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Summary

Multi-compartment models have been playing a central role in modelling infectious disease
dynamics since the early 20th century. They are a class of mathematical models widely used for
describing the mechanism of an evolving epidemic. Integrated with certain sampling schemes, such
mechanistic models can be applied to analyse public health surveillance data, such as assessing
the effectiveness of preventive measures (e.g. social distancing and quarantine) and forecasting
disease spread patterns. This review begins with a nationwide macromechanistic model and
related statistical analyses, including model specification, estimation, inference and prediction.
Then, it presents a community-level micromodel that enables high-resolution analyses of regional
surveillance data to provide current and future risk information useful for local government and
residents to make decisions on reopenings of local business and personal travels. R software and
scripts are provided whenever appropriate to illustrate the numerical detail of algorithms and
calculations. The coronavirus disease 2019 pandemic surveillance data from the state of Michigan
are used for the illustration throughout this paper.

Key words: antibody; cellular automaton; COVID-19; Markov chain Monte Carlo; risk
prediction; spatio-temporal model; state-space model.

1 Introduction

Coronavirus disease 2019 (COVID-19), an infectious disease caused by severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) (World Health Organization, 2020), has become
a global pandemic that has spread swiftly across the world since its original outbreak in Hubei,
China, in December 2020. As of 27 June 2020, this pandemic has caused a total of 9 801 572
confirmed cases and 494 181 fatalities in more than 200 countries. Being one of the most lethal
communicable infectious diseases in human history, it is expected that the COVID-19 pandemic
will continue spreading in the world population, causing even higher numbers of infections and
deaths in the future. With no effective medical treatments or vaccines currently available, public
health interventions such as social distancing have been implemented in most of the countries
to mitigate the spread of the pandemic. One of the central tasks of statistical modelling is to
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provide a suitable risk prediction model that enables both government and public health workers
to evaluate the effectiveness of public health policies and predict risk of COVID-19 infection at
the national and regional levels. Such information is valuable for governments to assess the pre-
paredness of medical resources (personal protective equipments and intensive care unit beds),
to adjust various intervention policies and to enforce the operation of social distancing.

1.1 Building an Infectious Disease Model

Modelling for infectious diseases has a profound role in informing public health policy across
the world (Heesterbeek et al., 2015; Siettos & Russo, 2013). The outbreak of the COVID-19
pandemic in December 2019 has led to a surge of interest in disease projection that ubiquitously
relies on mathematical and statistical models. A crucial step in modelling disease evolution is to
capture key dynamics of the underlying disease transmission mechanisms from available public
health surveillance data, which enables reliable projection of disease infection into the future.
A prediction model may help us foresee some possible future epidemic/pandemic scenarios and
learn consequent impacts of current economic and personal sacrifices due to various control
measures.

Because of both data quality and data limitations from public surveillance data systems, a
statistical model should take the following features into account in its design and development.
First, a statistical model should be able to make predictions and, more importantly, to quan-
tify prediction uncertainties. Forecasting is known to be a notoriously hard task, which depends
heavily on the quality of data at hand and a certain model chosen to summarise the information
from observed data and then to reproduce information beyond the observational time period.
The chosen model is of critical importance to deliver prediction. This paper concerns a review
of the family of classical compartment-based infectious disease models, which have been the
most widely used mechanistic models to capture key features of infection dynamics. We begin
with the most basic Susceptible–Infectious–Removed (SIR) model to build up the framework
(Section 2), and this three-compartment model is then generalised to have more compartments
to embrace additional features of infection dynamics (Section 3), such as the well-known four-
compartment model, Susceptible–Exposed–Infectious–Removed (SEIR) model, which takes the
incubation period of contagion into account. Given many types of factors potentially influenc-
ing the evolution of an epidemic, a single prediction value is insufficient to be trustworthy
unless prediction uncertainty is reported as part of forecast analysis. Quantification of predic-
tion uncertainty is of critical importance, especially when a forecast is made at an early phase
of an epidemic with limited data. Building sampling variations in infectious disease models
makes a statistical modelling approach different from a mathematical modelling approach. A
clear advantage of a statistical model is that the model parameters, including those in the mech-
anistic model, can be estimated, rather than being specified by certain subjectively chosen prior
information.

Second, the consideration of building sampling uncertainties in the modelling of infectious
disease is a fundamental difference of a statistical modelling approach from a mechanistic
modelling approach known in the mathematical literature of dynamic systems. A mechanistic
model is typically governed by a system of ordinary differential equations, such as the exist-
ing three-compartment SIR model consisting of three differential equations, which explicitly
specifies the underlying mechanisms of an epidemic. This model is assumed to govern an oper-
ational system of disease contagion and recovery or death, which, in reality, cannot be directly
observed. Most of the time, public surveillance data are accessible, which represent only a
few snapshots of the underlying latent mechanistic system of an epidemic. Such gaps may be
addressed by a statistical model that incorporates sampling schemes to explain how observed
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data are collected from the underlying infection dynamics. In turn, prediction uncertainty will
reflect forms and procedures of the chosen sampling schemes specified in the statistical model.
In this paper (Section 5.1), we will introduce the state-space model as a natural and effective
modelling framework to integrate the mechanistic model and sampling schemes seamlessly.

