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High-resolution genetic mapping of maize
pan-genome sequence anchors
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In addition to single-nucleotide polymorphisms, structural variation is abundant in many plant

genomes. The structural variation across a species can be represented by a ‘pan-genome’,

which is essential to fully understand the genetic control of phenotypes. However, the

pan-genome’s complexity hinders its accurate assembly via sequence alignment. Here we

demonstrate an approach to facilitate pan-genome construction in maize. By performing

18 trillion association tests we map 26 million tags generated by reduced representation

sequencing of 14,129 maize inbred lines. Using machine-learning models we select 4.4 million

accurately mapped tags as sequence anchors, 1.1 million of which are presence/absence

variations. Structural variations exhibit enriched association with phenotypic traits, indicating

that it is a significant source of adaptive variation in maize. The ability to efficiently map

ultrahigh-density pan-genome sequence anchors enables fine characterization of structural

variation and will advance both genetic research and breeding in many crops.
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G
enome duplication1 and transposable elements2 (TEs) are
important driving forces behind plant genome evolution,
and have generated the complex genomes found in

many major crop species3–7. These complex genomes contain
tremendous structural variation (SV), in the form of copy number
variation (CNV), presence/absence variation (PAV, an extreme
form of CNV), inversion and translocation. In humans, CNV has
a limited influence on disease susceptibility and explains only a
minority of the ‘missing heritability’8,9. However, in major crop
species, CNV is much more prevalent10,11, and thus is much
more likely to significantly have an impact on phenotypic
variation. For example, plant disease defense genes often
display CNV and frequently colocalize with other CNVs12,13.
Furthermore, read depth variation is over-represented in
genome-wide association study (GWAS) hits for multiple traits
in maize14. These observations suggest that CNV plays an
important role in phenotypic variation.

To characterize CNVs, an ideal system is the pan-genome, a
representation of both the core genome (collinear genome) and
the variably distributed genome (SVs) of a species15. The pan-
genome can be constructed by comparing multiple genomes
derived from de novo sequence assembly (Fig. 1). As a result of
the falling cost of sequencing, it is now possible to sequence crop
varieties on an unprecedented scale in both depth and sample
size. However, because of the repetitive nature of complex
genomes, prevalent alignment ambiguity hinders accurate read
contiging and confounds pan-genome assembly. In addition, a
large proportion of genomic fragments absent from the reference
cannot be placed on the pan-genome via alignment. Therefore,

for species with complex genomes, sequence alignment alone is
insufficient to build high-quality pan-genomes. However, the
availability of a set of ultrahigh-density genetic anchors would be
extremely helpful to the pan-genome construction. These genetic
anchors could be used either to evaluate assembly quality or, even
better, to direct de novo assembly of individual genomes6.
Genotyping-by-sequencing (GBS)16, a reduced representation
approach, can efficiently generate abundant single-nucleotide
polymorphisms (SNPs) for a large number of individuals of a
species. It is also a cost-effective source of sequence tags that can
be used as genetic anchors to direct contig/scaffold assembly and
to map genomic fragments absent in the reference. In this study,
we developed an efficient and accurate approach to genetically
map ultrahigh-density sequence anchors, which will be a valuable
tool for ongoing pan-genome construction. This approach is most
powerful with the large sample size of individuals afforded by
GBS. This analysis was conducted in maize, the largest
production crop in the world, which is also a model species for
complex genomes. Mapping sequence anchors in maize provides
an effective example for other species.

Maize is among the major crop species that exhibit the highest
amounts of SVs. Between any two maize varieties, about half of
the genome is not shared because of the high level of TE activity
during maize evolution17,18. The B73 maize reference genome
confirmed that nearly 85% of the B73 genome consists of TEs6,
which went through repeated cycles of expansion and loss19.
These elements increased the maize genome by 50% in the last 3
million years20. Moreover, the 35% genome size difference
between maize and its close relative Zea luxurians is accounted
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Figure 1 | A framework to construct the pan-genome on the basis of de novo genome assemblies. (a) Individual genome is randomly sheared and

sequenced using either short or long read sequencing technologies. (b) Contig assembly using reads. The contigs are usually generated with k-mers using

de Bruijn graph-based algorithms. (c) Scaffold/chromosome assembly on the basis of contigs. (d) Identifying structural variations by sequence alignment.

