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A B S T R A C T   

To investigate the chemical composition and interfunctional differences among the endosperm of Gleditsia 
species seeds (EGS), this study was conducted to determine the metabolic profiles in three EGSs based on the 
metabolomics approach of UPLC–ESI–MS/MS. A total of 505 metabolites were identified, of which 156 me
tabolites of EGS were annotated as pharmaceutical ingredients for six human diseases. A total of 110, 146, and 
104 metabolites showed different accumulation patterns in the three control groups, LEGS vs. MEGS, LEGS vs. 
SEGS, and MEGS vs. SEGS, respectively. The metabolic profiles of EGSs differed significantly, and KEGG 
annotation and enrichment analyses indicated aminoacyl-tRNA biosynthesis as the key metabolic pathway of 
EGSs. This study enriches the understanding of the chemical composition of EGSs and provides theoretical 
support for the development and application of EGSs.   

1. Introduction 

The metabolites contained in plants can be categorized into primary 
metabolites such as amino acids, fatty acids, carbohydrates, and nucle
otides and secondary metabolites such as flavonoids, terpenoids, phe
nylpropanoids, and alkaloids (H. Li et al., 2021). Primary and secondary 
metabolites of plants not only play an important role in the growth and 
development of plants but also have nutritional and medicinal values, 
which are of significance in promoting human health (Hu, Wang, Hu, & 
Xie, 2020; Wu et al., 2022). For example, flavonoids are widely found in 
coloured fruits, leaves, and flowers and can precipitate pigments, 
regulate seed dormancy, and resist biotic and abiotic stresses (Nix, Paull, 
& Colgrave, 2017). Polyphenols are known to promote gastrointestinal 
digestion, lower blood pressure, increase body resistance, and work with 
antioxidants such as vitamin C, vitamin E, and carotenoids to scavenge 
harmful substances such as free radicals from the body (Musolino et al., 
2022). Alkaloids are a class of nitrogenous, alkaline organic compounds 
found in nature and have a wide range of pharmacological activities, 
such as anticancer, cardiotonic, analgesic, and anti-inflammatory ac
tivities (Aryal et al., 2022; Ren, Zhang, Wang, Chen, Yang, & Jiang, 
2022). The legume (Leguminosae) group is the third largest family of 
flowering plants, is distributed in several climatic zones worldwide and 
is an important source of food and medicine. The seeds of leguminous 
plants are rich in flavonoids, alkaloids, phenolic acids and saponins, 

which are considered a good source of various nutrients and bioactive 
metabolites and play important roles in disease prevention and treat
ment (Farag, Sharaf El-Din, Aboul-Fotouh Selim, Owis, & Abouzid, 
2020). 

Gleditsia sinensis Lam. is a tall deciduous tree that belongs to the 
Gleditsia Linn in the family Leguminosae and is widely distributed in areas 
including East Asia, eastern North America, and South America. The 
plant is dioecious, with female trees having strong pod-bearing ability 
and a long fruiting period (Sciarini, Palavecino, Ribotta, & Barrera, 
2023). Currently, there are 14 species of Gleditsia species in the world, 
and eight are native to China. Studies have shown that Gleditsia species 
seeds can be used as expectorants and diuretics (Harauchi, Kajimoto, 
Ohta, Kawachi, Imamura-Jinda, & Ohta, 2017) and have some anti- 
obesity effects (Lee et al., 2018). The endosperm of Gleditsia species 
seeds (EGS), also known as Zaojiaomi in China, is an important source of 
galactomannans, which are high in carbohydrates and low in proteins 
and fats and have high economic and nutritional value (Qin, Liu, Cao, 
Wang, Ren, & Xia, 2022). The structure of EGS is similar to that of guar 
gum and acacia carrageenan, which can be used as thickeners, stabi
lizers, and flocculants (Sun, Li, Wang, Sun, Xu, & Zhang, 2017). Gal
actomannans derived from EGS, on the other hand, show good 
functional properties and the potential to alleviate chronic functional 
bowel diseases and prevent obesity (Takahashi et al., 2009; Thombare, 
Jha, Mishra, & Siddiqui, 2016) and can be used as a novel phytocolloid 
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material for food applications (Cerino, Castro, Richard, Exner, & Pen
siero, 2018; Loser, Iturriaga, Ribotta, & Barrera, 2021). Meanwhile, 
Gleditsiae sinensis semen is listed in the Traditional Chinese Medicine 
Systems Pharmacology Database and Analysis Platform (TCMSP), which 
suggests that EGS has good potential for pharmaceutical ingredient 
mining. However, at present, studies on the metabolic characterization 
and chemical composition of EGSs are very limited. In addition, 
different parts of Gleditsia species plants (spines, fruits, leaves, seeds, 
etc.) can be used as sources of different traditional Chinese medicine 
components and thus have very similar chemical compositions. There
fore, suitable methods are needed to characterize and evaluate the 
chemical constituents contained in EGSs. 