Third, given the scarcity of the available data in public health surveillance systems, the
complexity of a model used for prediction should be aligned with the issue of parameter iden-
tifiability. For example, at the beginning of an outbreak, one should consider a simple model,
which may be expanded over the course of an epidemic's evolution with increased data avail-
ability. To make the specified model useful to answer a certain question of practical importance,
a relevant feature should be included in the model building. For example, in the study of con-
trol measures to mitigate the COVID-19 spread, the model specification should incorporate a
structure that is sensitive to the influence of a preventive policy. In Section 5.2, we will intro-
duce an expansion of the basic SIR model in that time-varying control measures are allowed
to enter. The flexibility of permitting certain modifications is an important property of a model
to be considered in an infectious disease model. In this field, all models need to be tailored
with increased data and more knowledge from the literature as a disease evolves over time.
From this point of view, compartment-based models are superior to other models because, for
example, it is easy to add other compartments, such as an exposure compartment, a quaran-
tine compartment or a self-immunisation compartment, to improve the mechanistic model, to
answer specific question of practical importance and to capture distinctive data features for
better prediction.

Fourth, as the epidemic evolves further, surveillance data become abundant and have higher
resolution. For example, in the USA, the numbers of confirmed symptomatic COVID-19 cases
and case fatalities are recorded for each county. The average county population size in the
USA is approximately 98 000, so a microinfectious model may be built upon county-level
surveillance data to make high-resolution prediction and to assess the effectiveness of control
measures at a community level. This paper (Section 6) will discuss this important extension of
the classical SIR model, essentially a temporal model, to a spatio-temporal model that enables
borrowing of information from different spatially correlated counties in the improvement of
risk prediction. This exemplary model generalisation sets up an illustration from a nation-level
macromodel to a county-level micromodel. The latter is more relevant and useful for local
governments to make decisions of business reopenings and for residents to be aware of local
infection risk.

Last, to make research findings transparent and to place resulting toolboxes into the hands
of practitioners, an open-source software package must be a deliverable. This is indeed a rather
demanding task, as the ease of implementation and numerical stability impact the choice of
statistical models and statistical methods for estimation and prediction. Note that not every
statistical model permits delivery of a user-friendly computing package that is general and
flexible enough to handle various types of data. In this paper, we focus on the discussion of
Markov chain Monte Carlo (MCMC) methods that have been developed in the literature to
perform estimation and prediction for state-space models (Section 5.3).

In this paper, we invite the readers on a journey of surveillance data, modelling, estima-
tion and prediction, implementation and software development. After reading this paper, one
should be able to use existing compartment-based models or to expand them in a study of an
infectious disease epidemic, to improve estimation and/or prediction methods, or create one's
own software. It is our hope that this paper may pave the path to learning, practising or devel-
oping new methodologies that are useful for a broader range of infectious disease modelling
problems.
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1.2 Mechanistic Modelling Approach

Multi-compartment models have been the workhorse for modelling infectious diseases since
the early 20th century. They are a class of mathematical models used for describing the evolu-
tion of masses (in unit of proportions or counts) among the compartments of a varying system,
with broad use cases in epidemiology, physics, engineering and information science. This is
a dynamic system that is typically represented by a system of ordinary differential equations
(ODEs) with respect to time, and, given a starting condition, the mass in each of the compo-
nents is regulated by a function over time. An ODE is a simple mathematical model to depict
a trajectory of a functional trend. One of such examples used extensively in epidemiology is
an exponential growth function, f.t/ D et, which may be viewed as a solution to an ODE
of the form: df .t/

dt
D f .t/, or dy

dt
D y, where y is a function of time t, which obviously is

y D f.t/ D et with an initial condition f.0/ D 1. It is worth pointing out that this simple ODE
explicitly characterises the rate of change (speed or velocity) for function y D f.t/, rather than
directly specifying a form for the function f.t/ itself. Such rate-based characterisation is termed
as ‘dynamics’ in the mathematical literature. Clearly, this ODE is not a statistical model as it
does not provide a law of data generation; in other words, there is no randomness in this ODE
to reflect sampling uncertainties. A typical multi-compartment model consists of several ODEs
for a vector of rates that are linked each other. This is referred to as a dynamic system. The
forms of ODEs are specified according to relevant scientific knowledge about the understanding
of the underlying dynamic mechanism related to an infectious disease.

