmonary endothelial cell can 
activate platelets and induce intravascular microthrombi formation 
[58,71]. The above changes appear to contribute to impaired hyp-
oxemic vasoconstriction and the clinical phenotype of happy hyp-
oxemia [72].  

b. SARS-CoV-2 infection-specific inflammatory cytokine and 
growth factor dysregulation 

SARS-CoV-2 induces the production and release of inflammatory 
mediators including cytokines and chemokines. Proinflammatory 
mediators secreted by the damaged epithelial and endothelial cells 
and infiltrated innate immune cells immensely contribute to the 
cytokine storm, a hallmark of COVID-19. Most commonly identified 
inflammatory factors including IL-2, IL-6, IL-7, IL-8 (CXCL8), TNF-α, 
granulocyte-colony stimulating factor (G-CSF), chemokine 
interferon-c inducible protein-10 (IP-10, CXCL10), CCL2 (MCP-1), 
MIP1α/CCL3 and CRP, procalcitonin (PCT), and ferritin [10,73–75] 
secreted by the infected cells and, immune cells recruit both innate 
and adaptive immune cells to the site of infection, thereby, exacer-
bating inflammatory responses [76]. In addition, a recent study 
highlighted the induction of hepatocyte growth factor (HGF) as 
counter-mechanism to resist pro- cytokine-mediated inflammation in 
severe COVID-19 [77]. 

Among the proinflammatory cytokines, IL-6 has been identified as 
the most common and predominant cytokine causing the cytokine 
storm [13], a phenomenon behind acute lung injury and ARDS in 
severe COVID-19 cases. IL-6 is also reported to induce expression of 
TF on endothelial cells and monocytes, increases platelet activation, 
and endothelial dysfunction [78]. Notably, the levels of IL-6, 
D-dimer, lactate dehydrogenase (LDH), and transaminases are 
considered crucial factors to identify high-risk COVID-19 patients 
who can potentially be benefited from anti-IL-6 (tocilizumab) ther-
apy [79]. Similarly, IFN-γ also increases platelet production and 
vascular endothelium impairment to deliver prothrombotic effects. 
Another important pro-inflammatory cytokine IL-8 (CXCL8), a 
well-known chemoattractant that activates and controls the infil-
tration of neutrophils to the site of infection, is highly elevated in 
COVID-19 patients. In addition to regulating neutrophil infiltration, 
IL-8 also induces neutrophil extracellular traps (NETs) formation, a 
process called NETosis that is triggered during microbial infections. 
A recent study has shown a gradual increase in inflammatory cyto-
kines and chemokines such as IL-6, CXCL10 and 

granulocyte-macrophage colony-stimulating factor (GM-CSF) in 
COVID-19 [80]. In addition to chemokines, their receptors have also 
been implicated in COVID-19. For example, the severity of COVID-19 
with genotype-inferred CCR2 expression in the lung shows strong 
evidence of myeloid cells contribution to immunopathology as CCR2 
is highly expressed on monocytes/macrophages [81]. In addition, 
several myeloid cell growth factors such as macrophage-CSF 
(M-CSF), G-CSF and GM-CSF known to regulate myeloid cells 
growth and differentiation are also found to be significantly elevated 
in COVID-19 patients [9,82]. 

Furthermore, significant activation of the complement system, a 
key component of the innate immune system, found to be associated 
with terminal complement complex C5b-9 and mannose-binding 
protein-associated serine protease 2 (MASP2) deposition in the lung 
lesions of COVID-19 patients [83,84]. Other studies also support the 
role of the complement system in COVID-19 as blocking of C5a and 
C5a receptor signaling and C3 deficiency reported to attenuate 
neutrophil infiltration and disease severity in animal models of SARS 
and MERS virus infection [85,86]. These studies suggest that com-
plement activation is a key component of the innate immune defense 
triggered early on by the SARS-CoV-2 infection. Besides cytokine and 
chemokines, elevated levels of serum CRP, PCT, erythrocyte sedi-
mentation rate (ESR), and ferritin were also observed in severe 
COVID-19 patients [10]. In addition, some of these key coagulation 
factors associated with inflammation in COVID-19 are discussed 
below.  

c. Association of dysregulated cytokines and growth mediators 
with coagulation factors 