(e) The graph of the pan-genome. The rectangles represent genomic sequence. Red rectangles are sequences from the core genome, in which sequences

are present in all individuals. Blue rectangles are sequences from the variable distributed genome, which show structural variations. Individual genomes are

represented by these rectangles connected with arrows.
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for by TEs21. In addition to the contribution of TE sequences
themselves to SV, numerous gene sequence fragments have
been relocated or duplicated by Pack-MULEs22, helitrons23,
retrotransposition24 or duplication25. A recent study reported
8,681 novel maize transcripts absent in B73 (ref. 26), a number
equivalent to 14% of the transcripts in the reference genome.
Relative to the majority of the genome that is kept in flux by these
processes, the stable, core genome appears to be a rather small
proportion of the pan-genome. Hence, a single reference genome
is woefully insufficient to represent all genomic contents for
maize.

To facilitate building a maize pan-genome that includes
de novo assemblies of diverse maize varieties, we developed an
effective approach to produce high-resolution pan-genome
sequence anchors. By genetically mapping 26 M GBS tags in
14,129 maize inbred lines, B4.4 M tags were identified as genetic
anchors of maize pan-genome, 1.1 M of which were PAVs. These
PAVs exhibited enriched associations with multiple traits,
suggesting that they play an important role in controlling
phenotypic variation. These high-quality pan-genome anchors
will be very helpful to direct de novo genome assembly and
characterize SVs in maize.

Results
Initial genetic mapping of GBS tags. Using GBS, we sequenced a
large collection of 14,129 maize inbred lines. These inbred lines
are the most comprehensive and representative set of temperate,
subtropical and tropical germplasm used in maize genetic
research to date. About 1.3 trillion bp of sequence was generated
with an average depth of 0.3 reads per site per sample. Using the
GBS bioinformatic pipeline27,28 (Supplementary Fig. 1), a total of
26,436,248 GBS tags were identified. From these tags, 681,257
SNPs were discovered and scored across all of the maize lines29.
In order to construct a framework for the maize pan-genome,
genetic mapping approaches combined with machine-learning
(ML) algorithms were used to anchor GBS tags from the 14 K
inbreds to B73 reference genome coordinates (Fig. 2).

The GBS tags were genetically mapped by testing for
associations between the presence/absence pattern of each tag
and individual GBS SNP genotypes across the 14-K maize
inbreds, where the position of the most significant SNP was taken
to be the the genetic position of the tag (Supplementary Fig. 2).
Two genetic mapping approaches, GWAS and joint linkage
mapping in nested association mapping population (NAM)30,
were performed to map tags with a total of 18 trillion tests. There
were 14,975,910 and 6,890,040 tags mapped by GWAS
(P value o1E� 6) and joint linkage mapping (P value o0.05),
respectively. Uniquely aligned B73 tags (UABTs) were used to
assess mapping accuracy, with perfect accuracy consisting of
identical genetic and physical positions. In the initial mapping

results, only 63.9% and 68.9% of tags were mapped to correct
chromosome for the two methods, respectively (Supplementary
Fig. 3). This low initial accuracy was due to (1) the lack of
correction for population structure (for computational speed),
(2) the loose P value threshold for joint linkage mapping and
(3) the repetitive nature of some of the tags. However, several
valuable attributes were collected to model mapping accuracy.

Generating pan-genome anchors using ML models. To obtain
high-quality pan-genome anchors, we developed ML models to
predict the accuracy and identify accurately mapped tags as
sequence anchors. A total of 16 attributes were collected to
predict distances between tags’ physical positions (alignment
positions) and their genetic mapping positions (Supplementary
Table 1). ML models were trained on UABTs mapped by GWAS,
by joint linkage mapping, and by both. Since mapping tags by
GWAS does not require designed populations derived from
controlled crosses (for example, NAM) and is more likely to be
widely used in other species, we use GWAS mapping results to
illustrate the ML prediction and filtering.

Multiple ML algorithms, including decision tree, association
rule and support vector machines, were tested on UABTs mapped
by GWAS using nine attributes (Supplementary Table 2).
Mapping accuracy (distance between the physical and genetic
positions of each UABT) was used as the dependent variable.
On the basis of the Pearson’s correlation coefficient (r) and mean
error between observation and prediction, M5Rules31,32

performed best (Supplementary Fig. 4). The M5Rules model
trained for tags mapped by GWAS was designated as
‘M5Rules_G’. The nine attributes showed various levels of
importance for prediction (Supplementary Fig. 5). A total of
23 rules and linear models were generated in M5Rules_G (Fig. 3
and Supplementary Table 3), classifying the tags into 23 subsets.
In each subset, linear regression was performed. A moderately
high value of r2 (0.68) between observation and prediction was
derived from the merged data set, which enabled selection of
accurately mapped tags (Supplementary Table 4).