In the context of infectious disease modelling, the SIR model is the most basic three-
compartment dynamic system that describes an epidemiological mechanism of disease evo-
lution over time (see Figure 1). In brief, the model describes the flow of infection states
or conditions by (i) moving susceptible individuals to the infectious compartment through a
transmission process (the first arrow) and (ii) moving infectious individuals to the removed
compartment (either dead or recovered) through a removal process (the second arrow). At a
given time, the total population N under a study is partitioned into the three compartments,
denoted by S, I and R, and their sizes satisfying SC ICR D N. With a slight abuse of notation,
this notation denotes either the type of compartment or the size of compartment, whichever is
applicable in a given context. In other words, S, I and R are used to denote the sizes of the mutu-
ally exclusive subpopulations of susceptible, infectious and removed individuals, respectively.
This compositional constraint, that is, SC IC R D N, may be interpreted in a term of proba-
bility (or proportion) as follows: at a given time, an individual in the population is either at risk
(susceptible), or under infection by a virus (infectious), or removed from the infectious system
due to recovery or death; that is, �S C � I C �R D 1, where �S, � I and �R are, respectively,
the probabilities of being susceptible, infectious and removed. This presents the primary con-
straint for a multi-compartment infectious disease model. More details of the SIR model will
be described in Section 2.

Often times, the interest for such system lies in the function values over time, but the closed-
form analytical solution for such functions may not exist. For example, to answer the question
of how many individuals will be infected with the COVID-19 by the end of the year 2020 (or

Figure 1. Dynamic system of the basic three-compartment Susceptible–Infectious–Removed model.
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any future time) requires to know a calculator that computes the cumulative numbers of suscep-
tible, infected and removed cases over time from the past to the future. Unfortunately, in reality,
functions relevant to this calculator are usually non-linear, and their exact forms are difficult
to directly specify. In contrast, a set of ODEs helps better understand the disease transmission
dynamics (i.e. traits of infectious diseases) and more conveniently captures their key features,
where each ODE may correspond to one mode of disease evolution. Such ODEs for disease
spread may be regarded as a model for the expected dynamic mechanism, serving as a sys-
tematic component in a statistical model. Numerical methods such as the Euler discretisation
method or the Runge–Kutta approximation method (Stoer & Bulirsch, 2013; Butcher, 2016)
can be used to obtain approximate solutions of such ODEs with given boundary conditions.
Regardless of methods used, solutions to a dynamic system are deterministic functions. We
illustrate a basic mechanistic model of disease spread in the succeeding text. Additional review
from deterministic and mathematical perspectives of multi-compartment models is given by
Anderson et al. (1992) and Hethcote (2000).

Example 1. Consider the SIR model for a hypothetical population with a constant population
of N D 100 residents and an initial condition of 99 susceptible individuals, 1 infectious indi-
vidual and 0 individual removed (either died or recovered). Here 100 subjects may be also
regarded as 100% if the unit of proportion is used in the interpretation. The transitions between
compartments, written in ODEs as in (1), represent population movement from one compart-
ment to another (see Figure 1). We consider an example with ˇ D 0:5 (a rate of moving from S
to I) and � D 0:2 (a rate of moving from I to R), leading to R0 D ˇ=� D 2:5. Here R0 is the so-
called basic reproduction number that quantifies an average number of susceptible individuals
contracting a virus from one contagious person in an environment of no preventive measures.
This is a quite infectious scenario as we will see later. The R script in the succeeding text
shows a scenario of obtaining the solution to the system of ODEs by standard ODE solvers ( R

package deSolve) using the first-order Euler method (not shown) or the Runge–Kutta fourth-
order (RK4) approximation method (Figure 2). Details about the RK4 method can be found in
Appendix A0.1.

As shown in Figure 2, on each of these 100 days, the sum of the three values from the three
curves is always equal to 100, presenting a time-varying redistribution of the 100 individuals.
With no control measures in this hypothetical infection dynamics, the susceptible compartment
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Figure 2. Solution to the ordinary differential equations of the basic Susceptible–Infectious–Removed (SIR) model by
Runge–Kutta fourth-order approximation method.

quickly drops and reaches an equilibrium state after 35 days of the outbreak, and during the
period of first 35 days, the infectious compartment increases to a peak and then decreases to
zero (no contagious individuals in the population) as all currently infected individuals move to
the removed compartment, which is the exit of the system.