Widely targeted metabolomics has been extensively used in medi
cine, agronomy, and food as a proven method to assess the value of food 
with high efficiency, convenience, and accuracy (D. Wang et al., 2018). 
Network pharmacology is a comprehensive computer method used to 
establish a “protein compound/disease gene” network to reveal the 
synergistic therapeutic effects of traditional drugs. It has become a 
commonly used method in modern drug discovery processes (R. Zhang, 
Zhu, Bai, & Ning, 2019). Network pharmacology approaches, on the 
other hand, have been successfully applied in many studies to predict 
the active ingredients of traditional Chinese medicines and major 
disease-fighting active pharmaceutical ingredients (Dai et al., 2022; 
Wang et al., 2020; Zhang et al., 2022). In the present study, the 
metabolite types and contents in three EGSs were compared using 
UPLC–ESI–MS/MS in combination with a network pharmacology 
approach. Thus, the chemical ingredients of EGS were further investi
gated to provide valuable information for future chemical studies of EGS 
and the functional development of food products. 

2. Material and methods 

2.1. Plant materials 

The EGS from Gleditsia sinensis Lam. (large endosperm of Gleditsia 
species seeds, LEGS), G. japonica var. delavayi (medium endosperm of 
Gleditsia species seeds, MEGS), and Gleditsia japonica (small endosperm 
of Gleditsia species seeds, SEGS) were provided by Zhijin Zaofu Wanjia 
Industrial Co., Ltd. (Bijie, China), and three EGS varieties were identified 
by the institution of Forestry, Guizhou University. Chromatographic 
purity methanol, acetonitrile, and formic acid were purchased from 
CNW Technologies (Shanghai, China). 

2.2. Sample preparation and extraction 

The samples were pulverized with a mixer mill at 60 Hz for 240 s. 
After each sample was accurately weighed, 50 mg of the sample was 
combined with 700 μL of extraction solution (methanol/water = 3:1, 
cryopreservation at − 40 ℃, containing the internal standard) and 
transferred to a centrifuge tube. After vortexing for 30 s, the extract was 
homogenized at 35 Hz for 4 min and sonicated in an ice-water bath for 5 
min, and the homogenization and sonication were repeated three times, 
followed by overnight extraction on a shaker at 4 ℃ and centrifugation 
at 12000 rpm (RCF = 13800 (×g), R = 8.6 cm) for 15 min. The super
natant was filtered through a 0.22 μm micropore membrane, diluted 10- 
fold with a methanol/water mixture (v:v = 3:1, containing internal 
standard), vortexed for 30 s and transferred to 2 mL glass vials, and 100 
μL of each sample was taken for use in the quality control (QC) cuvette. 
Samples were stored at − 80 ℃ for UHPLC–MS analysis. 