To examine the robustness of this combined approach (genetic
mapping plus ML), several additional factors, including sequence
depth of inbreds having the tag, and the amount of missing/
imputed genotypes around the genetic positions of mapped tags,
were also assessed for their potential impact on mapping
accuracy. Results showed that these factors had trivial effects
(r2o0.01, Supplementary Fig. 6). As expected, population
structure had a dramatic impact on mapping accuracy: less
accurately mapped tags were more likely to correlate with the
population structure. However, the effect of population structure
on mapping accuracy was well captured by multiple ML
attributes, which were the key predictors in the M5Rules_G
model (Supplementary Fig. 7). In addition, genetic diversity was
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Figure 2 | Anchoring GBS tags using genetic mapping approaches combined with ML algorithms. Two genetic mapping approaches, GWAS and

joint linkage mapping in NAM, are performed to map GBS tags. Since some tags are mapped by the two methods and others are mapped by both,

three corresponding ML models are trained to predict and select accurately mapped tags.
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also evaluated for its effect on mapping performance. Tag GWAS
mapping was tested in two populations (each with n¼ 400) with
different levels of diversity. One consisted of two NAM families,
while the other was a random subset of individuals from the
Ames association panel29. Owing to the increased within-
population genetic diversity and faster decay of linkage
disequilibrium, genetic mapping in the Ames subset provided
higher resolution (Supplementary Fig. 8). After building ML
models, many more sequence anchors at the desired level of
accuracy can be selected from Ames mapping results
(Supplementary Tables 5 and 6). This indicates that diversity is
a key factor influencing tag genetic mapping performance.

In addition to the M5Rule_G model, two M5Rules models,
M5Rules_J and M5Rules_GJ, were trained for tags mapped only
by joint linkage mapping (M5Rules_J) and by both GWAS and
joint linkage mapping (M5Rules_GJ), with different sets of
attributes for each (Supplementary Table 1). Compared with
M5Rule_G, the M5Rules_GJ model with a few more attributes
increased r2 between prediction and observation from 0.68 to 0.72
and therefore improved the resolution of the resultant subset of
tags selected as sequence anchors. However, it should be noted
that the M5Rule_G model alone, which did not require a specially
constructed population, was capable of producing high-resolution
anchors (Supplementary Tables 3 and 7).

The three M5Rules models were applied to initial mapping
results. To keep accurately mapped tags, 100, 50 and 100 kb
were set as the thresholds for M5Rules_GJ, M5Rules_G and
M5Rules_J, respectively (Supplementary Table 8). A total of
4,436,135 high-resolution tags were selected. Of these, 406,019
were UABTs, 99.1% of which were assigned to the correct
chromosome, 95.0% within 1 Mb of their actual site and 54.8%
within 10 kb (Fig. 4). Of the 4.4 M anchor tags, 946,711 were B73
tags (present in B73 samples): 94% of these B73 tags had a unique
perfect alignment match to the reference (Supplementary Fig. 9).
This indicates that the 4.4-M mapped tags were enriched for low
copy sequences. Therefore, the majority of mapped tags appear to
qualify as unique sequence anchors for the maize pan-genome.

Accuracy of sequence alignment in maize. Sequence alignment
underlies genome assembly quality, which is fundamental for
pan-genome construction. To evaluate the validity of sequence
alignment against the complex maize genome, a GBS library with
95 highly diverse maize inbreds was sequenced using MiSeq
2� 250 bp paired end sequencing. Alignment positions of reads
of various length were compared with their genetic positions
obtained from 4.4-M sequence anchors (Supplementary Fig. 10).
Taking into account that a sequence anchor has a 98.6% chance
(Fig. 4a) to be in the 10-Mb region of its actual position, the
alignment with a physical position in the 10-Mb region of read
genetic position was arbitrarily considered as a correct alignment.
We found that reads with a range from 150 to 300 bp, which is
the standard read length of Illumina machines, had about a 20%
chance to be incorrectly aligned in maize (Supplementary
Fig. 11). This illustrates the challenge of genome assembly and
SNP discovery in species with complex genomes.