Despite relying on a valid infectious diseases mechanism, deterministic approaches have sev-
eral drawbacks: (i) the actual population in each compartment at a given time is never accurately
measured because we only obtain an observation around the mean; (ii) the nature of disease
transmission and recovery is stochastic on the individual level and thus never certain; and (iii)
without random component in the model, it is neither possible to learn model parameters (e.g.
R0) from available data nor to assess prediction uncertainty. The latter is of critical importance
given many unobserved and uncontrolled factors in surveillance data collection. In an early
stage of the current COVID-19 pandemic, the daily infection and death counts reported by
health agencies are highly influenced by the availability of testing kits, reporting delays, report-
ing and attribution schemes, and under-ascertainment of mild cases in public health surveillance
databases (see discussions in Angelopoulos et al., 2020; Banerjee et al., 2020); both disease
transmission rate and time to recovery or death are also highly uncertain and vary by popu-
lation density, demographic composition, regional contact network structure and non-uniform
mitigation schemes (Ray et al., 2020). Hence, statistical extensions are necessary to incorporate
sampling uncertainty in estimation and inference for infectious disease models.

1.3 Organisation

The main focus of this paper will be given to a statistical modelling framework based
on a class of state-space models, in which the systematic component is specified by multi-
compartment infectious disease models while the random component is governed by a certain
sampling distribution of surveillance data. Note that multi-compartment infectious disease
models present a class of classical mechanistic models widely used in practice and that incor-
porating certain sampling distributions allows to make statistical estimation, inference and
prediction with quantification of uncertainties. We organise the paper as follows.

In the first part of the paper, we introduce a class of macromodels. We begin with the most
basic SIR mechanistic model in details, followed by some important extensions used to address
representative scenarios of disease spread and infection evolution. Examples include SEIR
model with an additional compartment of exposure accounting for potential incubation period
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of infection and Susceptible–Antibody–Infectious–Removed (SAIR) model with an additional
compartment of antibody accounting for potential self-immunisation after being infected. Then,
we formally introduce the framework of state-space models, a powerful statistical modelling
approach that aims to model available surveillance data from public health databases with the
utility of the underlying latent mechanistic model.

In the second part of the paper, we introduce a class of micromodels. When an epidemic
continues, data become abundant and of high resolution at community level. For example, the
surveillance data of the COVID-19 pandemic in the USA are collected from individual coun-
ties. This allows building county-level microinfectious models in addition to country-level or
state-level macromodels. Being a certain subgroup analysis, such micromodelling is appealing
to address spatial heterogeneity across the more than 3 000 counties in the USA and conse-
quently improves the prediction accuracy. As far as the spatial modelling of infection dynamics
concerns, we review the classical cellular automata (CA) that is extensively used to describe
person-to-person interacting rules associated with epidemic spreading patterns in a population
via relevant interlocation connectivity functions. This CA may vary spatially and temporally,
which presents a principled way to extend a state-level macroinfectious disease model to
a stratified microinfectious model. In addition to the case of geographical subgroups, other
types of subgroups by, for example, age, race, income, political party and economy, are also
of interest.

Our main objective of this paper is to introduce to readers the basics of infectious disease
models, underlying modelling assumptions, statistical analyses and possible extensions. Exam-
ples will be provided for demonstration purposes. This review targets readers who have had
some statistical training but no prior experience in infectious disease modelling.

2 Basic Three-compartment Models

The first infectious disease model (McKendrick, 1925; Kermack & McKendrick, 1927) is
widely known as the Susceptible–Infectious–Removed model, or in short the SIR model (see
Figure 1). It is a three-compartment model for studying how infectious diseases evolve over
time on the population level. It defines a mechanism of disease transmission and recovery for
a population at risk by a dynamic system of three disjoint states: susceptible, infectious and
removed. We note an important distinction between infectious and infected individuals. Infec-
tious individuals are those who are currently infected and not yet recovered or dead (currently
infected individuals become infectious immediately in the SIR model, although it may not be
true in reality; see the SEIR model in Section 3 where currently infected individuals become
infectious with a delay in time), whereas infected individuals could mean only currently infected
or both currently and previously infected. For clarity, we will refer to currently infected as
infectious so that the three states in the SIR model are mutually exclusive. Individuals in the
susceptible state are not immunised and can become infected by coming into contact with infec-
tious cases, so they are at risk at a given time. Individuals in the infectious state contribute to
the transmission of the disease until they ultimately recover or die, so they are contagious. Indi-
viduals in the removed state include those who either recover or die (without distinction). This
is an exit from the infection system, meaning that once an individual leaves this system (recov-
ers or dies), he or she would never return to the system. This is true for people who die from
the virus but may not be the case for recovered individuals. Thus, in the SIR model, there is a
technical assumption that a recovered individual would become self-immunised to the virus and
no longer impact the disease transmission. A possible way to relax this assumption is to create
two separate compartments corresponding to recovery and death states, respectively, leading to
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a four-compartment infectious disease model. To make our presentation focused on the basic
three-compartment model, we make this self-immunisation assumption in this section.