2.3. UPLC conditions and ESI-Q TRAP-MS/MS 

A UPLC–ESI–MS/MS system (UHPLC, EXION LC system, Shanghai, 
China; MS, using Sciex QTrap 6500+, Shanghai, China) was used to 
analyse the substances extracted from EGS samples. The operational 
parameters and specifications were as follows (Zha, Cai, Yin, Wang, Li, 

& Zhu, 2018): mobile phase, eluent A (0.1 % formic acid), eluent B 
(acetonitrile containing 0.1 % formic acid). An HSS T3 chromatographic 
column (pore size 1.8 μm, length 2.1 mm 100 mm) was used with a 
column temperature of 40 ℃. The temperature of the autosampler was 4 
℃, the injection volume was 2 μL, and the flow rate was 400 μL/min. 
The analytical gradient program was as follows: the initial conditions 
were 98 % A, 2 % B, and held for 0.5 min; the linear gradient was 
converted to 50 % A, 50 % B at 10 min; the linear gradient was converted 
to 5 % A, 95 % B at 11 min, and held for 2 min; and the linear gradient 
was adjusted to 98 % A, 2 % B at 13.1 min and held for 2 min. A, 2 % B, 
and held until 15 min. The effluent was delivered to the ESI-Q-TRAP-MS 
system. 

Linear ion trap (LIT) and triple quadrupole (QQQ) scans were ob
tained on a 6500 QTrap UPLC/MS/MS system coupled with an ESI 
Turbo Ion Spray interface operating in positive and negative ionization 
modes and processed by Analyst 1.6.3 software (AB Sciex). Mass spec
trometry and ESI source conditions were as described previously (Shi 
et al., 2019): ion source, Turbo Spray; source temperature, 400 ℃; ion 
spray voltage (IS), +5500 (positive ionization mode)/− 4500 V (nega
tive ionization mode); ion source gas I (GSI), gas II (GS II), and curtain 
gas (CUR) of 60, 30, and 35 psi, respectively; and collision gas, high. 
Instruments were tuned and quality calibrated with 10 μmol/L and 100 
μmol/L polypropylene glycol solutions in QQQ and LIT modes. QQQ 
scans were obtained as multiple reaction monitoring (MRM) experi
ments. The clustering potential (DP) and collision energy (CE) were 
optimized for individual MRM jumps. A specific set of MRM transitions 
was monitored for each period based on the elution of metabolites 
during this period. 

2.4. Qualitative and quantitative metabolites analysis 

A combination of self-built software databases and public metabolite 
databases (MassBank, HMDB, ChemBank, PubChem, and METLIN) was 
used to qualitatively annotate metabolites in EGS using primary and 
secondary MS data (Cao et al., 2022; Z.-M. Zhang et al., 2015). After 
eliminating initial interferences from nontarget ions, fragment ion in
formation with desired characteristics was obtained by QQQ. After 
obtaining the basic mass spectrometry data of the metabolites, the 
relative amount of each metabolite in different samples was determined 
by the chromatographic peak area; the mass spectrometry data were 
integrated and corrected using MultiaQuant software. 

The Z score-normalized metabolic data of all EGS and QC samples 
were subjected to multivariate statistical analyses, including principal 
component analysis (PCA), hierarchical clustering analysis (HCA), and 
orthogonal partial least squares-discriminant analysis (OPLS-DA), using 
R software. Differentially abundant metabolites were screened during 
two-by-two comparisons, and OPLS-DA was performed using log2- 
transformed metabolic data, with the criteria set at a P value < 0.05 
for Student’s t-test (STT) and a threshold variable importance projection 
(VIP) > 1. OPLS-DA was verified by 200 alignment model stability, and 
finally, the Kyoto Encyclopedia of Genes and Genomes (KEGG, https: 
//www.kegg.jp/kegg/) was used for labelling and enrichment analysis 
of differentially abundant metabolites. 

2.5. Identification of key herbal active ingredients in EGS 

The metabolites identified from EGS by the UPLC–ESI–MS/MS sys
tem were further queried in TCMSP (version 2.3, https://old.tcmsp-e. 
com/tcmsp.php). Metabolites were considered key active ingredients 
belonging to EGS in TCMSP when they had oral bioavailability (OB) ≥5 
% and drug-likeness (DL) ≥0.14 (Xia et al., 2023). Relevant targets and 
diseases were included in the TCMSP database annotations. 