Identifying PAV anchors. We found a considerable number of
mapped tags that either did not align to the reference at all, or did
not align within 10 Mb of their genetic positions (Fig. 5). These
tags were defined as PAVs, which essentially tagged genomic
sequence absent in orthologous regions in the B73 reference
genome. About 0.5% of B73 tags did not have an agreement
between genetic position and physical position. This is probably
because of two reasons: (1) the same tag is at another position in
non-B73 genomes because of translocation or duplication;
(2) there is about a 1.4% chance that genetic positions of the
4.4-M tags are not in a 10-Mb region of their actual positions
(Fig. 4). However, we were not able to differentiate the two sce-
narios. Within the 4.4-M tags, a total of 1,147,512 (26%) tags were
classified as PAVs. This suggested that B73 contains B74% of the
low copy sequence of maize, which reflected an earlier estimate of
70% (ref. 33). We found that PAVs were more often present in
pericentromeric regions (Supplementary Fig. 12), which might be
due to high amounts of TE and relatively poor assembly around
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centromeres. In the human genome, there is also higher
proportion of PAVs in pericentromeric regions34. We also found
that PAV density was positively correlated with repeat density,
but negatively correlated with recombination rate and gene
density. This suggests that repetitive sequences are a major
contributor to PAV in maize.

To initiate construction of the maize pan-genome, we recently
deeply sequenced and assembled the maize inbred line CML247,
a valuable line for maize breeding because of its high disease
resistance. The 4.4-M genetic anchors turned out to be a powerful
resource to assess the quality of the CML247 assembly
(Supplementary Fig. 13). To validate the 1.1-M PAV tags absent
in the B73 reference, a total of 200 high-quality scaffolds from the
CML247 assembly were compared with their orthologous regions
in B73. By aligning 1.1-M PAV tags to the 200 CML247 scaffolds,
we found that 89% of PAV anchors tagged genomic sequences
present in CML247 but absent in B73 (Supplementary Fig. 14).

PAV and phenotypes. To investigate the contribution of PAVs to
phenotypic variance, we conducted GWAS for four traits (days to
silking, days to anthesis, plant height and ear height). The 700-k

SNPs were used to perform GWAS in 2,661 maize inbred lines
(Supplementary Data 1 and 2). Since the PAVs were genetically
mapped via their co-segregation with SNPs, the SNPs where the
PAVs were mapped served as proxies to estimate their genetic
effect. Accordingly, SNPs were divided into 228,620 PAV
SNPs (associated with PAVs) and 452,637 ordinary SNPs (not
associated with PAVs). In the GWAS analysis, the population
structure was well accounted for and the positive control loci
(genes known to affect flowering time in maize) had GWAS hits
(Supplementary Figs 15 and 16).

Both PAV SNPs and ordinary SNPs generated significant
P values. Since PAV tags identified by genetic mapping
approaches were biased towards high-frequency ones, the
ordinary SNPs had a larger proportion of low-frequency alleles
relative to PAV SNPs (Supplementary Fig. 17). To maintain equal
statistical power, we controlled for minor allele frequency (MAF)
of ordinary SNPs and PAV SNPs before comparing their P values.
After filtering out SNPs with MAFo0.095, the 66,998 ordinary
SNPs and 117,917 PAV SNPs had equal MAF distributions, in
which the median MAF was 0.25 for both (Supplementary
Fig. 18).

PAV SNPs were enriched for the significant GWAS hits
relative to the ordinary ones (Fig. 6 and Supplementary Table 9),
suggesting that PAVs have an important role in generating
phenotypic variation. Taking into account that 62.9% of PAV
SNPs were within genes and 54.8% of PAV tags were in 10-kb
flanking regions of these SNPs, these SVs might alter gene
expression by modifying gene regulation, as was suggested by an
earlier study35.

Discussion
Analysing an unprecedented number of inbred lines in maize, we
developed effective genetic mapping approaches combined with
ML algorithms to map millions of high-quality sequence anchors
for the maize pan-genome. We also found that PAVs play an
important role in controlling phenotypic traits. Along with a
previous observation that RDVs were over-represented for
significant associations with traits14, we hypothesize that CNVs
are a significant source of adaptive variation in maize. The large
numbers of CNVs represent a rich and potentially underutilized
resource for maize-breeding programmes.