Given what we said earlier, the current version of SIR is only applicable for diseases, where
long-term immunity can be developed, and does not apply to recurring infectious diseases, such
as the common cold. This is because the disease transmission rate is set as a constant in SIR.
In this section, we introduce the SIR model in its basic deterministic form (Section 2.1), define
reproduction numbers (Section 2.2), elaborate its assumptions (Section 2.3) and properties
(Section 2.4) and present some technical extensions to the basic SIR model. Mechanistic exten-
sions, such as modifications to the three-compartment SIR model to account for additional
components or disease mechanism, are discussed in Section 3.

2.1 Specification of the Susceptible–Infectious–Removed Model

We use S.t/, I.t/ and R.t/ to denote the time-course subpopulation sizes (i.e. the number
of individuals) distributed into each of the three compartments at a given time t, where t is
continuous. Clearly, S.t/C I.t/C R.t/ D N; t � 0, where N is the total population size, which
is a fixed constant. The starting time is denoted as t D 0. The rates of change among these
subpopulations are represented by a system of ODEs:

dS.t/

dt
D �ˇ

S.t/I.t/

N
;

dI.t/

dt
D ˇ

S.t/I.t/

N
� �I.t/;

dR.t/

dt
D �I.t/;

(1)

with ˇ � 0 and � � 0 and initial conditions S.0/ > 0, I.0/ > 0, R.0/ � 0 and S.0/C I.0/C
R.0/ D N. Because at a given time t, the constraint S.t/C I.t/C R.t/ D N implies dS.t/=dtC
dI.t/=dt C dR.t/=dt D 0, which is satisfied by the SIR in Equation (1), these three ODEs
define a dynamic system of three deterministic functional trajectories over time, including the
susceptible trajectory S.t/, the infectious trajectory I.t/ and the recovered trajectory R.t/ for
t � 0. This SIR dynamic system is well posed in the sense that non-negative initial conditions
lead to non-negative solutions of the three functional trajectories. These trajectories collectively
demonstrate the evolutionary mechanism of an infectious disease.

The SIR dynamic system in (1) may be interpreted as follows. Let us consider events occur-
ring instantaneously at time t. In the first ODE, the ratio I.t/=N represents the proportion of
contagious individuals in the population, which may be thought of as a chance that a person
in the at-risk population may run into a virus carrier. If each individual at risk has an inde-
pendent chance to meet a contagious person, then, according to the binomial distribution, the
expected number of susceptible individuals contracting the virus is S.t/I.t/=N. In reality, a per-
son at risk may run into ˇ (say, 2) contagious individuals, leading to a modified chance ˇI.t/=N.
Thus, instantaneously at time t, the system gains an additional number of infected cases equal
to ˇS.t/I.t/=N, and these cases will leave the susceptible compartment to enter the infectious
compartment. Such loss to S.t/ is attributed to the negative sign in the first equation. In the sec-
ond ODE, the first term is the number of new arrivals of contagious individuals and the second
term is the loss of contagious individuals at a rate � who either recover or die and then enter
the removed compartment. The third ODE is based on an absorbed compartment that always
accumulates with new arrivals with no departure cases. In the literature, the transition rate �
represents the fraction of the infectious population that exits the infectious system per unit time.

© 2020 International Statistical Institute.

Infectious Disease Models 469

International Statistical Review (2020), 88, 2, 462–513



For example, � D 0:2 means that the infection compartment will decay (or infectious individu-
als being recovered or dead) at an average rate 20%. In other words, 1=� describes the expected
duration (5 days for � D 0:2) over which an individual stays infectious under the exponential
distribution of time for his or her sojourn.

Variations of the form in (1) are often seen in the literature. Among those, the most important
SIR specification is given as follows. Because the total population N remains constant over
the duration of infection, by dividing both sides of the ordinary differential equations by N,
the rates of change in terms of population proportions can be derived, without changing the
interpretation of ˇ and � . That is,

d�S .t/

dt
D �ˇ�S .t/�I .t/;

d�I .t/

dt
D ˇ�S .t/�I .t/ � ��I .t/;

d�R.t/

dt
D ��I .t/;

(2)

where �S.t/, � I.t/ and �R.t/ are the probabilities (or proportions) of being susceptible, infec-
tious and removed at time t, respectively. Here the probability of being infectious � I.t/ is also
known as the prevalence of disease in the epidemiology literature (see, e.g. Osthus et al., 2017;
Wang et al., 2020). A clear advantage of this alternative form of the SIR model (2) is that all
quantities in the model are adjusted by the population size (which may be allowed to vary in this
model formulation), so results obtained from the analyses of data from multiple populations
with the SIR model are comparable.