2.6. Identification of anti-human disease drug components in EGS 

First, all identified metabolites were queried in the CancerHSP 
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database in the TCMSP analysis platform (Ru et al., 2014) to detect 
anticancer/tumour components. Second, five disease names, “Alz
heimer’s disease”, “analgesics”, “inflammation”, “pain (unspecified)”, 
and “arthritis”, were individually inputted in the disease name menu 
under the TCMSP database to search for ingredients related to resistance 
to each of the diseases. Finally, the metabolites identified by 
UPLC–ESI–MS/MS analysis were compared with the anti-disease-related 
components obtained to identify the effective drug components against 
diseases in EGS. 

2.7. Statistical analysis 

Comparisons of relative levels of EGS differentially abundant me
tabolites were performed using Duan multiple comparisons in IBM SPSS 
Statistics (version 28). 

3. Results and discussion 

3.1. Identification of EGS metabolites 

In this study, the composition of relevant metabolites in three 
different species (three replicates per sample) of EGS was determined by 
UPLC–ESI–MS/MS widely targeted metabolomics. Total ion current 
(TIC) analysis of QC samples was used to check the consistency of the 
metabolite extraction and assay. The TIC curves and metabolite assay 
results overlapped (Fig. S1A and B). When the same sample was iden
tified at different times, the retention time and peak intensity remained 

constant, indicating signal stability (R2 close to 1, Fig. S1C). After 
quality assessment, 505 metabolites were initially identified, which 
could be classified into 28 categories, including 57 alkaloids, 50 phe
nols, 39 amino acids and derivatives, 39 terpenoids, 34 flavones, 27 fatty 
acyls, 19 coumarins, 18 nucleotides and derivatives, 11 phenyl
propanoids, 79 others, etc., and detailed information of all metabolite 
identifiers is shown in Table S1. The nine samples could be divided into 
three groups by assessing the clustered heatmap (Fig. 1C), and the 
relative contents of MEGS metabolites were significantly different than 
those of LEGS and SEGS, indicating that there was a significant disparity 
in metabolites among the three EGSs that were affected by genetic 
variation. 

3.2. Screening of key active herbal components in EGS 

There is a lack of research on the nutritional value and functional 
attributes of EGS, which greatly limits its potential application as a food. 
Therefore, further screening of active ingredients related to traditional 
Chinese medicine based on EGS metabolites can help to reveal the 
chemical basis of EGS-related health functions and their potential value. 
Based on this, we conducted a query in the TCMSP database for active 
ingredients in EGS that can promote human health. The results showed 
that among 505 metabolites identified, a total of 221 were found to be 
chemical components of traditional Chinese medicine in the TCMSP. 
According to the screening criteria of OB ≥5 % and DL ≥0.14, 93 of the 
221 metabolites detected were found to be key active ingredients used in 
TCMSP. In particular, 40 of these 93 metabolites met the screening 