The worse clinical outcome in COVID-19 is associated with 
endothelial dysfunction observed in the autopsy series [63,87]. In 
addition to triggering a cytokine storm [13], SARS-CoV-2 activates 
the coagulation pathway through vascular endothelial cells damage 
as discussed above. Among the key biomarkers of the coagulation 
including fibrinogen and D-dimer, CRP and ferritin, and their levels 
were found elevated in severe COVID-19 cases [30, 88–90]. An 
increasing body of evidence points towards the association of 
abnormal coagulation parameters with increased levels of inflam-
mation markers. In this regard, we and others have recently 
described the elevated levels of fibrinogen, D-dimer, and IL-6 in 
COVID-19 patients with ARDS [91,92]. However, another study has 
shown an association of elevated levels of D-dimer, PT and IL-6 with 
COVID-19 mortality [10]. In particular, the D-dimer was found 
positively associated with CRP, serum ferritin, PCT, and IL-2R. 
However, the elevated ferritin level was reported to promote a hy-
percoagulable state in COVID-19 [93]. 

In the context of coagulopathy, IL-6 potentially induces mega-
karyopoiesis and coagulation factors including TF, fibrinogen and 
factor VIII. Therefore, the level of TF may increase in the lungs of 
COVID-19 patients through virus-damaged epithelial cells as well as 
by the IL-6. Moreover, IL-6 also induces endothelial cells secretion 
and increases vascular permeability through the release of VEGF 
[94]. Besides these, the clinical trials in sepsis patients revealed that 
IL-6 is a predominant inflammatory mediator of cytokine-driven 
coagulation than both TNF-α and IL-1 that are strongly upregu-
lated during SARS-CoV-2 infection [95]. Concerning growth factors, 
a recent study has shown an association of a high level of HGF with 
severity and mortality of COVID-19 patients [77]. These findings 
indicate the existence of a possible interplay between Inflammation 
and coagulation during SARS-CoV-2 infection. Further studies are 
required to identify the specific regulators to precisely define the 
association of coagulation and inflammation in COVID-19 patients.  

d. Correlation of dysregulated coagulation factors with the COVID- 
19 severity 

Viral infections lead to inflammation, initiated by the primary 
target such as epithelial cells and subsequently by the immune cells, 
also observed in SARS-CoV-2 infection. This event could stimulate 

F. Ahmad et al.                                                                                                                                                                                                                                  



Cytokine and Growth Factor Reviews 63 (2022) 58–68

62

the coagulation system [96,97]. The findings from several studies 
describe a dysregulated coagulation process and the relationship 
between dysregulated fibrinolytic factors with COVID-19 severity, 
ARDS development and death. In context to the association between 
coagulation and inflammation, D-dimer, SIC score, and DIC score 
positively associate with the infectious and inflammatory markers. In 
particular, D-dimer was shown to correlate with the severity and 
mortality in the ongoing COVID-19 pandemic [9]. 

Another important phenomenon associated with COVID-19 is sepsis- 
associated coagulopathy which is believed to be primarily linked to 
proinflammatory cytokines. For example, IL-6 is reported to play a 
central role in activating coagulation by crosstalk with protein C, protein 
S, and antithrombin systems [53,98]. SARS-CoV-2 associated sepsis re-
mains the leading cause of DIC, a process observed before COVID-19 
patients’ death. A recent study has reported the association of dysre-
gulated PT, aPTT, fibrinogen degradation product (FDP), and D-dimer in 
fatal DIC [99]. However, in another study on a large cohort of critical 
COVID-19 patients, D-dimer and PT appear to be associated with disease 
severity and death [10,100]. In an interesting observation, COVID-19 
patients with pneumonia presented higher levels of D-dimer and FDP 
and, longer PT in non-survivors as compared to survivors [27]. These 
clinical observations suggest a potential association of dysregulated 
coagulation factors with the severity of COVID-19 and consideration of 
assessing coagulation markers in the management of coagulopathy. 