Another formulation of the SIR model is presented as dS.t/=dt D �ˇS.t/I.t/, dI.t/=dt D
ˇS.t/I.t/ � � I.t/ and dR.t/=dt D � I.t/, where the population size N is implicitly absorbed into
the parameter of disease transmission rate ˇ, which may be interpreted as a per capita effec-
tive contact in proportion to the population (see, e.g. Johnson & McQuarrie, 2009). Despite
the differences in notations and presentations, they convey the same infection mechanism,
but interpretations need to be given accordingly. Although we use these model specifications
exchangeably in this paper, the form given in (2) is recommended to conduct practical studies.

2.2 Reproduction Numbers

Based on the two parameters ˇ and � in an SIR model, the ratio R0 D ˇ=� is termed as
the basic reproduction number, which captures the expected number of new individuals who
directly contract the virus from one contagious individual in an environment with no preventive
measures. Intuitively, it is a product of the infection rate ˇ and the infectious duration 1=� .
The basic reproduction number R0 does not depend on the distribution of people over the three
compartments and presents a key appealing disease characteristic for describing and comparing
across infectious diseases (see, e.g. Chowell et al., 2004; Ferguson et al., 2006; Khan et al.,
2015; Liu et al., 2020). An epidemic is expected to occur when R0 > 1, or to disappear when
R0 < 1. This is because in the SIR model (1), at the condition of S.t/=N � 1, the former is
equivalent to ˇ > � , leading to dI.t/=dt � .ˇ � �/I.t/ > 0, while the latter implies dI.t/=dt <
0. The earlier interpretation of R0 relies on an implicit assumption that all contacts with a
contagious individual are susceptible, which contrasts with the effective reproductive number.

The effective reproductive number is defined as Re.t/ D R0
S.t/
N

. It represents the expected
number of newly infected individuals who contract the virus directly from a contagious indi-
vidual at time t, given that each susceptible individual has a chance of S.t/=N to meet this
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Figure 3. Effective reproductive number over time for Example 1.

contagious individual. This is not to be confused with the notation R.t/, the removed popula-
tion. In the early outbreak of an infectious disease in a large population, Re.t/ � R0 because
S.t/=N � 1. In contrast to R0, which is only descriptive of the disease itself (or the progression
of disease near time 0), Re.t/ reflects the progression of the infectious disease in a population
at any given time because it directs the sign of dI.t/=dt corresponding to acceleration or decel-
eration of the infection dynamics. This may be seen by the second-order derivative d2I.t/=dt2;
a time, say t�, at which d2I.t�/=dt2 D 0 or the rate dI.t�/=dt reaches a peak, is referred to as a
turning point (see the peak in the middle panel of Figure 2). Hence, R0 is of most interest during
the early phase of an epidemic, whereas Re.t/ is of most interest later on during the controlling
phases of an epidemic. For example, the so-called herd immunity is the natural immunity devel-
oped when an epidemic reaches Re.t/ < 1. In other words, without interventions, it requires
the proportion of susceptible individuals to be no more than 1=R0, or the combined proportion
of infectious and recovered to be at least 1 � 1=R0 in order to contain the spread. As another
example, if an effective vaccine becomes available at time Qt > 0, knowing Re.Qt / allows us to
estimate the remaining proportion of population that needs to be vaccinated in order to con-
trol the epidemic (i.e. for achieving Re.t/ < 1). Figure 3 shows that the effective reproductive
number Re.t/ for Example 1 decreases as the group of susceptible individuals, S.t/, shrinks
over time, eventually reaching below the threshold of 1 at time 19. The value at time 0 is
R0 D Re.0/ D 2:5, while Re.19/ D 1. The time of reaching this threshold also marks a special
time of interest—when the number of active contagious individuals starts decreasing at time 19
after reaching its maximum, as shown in the middle panel of Figure 2.

2.3 Assumptions and Constraints in the Susceptible–Infectious–Removed Model

Like every mathematical model, there are some assumptions and constraints such as bound-
ary conditions that the SIR model needs to satisfy. These restrictions define the circumstances
where the SIR model may be appropriate to use in practice. Although some of them have been
mentioned earlier, for the sake of self-contained summarisation, we list all key assumptions as
follows.

Assumption 1: The population involved in the infection is closed with no additions or leak-
age of individuals, and the size of the population is fixed, say, N. This assumption may be
satisfied by an epidemic that is rapid and short lived, during which disease evolution is
not affected or is minimally affected by vital changes (e.g. natural births or deaths) and
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migration (i.e. immigration and emigration). Technically speaking, the three compart-
ments satisfy the condition of the form:

dS.t/

dt
C
dI.t/

dt
C
dR.t/

dt
D 0; or

d�S .t/

dt
C
d�I .t/

dt
C
d�R.t/

dt
D 0; t � 0:

Assumption 2: Individuals in the population meet each other randomly in that both proba-
bility and degree of interactions with one another remain constant over time, regardless
of geographical and demographic factors. This is a strong assumption of homogeneity for
the SIR dynamic system that is governed by the same transmission and recovery param-
eters ˇ and � . In practice, such a homogeneity assumption may be easily violated. Thus,
modelling with heterogeneous dynamics of infection is an important and active research
area in the literature on infectious diseases.