Fig. 1. Analysis and identification of metabolites in EGS. A: Pictures of LEGS, MEGS, and SEGS from left to right. B: Compositional analysis of metabolites. The types, 
amounts, and proportions of all identified metabolites are shown above. C: HCA analysis of three EGS metabolites. Each sample is represented by a column and each 
metabolite is shown in a row. Red represents high level and blue represents low level. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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criteria for potential drug candidates (OB ≥30 %, DL ≥0.18), and these 
40 metabolites belonged to the core key active ingredients in TCMSP 
(Table S2). These 93 key active ingredients included 23 flavonoids, 17 
terpenoids, 8 phenols, 8 steroids and steroid derivatives, 6 alkaloids, 6 
coumarins, 6 fatty acyls, 4 nucleotides and derivatives, 2 lignans, 1 
phenylpropanoid, 1 carbohydrate, 1 organooxygen compound, 1 lipid, 
and 9 others; 40 core key active ingredients included 10 terpenoids, 9 
flavonoids, 8 steroids and their derivatives, 4 coumarins, 2 phenols, 2 
fatty acyls, 1 lignin, 1 nucleotide and its derivative, and 3 others 
(Table S2). The results showed that EGS is rich in key active ingredients 
that can promote human health. Among these active ingredients, fla
vonoids and terpenoids are the main active substances exerting health 
effects in EGS, while other types of metabolites, such as steroids and 
their derivatives, phenols, alkaloids, coumarins, and fatty acyls, also 
have important health-promoting effects. Among these 93 key compo
nents, 68 metabolites were associated with 249 target proteins and 
corresponded to 304 diseases. Meanwhile, 40 metabolites that met the 
screening criteria for potential drugs were associated with 160 target 
proteins and 263 diseases (Ru et al., 2014). These diseases mainly 
include cancer/tumour, Alzheimer’s disease, analgesics, inflammation, 
pain (unspecified), and arthritis. The results suggest that these screened 
metabolites are key or core active components of EGS that are relevant 
to human health. In addition, 25 metabolites did not have corresponding 
target proteins and diseases, but nine metabolites had very high DL 
values (DL ≥0.65), especially cycloeucalenol, ganoderic acid F, rhoifo
lin, dipterocarpol, talatisamine, ganoderol A, taraxerol, and seven me
tabolites had extremely high DL values (DL ≥0.72), including the 
flavanoid rhoifolin, the alkaloid talatisamine, and five terpenoid 

metabolites(Table S2). These nine metabolites have important human 
health-promoting effects and have good potential for novel drug 
development. 

3.3. Screening of active pharmaceutical ingredients for six human 
diseases in EGS 

Six diseases identified in the screen, namely, cancer/tumour, Alz
heimer’s disease, analgesics, inflammation, pain (unspecified), and 
arthritis, pose serious threats to human health. Based on the above key 
active ingredient labelling results, these six diseases are also the main 
diseases associated with the metabolites of the core key active sub
stances in EGS. However, whether the key active ingredients identified 
above are also active pharmaceutical ingredients against these six dis
eases needs to be further analysed. 

To further identify the key disease-resistant components in EGS that 
are active against these six diseases, we queried the TCMSP database for 
505 metabolites identified in EGS (Ru et al., 2014). The results showed 
that a total of 156 metabolites corresponding to at least one disease were 
identified in the three EGSs. These 156 metabolites included 27 flavo
noids, 22 amino acids and derivatives, 16 phenols, 10 terpenoids, 9 
phytohormones, 7 alkaloids, 6 phenylpropanoids, 6 carbohydrates, 6 
steroids and steroid derivatives, 5 coumarins, 5 fatty acyls, 4 organo
oxygen compounds, 3 organic acids and derivatives, 2 alcohols and 
polyols, 2 lipids, 1 benzene and substituted derivative, 1 carboxylic acid 
and its derivative, 1 lignan, 1 nucleotide and its derivative, and 22 
others (Table S3). Among them, there were 47, 56, 54, 126, 54, and 54 
metabolites corresponding to cancer/tumour, Alzheimer’s disease, 

Fig. 2. PCA and OPLS-DA analyses of the three EGSs. A: Plot of PCA scores for LEGS, MEGS, SEGS, and QC; different colour represent different groups: red = LEGS 
sample; purple = MEGS sample; blue = SEGS sample; and orange = QC sample; the horizontal and vertical coordinates denote the first and the second principal 
components PC1 and PC2, respectively. B, C and D are plots of OPLS-DA model scores for LEGS vs. MEGS, LEGS vs. SEGS, and SEGS vs. MEGS, respectively. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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analgesics, inflammation, pain (unspecified), and arthritis, respectively. 
Notably, some metabolites confer resistance to multiple diseases; for 
example, 16 metabolites, such as apigenin, confer resistance to all six of 
these diseases, 35 metabolites, such as arachidonic acid, confer resis
tance to five diseases, curcumol confers resistance to four diseases, 
ellagic acid and isopulegol confer resistance to three diseases, and 7 
metabolites, such as biochanin A, confer resistance to 2 diseases 
(Table S3). These 156 metabolites also contained 55 active substances of 
TCMSP described above, suggesting that these metabolites may be the 
most critical active pharmaceutical ingredients in EGS that function to 
protect against the six human diseases mentioned above. However, the 
specific efficacy of these metabolites must be further verified. 