4. Cross talk between platelet activation and inflammation in 
COVID-19 

Platelets interact with other cells including immune cells during 
infection, thus actively participate in the process of inflammation. These 
tiny, non-nucleated cells respond precisely to pathogenic infection by 
undergoing morphological and biological changes and release various 
components including pro-coagulant and inflammatory mediators 
which eventually contribute to the thrombotic and immune system. 
Severe COVID-19 patients have shown a peculiar complication of 
thromboinflammation [101]. Recent literature suggests the role of 
platelets in inflammation and thrombosis in severe COVID19 patients 
[102–104]. The following sections discuss the role of activated platelets 
in thromboinflammation observed in COVID19.  

a. Platelets in immunity: 
Platelets play a major role in controlling blood loss and are 

important contributors to hemostasis and thrombosis. In addition, 
platelets are essential components of the immune system and play a 
pivotal role in inflammation by releasing active mediators that are 
necessary for inflammatory response [105]. Platelets can participate 
both in innate and adaptive immunity and, the ability of platelets to 
participate in immunity is due to the presence of storage granules 
and receptor-rich plasma membrane. Plasma membrane expresses 
multiple receptors through which platelets crosstalk with immune 
cells such as lymphocytes, neutrophils and monocytes. Storage 
granules (alpha- and dense-granules) are packed not only with 
adhesion and activation molecules but also with other molecules 
such as chemokines, cytokines and bioactive amines [106]. As a 
result of bacterial/viral infections, platelets alter their morphological 
and biological features to facilitate their participation in the defense 
mechanism. Pathogens bind to platelets either directly or indirectly 
via surface recognizing receptors, plasma proteins, bacterial toxins, 
etc. The infection triggers the release of chemokines, such as CXCL4 
and β-thromboglobulin (CXCL7) from platelets. The chemokine, 
CXCL4 is known to involve in the regulatory functions of inflam-
mation, also, serves as a prognostic marker of viral infections such as 
SARS-CoV-2 infection [107]. 

The role of chemokines, secreted by platelets, in other viral in-
fections such as dengue, has also been documented recently [108]. In 

some viral diseases, infection and inflammation are associated with 
the development of prothrombotic complications. Since platelets are 
procoagulant and have the nature of spreading, adhesion, secretion 
and aggregation, these cell particles contribute to thrombotic 
development. Platelet-derived thrombosis during infection, also 
called immunothrombosis, occurs as a result of cross-talk between 
platelets and inflammation [109]. Along with the activated platelets, 
tissue factors, antimicrobial peptides activated monocytes and 
endothelial cells contribute to the development of immuno-
thrombosis. Complement components and NETs are also key con-
tributors to immune-mediated thrombosis [110]. 
Immunothrombosis enhances the recognition and destruction of 
pathogens, however, excessive thrombus formation leads to adverse 
events such as tissue damage as observed in SARS-CoV-1 infection 
[111]. Recently, several evidences have been reported about the 
complications associated with immunothrombosis in COVID19 
[112–114].  

b. Role of activated platelets in COVID19: 
Activated platelets serve as mediators of inflammation and 

thrombosis in many clinical conditions [115–118]. Platelets activa-
tion triggers inside-out signaling and activate surface receptors that 
bind to the ligand on other cells, de-granulates and secretes contents 
into the plasma [119]. The release of granular contents such as ad-
hesive proteins, coagulation factors, chemokines and numerous 
other biologically active molecules not only promote a hypercoag-
ulable state but also promote the inflammatory process utilizing 
immune cells. Pro-inflammatory mediators such as CD40 ligand 
(CD40L) and TLRs are synthesized and expressed on the surface of 
the activated platelets that help crosstalk with other cells like 
monocytes and neutrophils. The interaction between platelets and 
other cells results in the formation of platelet-leukocyte aggregates 
which leads to the pathological condition of thrombosis [120]. 
Release of granular contents, surface expression of certain key re-
ceptors and platelet-leukocyte aggregates are the strong markers of 
activated platelets. When such features are associated with viral, 
bacterial and inflammatory diseases, the risk of occurrence of 
immunothrombosis is also increased. Patients with COVID19 mani-
fest with thromboembolic complications as a result of inflammation, 
platelet activation and hypercoagulation [102,121]. It is identified 
that the activated platelets play an important role in SARS-CoV-2 
associated thrombus formation as platelets coordinate between 
inflammation and thrombosis which lead to thromboinflammation 
[122]. 