Assumption 3: One susceptible individual can only develop immunity (or self-
immunisation with antibody against the virus) through infection (i.e. no vaccination). In
other words, as shown in Figure 1, the infectious compartment is the only exit of the sus-
ceptible compartment, and there is no other state to which an at-risk individual would
move next. Once recovered from infection, one becomes immune to the virus for the
remainder of the study period and would not return to be susceptible again. In effect, this
is a rigorous definition of recovered case in the SIR model. From a view of the graphic
representation in Figure 1, this implies that there is no connection from the removed com-
partment to the susceptible compartment, or in other words the removed compartment
is the terminal state of the infection dynamics. It is worth pointing out that to date the
validity of this assumption for the COVID-19 pandemic remains unknown. In the litera-
ture, this condition is assumed for a certain period of time over which risk prediction is
considered.

Assumption 4: The infection has zero latent period in that one becomes infectious once
exposed. This is a key distinction of the SIR model from the SEIR model. Like many
infectious diseases, the COVID-19 has a reported average incubation period of between 4
and 7 days (Li et al., 2020; Pan et al., 2020), which adds some additional complexity in the
modelling of infectious disease dynamics. As a matter of fact, this latency of contagion
is really the timing of being contagious and not that of being symptomatic. Some studies
have found that COVID-19 carriers are most contagious in the early phase of illness prior
to the occurrence of noticeable clinical symptoms (Ip et al., 2017; He et al., 2020). Given
these findings, it is tricky to see how the compartment of exposure for incubation would
be added to extend the SIR model for the COVID-19 pandemic.

Assumption 5: Because the SIR model has constant transmission and recovery parameters
ˇ and � , which are not time varying, the underlying infection is assumed to evolve in fully
neutral environments with no mitigation efforts via external interventions such as a public
health policy of social distancing, effective medication or fast testing kits for diagnosis.
As far as the COVID-19 pandemic is concerned, this is the biggest restriction of the SIR
model, which is not reflective of the reality—almost all countries with reported COVID-
19 cases have issued various non-pharmacological control measures. Many researchers
have proposed solutions to overcome this unrealistic assumption of the SIR model in the
analysis of COVID-19 data (see, e.g. Wang et al., 2020).

Assumption 6: The population size N is large enough to have enough number of incidences,
including the number of infections, the number of deaths and the number of recovered
cases, so that the SIR model parameters can be stably estimated with high precision.
Technically speaking, this is not a model assumption but a condition of sample size for
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statistical power. Because this mechanistic model will ultimately be used for risk projec-
tion, a well-trained model with reliable data is necessary to not only produce an accurate
prediction but also to adequately assess the prediction uncertainty.

Although these six assumptions specifically concern the SIR model, most of these discus-
sions or associated insights are useful to understand the restrictions of SIR model extensions
that will be presented in the remaining sections. Knowing possible violations of a certain
restriction on a multi-compartment model in data analyses gives rise to potential new research
problems for further investigation.

2.4 Properties of the Susceptible–Infectious–Removed Model

To further understand the mechanism of infection governed by the SIR model, we now give a
brief summary of its analytic properties that provide useful guidelines for us to build statistical
models and methods to learn the SIR model from available surveillance data from public health
databases.

Property 1: Strictly speaking, the size of each component population of S.t/; I.t/ and R.t/ is
integer valued; however, they are treated as continuous valued. This slight technical draw-
back vanishes when the probabilities �S.t/, � I.t/ and �R.t/ are used in the SIR model in
(2). More importantly, although the dynamic system defined by the SIR model is contin-
uous over time, available surveillance data are reported at discretised measurements over
discretised time points. For example, most of the COVID-19 public databases update data
on a daily basis, in which ‘a day’ is the unit of time for measurement. Knowing this dis-
crepancy between the continuous time underlying mechanistic model and the sampling
frequency at discrete times for available data is essential to create a statistical framework
to link the SIR model with the data at hand.

Property 2: The SIR model is deterministic and does not contain any probabilistic com-
ponents. It is noteworthy that dynamics and stochasticity are two different mathematical
properties; a dynamic system (e.g. the SIR model) is not necessarily stochastic, while
a stochastic system is not necessarily dynamic. As shown in Figure 2, the compartment
sizes S.t/; I.t/ and R.t/ are time-varying functions with no random fluctuations, which
are completely determined by the model parameters and the initial conditions of the SIR
model. Obviously, this is a limitation of the SIR model when it is applied for data analysis,
where data collection is subject to profuse uncertainties and random errors.