3.4. PCA and OPLS-DA of three EGSs 

PCA achieves the goal of analysing the internal structure of 
numerous variables using a small number of principal components (Qian 
et al., 2023). In the PCA score plot, the cumulative contribution of the 
two principal components (PC1 35.20 % × PC2 17.90 %) amounted to 
53.10 %. As shown in Fig. 2A, LEGS, MEGS, and SEGS could be easily 
separated, indicating that the metabolites of the three varieties of EGS 
differed significantly and that the three biological replicates of each 
variety formed a tight cluster. The experimental results showed that the 
sample material was sufficiently reproducible and suitable for subse
quent qualitative and quantitative analyses Fig. 3. 

In this study, all metabolites of EGSs were evaluated using a two-by- 
two comparison method based on the OPLS-DA model to determine the 
differences between LEGS and MEGS (Q2 = 0.867, R2 X  = 0.557, R2 Y 

= 1; Fig. 2B), LEGS and SEGS (Q2 = 0.881, R2 X  = 0.579, R2 Y = 1; 
Fig. 2C), and MEGS and SEGS (Q2 = 0.898, R2 X  = 0.489, R2 Y = 1; 
Fig. 2D). The colours and shapes of the scattered dots indicate different 
groupings; The closer the distribution of sample dots, the more similar 
the types and levels of metabolites in the samples; Conversely, the 
further away the samples, the greater the differences in their overall 
metabolic levels. The samples were all within the 95 % confidence in
terval. The overall distribution trend of the samples can be reflected by 
looking at the PCA score plots of all the samples. This shows that these 
models are reliable and stable and can better explain the metabolic 
changes of the three varieties, which can be used for further screening of 
metabolites using VIP analysis. The OPLS-DA score plots showed that 
the EGS of the three varieties were separated, which indicated that the 
metabolic phenotypes of the three varieties differed significantly. 

3.5. Screening and analysis of key differentially abundant metabolites of 
the three EGSs 

In this study, we compared LEGS vs. MEGS, LEGS vs. MEGS, and 
MEGS vs. SEGS using P value < 0.05 and VIP >1 as the screening con
ditions and identified the most meaningful differentially abundant me
tabolites from 505 metabolites. There were a total of 110 differentially 
abundant metabolites between the LEGS and MEGS groups (1 upregu
lated and 109 downregulated, Fig. S2A), 146 differentially abundant 
metabolites between the LEGS and SEGS groups (2 upregulated and 144 
downregulated, Fig. S2B), and 104 differentially abundant metabolites 
between the MEGS and SEGS groups (31 upregulated and 73 down
regulated, Fig. S2C). The differentially abundant metabolites in the 

Fig. 3. K-means clusters of the expression profiles of the three EGS differentially abundant metabolites. The y-axis represents the normalized metabolite content and 
the x-axis represents the different samples. 
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three control groups could be categorized into 24 (LEGS vs. SEGS 
group), 21 (LEGS vs. MEGS group), and 22 (MEGS vs. SEGS group) 
different categories. Among them, the most significantly upregulated 
metabolite in the LEGS vs. MEGS group was 3-ethoxy-4-hydroxybenzal
dehyde, and the most significantly downregulated was meloside A 
(Fig. S2D); The most significantly upregulated metabolite in the LEGS 
vs. SEGS group was L-homocitrulline, and the most significantly 
downregulated was L-isoleucine (Fig. S2E); the most significantly 
upregulated metabolite in the MEGS vs. SEGS group was kynurenic acid, 
and the most significantly downregulated metabolite was N1-methyl-2- 
pyridone-5-carboxamide (Fig. S2F). The total number of differentially 

abundant metabolites in the three EGSs was 29, including 10 amino 
acids and derivatives, three alkaloids, two flavonoids, two fatty acyls, 
two phytohormones, one phenol, one indole and derivative, one organic 
acid and derivative, one nucleotide and its derivative, one flavonoid, 
one carboxylic acid and derivative, one aromatic compound, and three 
others. These 29 differentially abundant metabolites may be potential 
biomarkers for EGS. 