Increased expression of P-Selectin, a marker of activated platelets, 
has been reported in patients with COVID19. Additionally, TBXB2, 
platelet factor 4 (PF4) and PDGF were also found to be increased in 
patients with COVID19 [107]. The soluble form of P-Selectin (sP-Se-
lectin), a reliable marker of in vivo platelet activation found linked with 
increased severity and in-hospital mortality of COVID19 patients [123]. 
There was a positive correlation between the increased levels of 
sP-Selectin and inflammatory markers such as CRP which suggests the 
association of platelets with inflammation. Platelets are potential regu-
lators of expressions of receptors/ proteins on the other cells via either 
direct cell-cell interaction (PSGL-1/P-Selectin mediated) or binding of 
platelet releasate (soluble proteins) with the surface of other cells [124]. 
Platelet-leukocyte aggregates were observed only in severe but not in 
mild or asymptomatic COVID19 patients. The existence of 
platelet-neutrophil and platelet-monocyte aggregates in severe 
COVID19 patients suggests the role of inflammation in the platelet 
signaling mechanism [125]. Platelet-leukocyte aggregation triggers the 
expressions of proteins necessary for inflammation and thrombosis, for 
example, Mac-1 on neutrophils, COX-2 and PSGL-1 on monocytes, 
ICAM-1 on endothelial cells; all these proteins are key for the throm-
boinflammation [124]. Apart from these, platelet microparticles have 
emerged as a prognostic marker in severe COVID19 patients as the 
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increased level of microparticles has been observed in these individuals 
[126]. 

Thrombocytopenia, a condition marked by low platelet count may 
serve as a potential biomarker to guide the disease severity in viral 
diseases. Thrombocytopenia in viral diseases such as Dengue, Chi-
kungunya, Japanese Encephalitis, Hepatitis B, Human Immunodefi-
ciency Virus (HIV) and many other viral infectious diseases have been 
reported in the past. Platelets are activated by the direct binding with 
either the viral particle or immune complexes that are produced as a 
result of infection. For example, infection by the dengue virus activates 
platelets via either C-type lectin receptor-2 (CLEC2) or anti-non- 
structural protein-1 IgG [127]. A recent study identified thrombocyto-
penia as a potential biomarker of severity in COVID19 patients [128]. 
An aberrant megakaryocyte maturation, increased platelet destruction 
and consumption in thrombi formation could be the possible cause of 
thrombocytopenia in severe COVID19. However, the existence of 
comorbidities may contribute to the coincidence of thrombocytopenia in 
COVID19 as severe platelet reduction is not observed in all the patients 
with COVID19. All the above studies strongly support the role of acti-
vated platelets in the pathophysiology of COVID19 as the activated 
platelets are known to take part in the process of thrombosis and 
inflammation through releasing proinflammatory and procoagulant 
mediators. 

5. Role of SARS-CoV-2 mediated inflammation in 
thromboembolism and aberrant fibrinolysis 

The viral and bacterial infection enhances the risk of thromboem-
bolic diseases including DVT and pulmonary embolism (PE) [129–131]. 
Such thromboembolic complications are a major contributing factor to 
increased morbidity and mortality [132]. SARS-CoV-2 infection induces 
not only immunothrombosis but also thromboembolism and inhibits 
fibrinolysis [133,134]. Thromboembolism in hospitalized COVID-19 
patients is more commonly reported in veins [135] and it has been 
extensively reviewed previously [136–138]. The main focus of this re-
view is to establish a potential association between inflammatory 
markers and thromboembolism in COVID-19. Studies suggest that sys-
temic inflammatory response causes VTE which in turn further enhances 
the inflammatory reaction. The dysregulated coagulation factors 
particularly, thrombin/fibrin and FXIII, were reported to modulate 
thrombus stability and embolization [20]. Therefore, we sought to 
establish a potential association between SARS-CoV-2 –induced in-
flammatory markers and dysregulation of coagulation factors which 
ultimately regulate fibrin generation and polymerization. Fibrin gener-
ation is regulated by both extrinsic as well as intrinsic coagulation 
pathways and potentiated by additional thrombin generation contrib-
uted by activated platelets.  

a. Association of inflammatory mediators with thromboembolism:  
Upregulation of proinflammatory markers in COVID-19 including IL- 
1, IL-2, IL-6, IL-8, TNF-α, CRP and IFN-y has previously been iden-
tified as a critical regulator of coagulation factors and platelet acti-
vation (Table 1). Of these, an association was established between 
increased levels of IL-6, IL-8, TNF-α, and CRP with increased risk of 
VTE in systemic inflammation [11,132]. These inflammatory 
markers potentially play critical roles in thrombin/ fibrin generation 
by modulating the coagulation system. Though mentioned proin-
flammatory markers likely enhance thrombin/ fibrin generation in 
COVID-19 which is consistent with the finding that showed the 
presence of fibrin-rich thrombi in the lung vasculature of patients 
who died due to COVID-19 [165]. The question, how thrombus in 
severe COVID-19 destabilizes and embolizes even in the presence of 
an adequate amount of fibrin, remains unanswered and is an area of 
extensive research. The most likely cause of VTE in the COVID-19 is 
the downregulation of FXIII, particularly in severe cases, which at-
tenuates the fibrin polymerization (Fig. 1). FXIII facilitates the 