As we mentioned, a pan-genome is an ideal system to capture
CNVs and other structure variations. One efficient way to build
the pan-genome is to de novo assemble individual genomes of
representative varieties/accessions. However, it is still challenging
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to de novo assemble complex genomes36. Without a powerful
quality-control, many misassembled contigs would be incorrectly
interpreted as SVs. Genetics is the true proof of sequence
assembly. The genetic mapping approach developed here can
produce a high-density genetic grid to validate sequence
placement in contigs/scaffolds and help put them to the right
place. De novo assembly of individual genomes plus millions of
genetic anchor points should be a great combination to effectively
construct pan-genome for species with complex genomes.

One alternative to build a pan-genome is to skim sequence
multiple varieties and assemble reads that do not align to the
reference genome. This might work for species with simple
genomes. However, it is unlikely to adequately capture SVs in
complex genomes, such as maize. This is due to two reasons:
(1) although B95% of reads from a nonreference inbred can be
aligned to the B73 reference genome (default parameters of
alignment tools), many of them align to the wrong place. Given
that only about half of genome sequences are orthologous when
comparing two maize inbreds17,18, 440% of the aligned reads are
from regions of SV and are expected to be misaligned. This
suggests that pan-genome sequences equivalent to 40% of maize
genome size are missing from a nonreference inbred. The 5% of
reads that do not map cannot be well assembled, as they are
noncontiguous, sparse and shallow. (2) With respect to sequence
depth of skim sequencing, the depth follows a Poisson
distribution, which means that reads are not evenly distributed
across the genome. Skim sequencing cannot guarantee that reads
cover the genome completely. Therefore, many genomic regions
will be inadequately covered by skim-sequencing, which will lead
to more missing sequence in the pan-genome.

It should be noted that the genetic mapping approach and ML
modelling work ideally for species with high-quality reference
genomes, since the distance of genetic position and physical
position of tags is required as the response variable in the ML
model. Here, high quality means that the reference assembly is at
a chromosome/pseudomolecule scale. For those species whose
reference genomes consist most of scaffolds, the genetic mapping
approach can still work. However, training tags should be selected
from those relatively larger scaffolds where these tags are aligned
to and genetically mapped as well. As long as distance values from
a few thousand tags are collected, ML can be performed to select
those accurately mapped tags as pan-genome anchors. We also
note that this may be an effective way to improve the reference
genome, since these anchors provide genetic linkage between
different scaffolds/contigs. Researchers will be able to connect the
scaffolds/contigs using these genetic links, instead of developing
many mapping populations to producing genetic markers.

The 4.4-M sequence anchors developed in this study will aid
the construction of an accurate maize pan-genome that can then
be used to characterize CNVs. In response to increasing demand
for food security and biofuels, more species will be sequenced
in the near future and added to the 95 available plant
genomes (CoGepedia, https://genomevolution.org/wiki/index.php/
Sequenced_plant_genomes). It is anticipated that characterizing
SNPs and SVs via pan-genome projects and evaluating their
genetic effects will be very important for plant genetic research
over the coming decade37. Since many plants have complex
genomes, these approaches we developed here will be quite
valuable to improve genome assembly and explore genomic
diversity in many other crops.
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Methods
Sample collection and genotyping. A broad collection of maize inbred lines were
sampled in this study (Supplementary Data 3), including the NAM population38,
maize inbred lines conserved at the USDA Plant Introduction extension in Ames
(IA) or the Ames association panel29, maize inbred lines from the International
Maize and Wheat improvement Center (CIMMYT) that were genotyped as part of
the in Basic Research to Enable Agriculture Development (BREAD) project,
Chinese-NAM (CN-NAM) population and the Goodman association panel39.
Total genomic DNA was isolated from etiolated seedlings or leaf punches of all
inbred lines using Qiagen Kits. The reduced representation libraries were
constructed and sequenced following the GBS protocol16. DNA samples were
digested with the restriction enzyme ApeKI, and then sequenced in on the Illumina
Genome Analyzer or HiSeq 2000. Multiplexing of 96 or 384 samples was used on
each flow cell lane.