In addition, the highest percentage of differentially abundant me
tabolites in the LEGS vs. SEGS group, LEGS vs. MEGS group, and MEGS 
vs. SEGS group were amino acids and derivatives, which accounted for 
19.80 %, 24.70 %, and 14.50 %, respectively, and the distribution of 

Fig. 4. KEGG pathway enrichment analysis of three groups of EGS. A-C: KEGG enrichment pathways of differentially accumulated metabolites among groups (LEGS 
vs. MEGS, LEGS vs. SEGS, MEGS vs. SEGS); E-G: differentially accumulated metabolites among groups (LEGS vs. MEGS, LEGS vs. SEGS, MEGS vs. SEGS) of the HMDB, 
PubChem, and KEGG co-enrichment pathways. 
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nucleotides and their derivatives, flavonoids, alkaloids, and phenols also 
significantly differed among the three groups. To further analyse EGS 
metabolites, we classified 194 differentially abundant metabolites into 
nine subclasses based on the K-means method as a way to study the 
trends of the relative contents of metabolites in different subgroups. 
Among these subclasses, subclass 1, subclass 2, subclass 3, subclass 5, 
and subclass 6 all showed higher differentially abundant metabolite 
contents in SEGS than in LEGS and MEGS, while subclass 7 showed the 
opposite trend, and subclasses 4, 8, and 9, had the highest differentially 
abundant metabolite contents in MEGS. The results showed that the 
SEGS had a higher relative content of metabolites than the other two 
EGSs, despite being smaller than the other two in appearance and 
morphology. In addition, a total of 22 TCM active ingredients were 
found in the differentially abundant metabolites of LEGS vs. SEGS, LEGS 
vs. MEGS, and MEGS vs. SEGS, including uridine 5′-monophosphate, 
swertiajaponin, alpha-spinasterol, naringenin, luteolin, and 
pelargonidin-3-O-glucosideisovitexin. These six differentially abundant 
metabolites are key active ingredients and core pharmaceutical active 
ingredients of TCMSP that were retrieved in TCMSP. 

3.6. KEGG analysis of EGS 

The KEGG metabolic pathway database is a powerful tool for meta
bolic analysis and metabolic network studies that graphically illustrates 
various cellular synthesis and degradation processes (S. Li et al., 2018). 
Therefore, KEGG can be used to enrich and analyse differentially 
abundant metabolites in samples of differently coloured particles to 
obtain comprehensive functional information. Differentially abundant 
metabolites in the LEGS vs. MEGS group, LEGS vs. SEGS group, and 

MEGS vs. SEGS group were involved in 51, 57, and 39 pathways, 
respectively. The first 15 metabolic pathways in the three control groups 
were mainly associated with “metabolic pathways, biosynthesis of sec
ondary metabolites”, “D-amino acid metabolism”, “biosynthesis of 
amino acids”, “ABC transporters”, “aminoacyl-tRNA biosynthesis”, and 
“biosynthesis of cofactors” (Fig. 4A – C). To find the key pathways with 
the highest correlation with metabolite differences, we further analysed 
the pathways of differentially abundant metabolites. The results showed 
that 41, 47, and 31 metabolic pathways were enriched in the LEGS vs. 
MEGS group, LEGS vs. SEGS group, and MEGS vs. SEGS group, respec
tively, 24 metabolic pathways were enriched in all three groups, and 
differentially abundant metabolites were most significantly enriched in 
the “aminoacyl-tRNA biosynthesis pathway”, followed by “arginine and 
proline metabolism” (Fig. 4D – F). These results suggest that “aminoacyl- 
tRNA biosynthesis” is a key metabolic pathway for all three EGSs. 