cross-linking of fibrin and increases the thrombus stability during 
platelet accumulation on growing thrombus [166]. Studies employ-
ing the ferric chloride-induced venous thrombosis model have dis-
played a significantly increased level of thrombus embolization in 
FXIII deficient mice [167]. In contrast, supplementation of FXIII 
stabilizes the deep vein thrombi in mice and limits PE [168]. A recent 
study has shown that COVID-19 is associated with acquired FXIII 
deficiency [169]. Consistently, we recently observed that the level of 
FXIII gradually decreases with the progression of COVID-19 severity 
[92]. These findings indicate that FXIII deficiency could be a major 
driving factor of thromboembolism in COVID-19 though further 
investigation and validation are required. Existing evidence suggests 
for a link between FXIII and inflammatory markers and it is reported 
that CXCR3 expression in the lung directly correlates with the FXIII 
levels in diseases condition [170]. Importantly, the level of CXCR3 
expression in mild and severe COVID-19 patients was comparable to 
healthy controls [171]. Therefore, down-regulation of the FXIII level 
in COVID-19 is possibly independent of CXCR3. Interestingly, in 
vitro studies in macrophages have demonstrated that the induction 
of the classical activation pathway by IFN-y downregulates the cat-
alytic A subunit of FXIII both at mRNA and protein levels [172]. The 
polymorphonuclear (PMN) leukocytes activate FXIII by releasing 
human neutrophil elastase which likely promotes fibrin cross-linking 
at an inflammatory site. However, within the fibrin clot, PMN leu-
kocytes become activated and proteases released by these cells 
inhibit FXIII to prevent the formation of over-cross-linked fibrin 
[173]. Therefore, an increased leukocyte number and IFN-y partic-
ularly in severe COVID-19 cases [92,174] may play important roles 
in the modulation of FXIII and fibrin cross-linking and cause 
thromboembolism in the severe COVID-19. 

b. Association of inflammatory mediators with aberrant fibrino-
lysis in COVID-19: 

The elevated level of D-dimer in the COVID-19 suggests the acti-
vation of the coagulation system and hyperfibrinolysis. Fibrinolysis 
is a physiological process required for thrombus dissolution gov-
erned by plasmin, plasminogen, tPA, and PAI-1. Studies suggest that 

Table 1 
Association of SARS-CoV-2 -induced cytokines and growth factors with dysre-
gulation of coagulation factors: TF, tissue factor; VEGF, vascular endothelial 
growth factor; PAI-1, plasminogen activator inhibitor-1; uPA, urokinase plas-
minogen activator; tPA, tissue plasminogen activator.  

Cytokines Function Associated coagulation 
factors 

References 

IL-6 Proinflammatory 
Upregulation/activation 

TF 
Fibrinogen 
Factor VIII 
VEGF 
PAI-1 

[139] 
[140] 
[141] 
[142] 
[143–145] 

IL-1 Proinflammatory 
Upregulation/activation 

TF 
VEGF 
PAI-1 
Platelet activation 

[146,147] 
[148] 
[149] 
[146,150] 

TNF-α Proinflammatory 
Upregulation/activation 

TF 
u-PA 
PAI-1 upregulation 
Platelet 

[147,151] 
[152] 
[144,153] 
[154,155] 

IL-8 Proinflammatory 
Upregulation/activation 

TF 
Factor VII via NET 
Platelet 

[139] 
[110] 
[156] 

IFN-y Proinflammatory 
Upregulation/ 
production 

TF 
Platelet 

[147,157] 
[158] 

IL-2 Proinflammatory 
Upregulation/activation 

TF 
PAI-1 
tPA 

[147] 
[159] 
[160] 