Raw sequence reads were processed by GBS reference pipeline in TASSEL
version 3.0 (refs 27,28). In this pipeline, Illumina reads are trimmed to 64 bp.
Identical 64-bp reads are considered to be a GBS tag (Supplementary Fig. 1). The
tags with a minimum read count of 20 were used for genotyping. These tags were
aligned to 4.38 million unique positions in B73 reference and covered B12% maize
genome. Population genetic-based SNP filters were applied to filter putative SNPs.
Genotypes were called using likelihood ratio test on potential genotypes27. The
missing genotypes were imputed using an algorithm searching closest neighbour in
a window, allowing for 5% mismatch. About 10% of genotypes were unimputed,
since the requirements were not met. For any two inbred lines in the data set,
B85% SNPs are nonmissing in both. About 1% SNPs are both missing in the two
lines. The details of genotyping and imputation can be seen in a previous study29.

Genetic mapping of GBS tags. Both GWAS and joint linkage mapping30

approaches were used to map GBS tags. The presence and absence of each tag was
treated as a trait to be mapped on the anchor map of 681,257 SNPs (Supplementary
Fig. 2). In the GWAS mapping, all of maize inbred lines were used. A binomial test
was applied to detect the significant associations with SNPs. In the binomial
distribution XBB (n, p), where n is the intersection count of a tag and a SNP, p is
the MAF of a SNP. A tag mapped to a SNP would be nonrandomly linked to one
allele and generate a low P value. A value of 1E� 6 was set as the threshold of
GWAS. The position of a SNP with lowest P value was taken as the position of the
tag. The joint linkage mapping was conducted in 5,000 NAM recombinant inbred
lines. There were three steps in this mapping approach. First, the same binomial
test was applied in each family to find the NAM families in which the tag was co-
segregated with a SNP (P value o0.05). The SNP with the lowest P value represents
the position of the tag. Second, we grouped the segregating families based on the
chromosome where the tag was mapped. Third, the group with most segregating
families was used to remap the tag to a higher resolution (P value o0.05).

It should be noted that mapping 26-M tags on nearly 700-k SNPs is extremely
computationally expensive; therefore,we used several tactics to speed up the
process. (1) Tags with a minimum count of 30 were used for mapping; (2) the
population structure was not controlled for in GWAS mapping, which was a
balance choice between speed and accuracy; (3) since the ‘trait’ and SNPs are all
binary, they were compressed into bit sets for much higher speed by bit operation.
These tactics reduced the computation time down to B27,000 central processing
unit (CPU) hours, which became feasible while using clusters.

Model training and prediction of mapping accuracy. ML models were trained to
predict and select most accurately mapped tags from the initial mapping results.
We aligned the 26-M tags to B73 reference genome using Bowtie2 with very-
sensitive-local option40. The tags with only one hit, which are also a perfect match
to the reference, were called UABTs. A total of 30,000 UABTs were included
in the training data set. The distance between physical position and genetic
position of a tag was taken as the dependent variable. Positions were transformed
with an equation of pos¼ chromosome� 1E9þ pos. A total of 16 attributes
(Supplementary Table 1) were selected mostly based on biological considerations.
The values of these attributes were normalized by box-cox transformation.
Using Waikato Environment for Knowledge Analysis32, ML models (for
example, decision tree, support vector machine and association rule) were tested
(Supplementary Table 2). M5Rules had the best performance on the basis of the
r2 and the mean error between predicted distance and observed distance
(Supplementary Fig. 4). Since some tags were mapped only by GWAS or joint
linkage mapping, some tags were mapped by both; we trained three M5Rules
models, M5Rules_G, M5Rules_J and M5Rules_GJ, for the three classes of tags.
Then, accurately mapped tags were to be selected on the basis of prediction
accuracy (Supplementary Table 8). The 4.4-M mapped tags are available at
http://www.panzea.org/dynamic/derivative_data/Lu_etal_2015_NatCommun_
panGenomeAnchors20150219.txt.gz. To make the genetic mapping of GBS tags
and ML filtering more useful for pan-genome projects of other species, this
combined approach is available as a pipeline called Pan-genome Atlas (PanA).
The document can be found at https://bitbucket.org/tasseladmin/tassel-5-source/
wiki/Home.

Population structure and genetic mapping accuracy. A principle component
analysis was performed in all of the maize inbreds using 5,000 randomly chosen

SNPs. The first three principle components (PCs), which explained 31% of total
variance, were arbitrarily chosen to represent the population structure. The
Pearson’s r was calculated between the 30,000 UABTs and the first three PCs. The
values of r were used to as surrogates to indicate how much the presence and
absence of an UABT was influenced by the population structure. The correlation
between mapping accuracy (distance between physical position and genetic posi-
tion of an UABT) and those surrogates of the population structure were calculated.