3.7. Analysis of biomarkers of the three EGSs 

Flavonoids are an important class of plant metabolites, including 
flavones, flavonoids, flavanols, and chalcones. Many reports have shown 
that flavonoids can prevent diseases such as cardiovascular disease, 
cancer, and inflammation due to their antioxidant activity (Nie et al., 
2020). Based on the above results, the metabolic phenotypes and 
differentially abundant metabolites of the three EGSs were different 
because they were derived from different Gleditsia. To further under
stand the nutritional and functional values among the three EGSs, we 
comparatively analysed the relative contents of metabolites belonging to 
the key active ingredients in TCMSP among the three EGSs. 

Based on these results, we screened a total of 24 compounds with 

Fig. 5. Comparison of the relative contents of 24 key active ingredients of the three EGS in TCMSP. Each relative content is the mean (±SD) of the relative contents of 
the three EGS differentially abundant metabolites. 
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significant differences in relative content from 93 metabolites that met 
the screening criteria for key active ingredients in TCMSP. These 24 
metabolites included 10 flavonoids, 4 nucleotides and their derivatives, 
2 terpenoids, 1 phenylpropanoid, 1 phenol, 1 lignan, 1 alkaloid, 1 car
bohydrate, 1 organooxygen compound, 1 steroid and steroid derivative, 
and 1 other metabolite with the highest proportion of flavonoids (41.67 
%, Table S2). Among these 24 metabolites, 10 had the highest relative 
content in the MEGS, and the remaining 12 had the highest relative 
content in the SEGS. In particular, seven flavonoids, naringenin, luteo
lin, pelargonidin-3-O-glucoside, isovitexin, astragalin, homoorientin, 
and luteolin-6-C-glucoside, had the highest relative content in the 
MEGS. Swertiajaponin, rhoifolin, and kaempferitrin were the three 
species with the highest relative contents in the SEGS (Fig. 5). In terms of 
origin, the LEGS and SEGS were both double-pod EGSs, mainly produced 
in Guizhou, China, while the MEGS was a single-pod EGS, mainly pro
duced in Yunnan, China, and the difference in the growth environment 
greatly affected the quality of the EGS. The relative content of flavonoids 
in the MEGS produced in Yunnan, China was the highest, while the 
content of flavonoids in the SEGS, which is also a two-pod EGS but 
smaller in size, was instead higher than that in the LEGS, so the size of 
the EGS was not positively correlated with the relative content of its 
metabolites. In addition, in combination with the above results (Fig. 2), 
the relative contents of SEGS were higher than those of MEGS in a va
riety of metabolites. Based on 24 different metabolites, we can obtain a 
clearer understanding of the differences in the chemical composition of 
the three EGSs. 

4. Conclusion 

In this study, the differences in 505 metabolites in the metabolic 
profiles of the three EGSs were systematically evaluated using the 
UPLC–ESI–MS/MS metabolomics approach. Among these 505 metabo
lites, 156 active ingredients of metabolites targeting six anti-diseases in 
humans were annotated by network pharmacology methods. PCA and 
OPLS-DA analyses revealed significant differences in the metabolic 
phenotypes of the three EGSs and in the three comparison groups: LEGS 
vs. MEGS, LEGS vs. MEGS, and MEGS vs. SEGS. There were 110, 146, 
and 104 differentially abundant metabolites and a total of 29 differen
tially abundant metabolites in the three groups, respectively. K-means 
clustering analysis showed that SEGS had a higher levels of multiple 
metabolites than LEGS and MEGS. KEGG annotation and enrichment 
results indicated that the aminoacyl-tRNA biosynthesis pathway was the 
key pathway for the synthesis of EGS metabolites. In addition, a total of 
24 metabolites with significant relative content differences were 
screened from the key active ingredients in TCMSP, among which fla
vonoids accounted for the largest proportion, and the relative contents 
of several flavonoids in the MEGS were higher than those in the LEGS 
and SEGS. The present study provides useful information on the chem
ical composition and basis of EGSs with health-promoting functions, 
which is important for understanding the nutritional and functional 
properties of EGSs. 
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