IL-10 Anti-inflammatory 
Downregulation/ 
inhibition 

TF 
VEGF 
PAI-1 

[161,162] 
[163] 
[164]  
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SARS-CoV-2 infection dysregulates the fibrinolysis process by 
modulating the level of tPA and PAI-1 likely through inducing the 
inflammation [175–178]. Recently, we and others have reported the 
increased level of PAI-1, a fibrinolytic inhibitor, in COVID-19 pa-
tients [92,179]. Importantly, we observed a higher level of PAI-1 in 
the moderate vs. severe COVID-19 cases which indicates diminished 
thrombus dissolution in moderate cases and possibly promotes 
COVID-19 severity. Interestingly, we observed an elevated level of 
tPA particularly in severe COVID-19 patients which indicates the 
activation of hyperfibrinolysis. Similarly, other studies have also 
reported an elevated level of PAI-1 in COVID-19 patients [180]. 
Moreover, an elevated level of tPA in hospitalized COVID-19 patients 
was reported to be associated with higher mortality [179]. 

Inflammation can trigger the release of PAI-1 from vascular endo-
thelial cells (reviewed in [66]). Like t-PA, PAI-1 is normally produced 
and released from the vascular endothelium, but also by mast cells and 
adipose tissue [181]. Proinflammatory cytokines are thought to be one 
of the major factors in inducing tPA and PAI-1 either directly or through 
indirect activation of endothelial cells [182]. In addition to inflamma-
tory mediators, SARS-CoV-2 infection can also trigger the release of tPA 
and PAI-1 from endothelial cells [70]. Some of the key mediators of the 
cytokine storm such as IL-1, IL-6 and TNF-α are also linked to PAI-1 
dysregulation [183]. Notably, IL-6, a key predictor of COVID-19 
severity transactivates PAI-1 production in endothelial cells [143]. 
Another COVID-19 associated innate inflammatory molecule C5a [83] 
increases the expression of PAI-1 in mast cells [184]. The contribution of 
TNF-α and IL-1β mediated regulation of PA-1 [185] is well supported by 
the observation of non-occurrence of thrombosis in endotoxin-treated 
PAI-1 knockout mice [186]. In contrast to PAI-1, the most common in-
flammatory mediator CRP decreases the tPA expression in human aortic 
endothelial cells [187]. Likewise, tPA expression was found down-
regulated by other common pro-inflammatory mediators such as IL-1β, 
TNF-α as well as endothelin-1, and ROS [188–190]. Although the ma-
jority of these studies do not show a direct association with COVID-19, 
the strong link between inflammatory mediators, in particular, those 
constituting the cytokine storm (IL-1, IL-6, TNF-a), and the regulation of 
PAI-1 and tPA indicate the existence of an association between inflam-
mation and aberrant fibrinolysis in COVID-19 that needs further 
investigation. 

6. Conclusions 

The cytokine storm and coagulation dysfunction appear to be the 
major cause of venous thrombosis and thromboembolism in COVID-19 
that significantly contribute to the severity of disease and death rate. 
The pattern of coagulation dysfunction in COVID-19 seems to be 
different than the traditional coagulation pathway. The inflammation 
induction mediated by a plethora of cytokines and growth factors in 
COVID-19 potentially regulate procoagulant mechanisms partly through 
enhancing the TF expression on immune and endothelial cells which is 
crucial for TF-FVIIa pathway activation. Though no direct association 
between inflammatory mediators and coagulation factors dysregulation 
in COVID-19 is established yet, studies strongly suggest that cytokines 
and growth factors induction might play important roles in coagulation 
dysfunction. In the experimental model, inhibition of the endogenous 
activity of cytokines has revealed the key roles of TNF-α in fibrinolysis 
however, IL-1 and IL-6 were found to be associated with the coagulation 
system activation. Interestingly, inflammatory response in COVID-19 
was identified to be largely similar to as seen in MERS and SARS-CoV- 
1 infections where higher levels of IL-1, IL-6, and TNF-α were also 
observed. The molecular mechanisms of inflammation-induced coagu-
lation dysfunctions in the viral pandemics including COVID-19 appear to 
be largely similar though the precise cause is undefined. Since all the 
said inflammatory mediators are the critical regulator of the compo-
nents of the coagulation system, effective management of such cytokines 

in the COVID-19 potentially limits the coagulopathy and severity of the 
disease. Moreover, combination therapy could be an effective thera-
peutic approach to minimize the thrombotic events in the COVID-19. 
Based on observations, thromboembolic events in severe COVID-19 
patients could be minimized when treated with recombinant FXIII in 
combination with an antiplatelet and/or low molecular weight heparin. 
Such combinational therapy needs to be validated in preclinical models. 
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