Genetic diversity and genetic mapping performance. Two populations were
selected from NAM and the Ames association panel. The population size was 400
for each. The selected NAM population comes from two NAM families, including
B73XB97 and B73XOH7B. The selected Ames population was randomly chosen
from Ames association panel, which were supposed to have much higher genetic
diversity than in NAM. A total of 500,000 UABTs were genetically mapped in each
population. Mapping results from 30,000 UABTs were used in ML training and
prediction. The genetic mapping and ML modelling were performed in PanA.

Assessment of sequence alignment accuracy in maize. To obtain a general
picture of alignment accuracy in maize, 95 diverse maize inbreds that were selected
perform the alignment accuracy evaluation. These samples were digested by the
restriction enzyme ApeKI to guarantee that the sequences would overlap with
4.4-M mapped tags. The digested samples were sequenced using Illumina MiSeq
2� 250 bp sequencing. Using the Smith–Waterman algorithm, the paired reads
that had overlap were contiged together if the overlap was longer than 20 bp
and the identity was greater than 90%. In this way, fragments with various length
were generated and aligned to the B73 reference genome using Bowtie2 with
very-sensitive-local option without imposing a mapping quality threshold. Those
fragments whose first 64 bp could be found in 4.4-M anchors were used to compare
their genetic position and physical position (Supplementary Fig. 10). If the physical
position was not within the 10-Mb region of genetic position, the alignment was
arbitrarily considered to be incorrect.

Identifying PAV tags. The 4.4-M mapped tags were aligned to the 10-Mb region
of B73 reference around their genetic positions using Bowtie2 with very-sensitive-
local option. For each tag, if there was not any alignment found, the tag would be
considered as a PAV tag. Owing to the fact that partially methylation-sensitive
enzyme ApeKI is used in GBS and differential methylation exists across the gen-
ome, to calculate the distribution of PAV tags along the chromosomes, the number
of PAV tags were normalized by the number of B73 tags in 1-Mb windows.

Validation of PAV tags by CML247 de novo assembly. We recently started
sequencing and assembling maize inbred line CML247 as a pilot project for the
maize pan-genome. The idea was to find an optimized approach for maize de novo
assembly by testing different sequencing platforms and assembly algorithms. Then,
this optimized approach can be replicated in many other diverse maize inbred
lines. Since maize has a complex genome, which challenges high-quality assembly,
the 4.4-M sequence anchors are used as a quality control for these assemblies
(Supplementary Fig. 13). So far, the NRGENE approach (http://www.denovoma-
gic.com) works well. Two paired-end PCR-free libraries, including 500 and 800 bp
insert sizes, and three mate pair libraries including 3–5, 5–7 and 8–10 kb insert
sizes, were sequenced to 130� of CML247 genome using Illumina HiSeq 2500 and
MiSeq. The N50 of NRGEGE CML247 assembly is 312 kb. The raw sequence data
are available at http://www.panzea.org/db/feedback/CML247.

The 4.4-M sequencing anchors, including PAV tags, were aligned to NRGENE
CML247 assembly using Bowtie2. A total of 200 high-quality scaffolds were used
for PAV tags’ validation. The total length is 201 Mb. The minimum length of these
scaffolds is 72 kb. In these scaffolds, 495% of aligned sequence anchors on each
scaffold were from the same genomic region (Supplementary Fig. 13). The CML247
scaffolds were aligned to the B73 reference to find their orthologous regions. Then,
each scaffold was aligned to its orthologous region using BLAST41 with default
parameters, in which the word size is 11 bp. Since the short word size led to large
number of small and spurious alignments, we used the following strategy to keep
only orthologous alignments. For each scaffold and its B73 orthologue, 10
alignments with the highest score were selected as backbone alignments, which
were alignments from large fragments and showed synteny between B73 and
CML247. Any alignments crossed these 10 backbone alignments were removed
(Supplementary Fig. 14). If a PAV tag on scaffolds did not have overlap with those
aligned fragments on scaffolds, it would be considered as a valid PAV tag.

GWAS on phenotypic traits. All of the 681,257 GBS SNPs were used in the
GWAS. Phenotypic data of Ames association panel (2,951 inbred lines) and
Goodman association panel (282 inbred lines) were collected from multiple
locations over 3 years. A total of 2,661 inbred lines have available data of four
complex traits, including days to silk, days to anthesis, plant height and ear height.
GWAS analysis of these traits were performed on the basis of compressed mixed
linear model42.
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