Property 3: It is easy to show that the number of individuals at risk (in the entry of the
system), S.t/, is monotonically non-increasing and that the number of removed cases (at
the exit of the system), R.t/, is monotonically non-decreasing (see Figure 2). Hence, the
total number of individuals who have been exposed to a virus is equal to N � S.t/ D
I.t/C R.t/, which is monotonically non-decreasing. I.t/, the number of active contagious
cases, or the difference between the two groups of the exposed cases and the recovered
cases, can be either increasing or decreasing. The middle panel of Figure 2 nicely conveys
such directionality of movements, in which the time of I.t/ reaching the peak and the time
of I.t/ reducing to zero are two important turning points of interest in epidemiology. The
former indicates the turning point of disease mitigation, and the latter corresponds to the
turning point of disease containment.

Property 4: It can be shown that I.1/ D 0 (or equivalently, � I.1/ D 0), meaning that the
disease will eventually die out. This is because when t!1, the rate of prevalence � I.t/,
given by .ˇ�S.t/ � �/ in (2), will become negative at a certain time and then become
more and more negative until converging to zero because �S.t/ is a decreasing function
and � I.t/ is bounded in the succeeding text by zero. However, this property of decaying
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to zero is conditional on the assumptions listed earlier. Violation of Assumptions 1 and
3 are most likely to cause a disease to persist because the monotonicity of S.t/ used in
the earlier argument is no longer valid. An example of such diseases includes seasonal
influenza, where immunity does not last long.

Property 5: The SIR model has a recursive property in that at any given time, disease pro-
gression (i.e. shapes of the three functions) is only dependent on their current values and
not on other information from the past. This property of recursion should not be confused
with the Markov property that has exclusively used in the literature of stochastic pro-
cesses under the conditional probability law. Here there is no probability law involved in
the recursive operation, which is indeed a fully deterministic recursion. Such conceptual
distinction may help understand the differences between dynamics and stochasticity.

2.5 Extension I: Susceptible–Infectious–Removed Model with Time-varying Transmission
Rate

During an epidemic, various control measures are typically issued by governments to miti-
gate or contain the spread of the disease. A direct impact of these external interventions is that
both the transmission and recovery rates are no longer constant over time. Thus, an important
generalisation of the SIR model is to accommodate different degrees of mitigation policies,
including social distancing, limiting transportation, mandatory mask wearing and city lock-
down. As observed in the ongoing COVID-19 pandemic, mitigation strategies are changing
over time. Limiting mobility of susceptible individuals and medically isolating contagious indi-
viduals in the population would reduce the rate of contracting virus, leading to a decreasing
disease transmission rate ˇ.t/. At the same time, gaining better knowledge on both treatment
and self-management of symptoms and improving medical resources may increase the rate of
recovery �.t/ over the course of an epidemic. Incorporating time-varying parameters into the
SIR model leads to an important extension of the basic SIR model (1):

dS.t/

dt
D �ˇ.t/

S.t/I.t/

N
;

dI.t/

dt
D ˇ.t/

S.t/I.t/

N
� �.t/I.t/;

dR.t/

dt
D �.t/I.t/:

(3)

The form of ˇ.t/ can be specified mainly in two ways. One is to let ˇ.t/ be either a para-
metric function (e.g. exponential decaying function) or a non-parametric function (Smirnova
et al., 2019; Sun et al., 2020), both of which may be estimated from available data. One useful
feature for the use of a parametric function of ˇ.t/ is to incorporate seasonality in the trans-
mission rate. It is well known that many infectious diseases spread most quickly in some of
the winter months. Especially, respiratory infectious diseases caused by some coronaviruses
exhibit seasonal behaviours that are consistent with the trends of temperature and humidity
(Barreca & Shimshack, 2012; Sajadi et al., 2020). Accounting for such seasonal periodicity
in the model would produce a better long-term prediction of an epidemic. As the public atten-
tion for COVID-19 pandemic projection gradually shifts from the short term to the long term,
it becomes increasingly important to take seasonality into account. Following Dietz (1976), a
simple way to introduce seasonality is to assume that the transmission rate ˇ fluctuates over the
period of a year:

ˇ.t/ D ˇ0

�
1C � cos

�
2�
t � �

365

��
; t D 1; : : : ; 365;
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where ˇ0 is the average contact rate, � 2 Œ0; 1� is the degree of seasonality with � D 0 reducing
the model to the basic SIR model, and � 2 Œ0; 365/ is the offset in time horizon so that peak
transmission occurs at t D �. Other periodic functions or their combinations can also be used
to model seasonality.

As an alternative to a fully non-parametric function, Wang et al. (2020) assume a form
ˇ.t/ D ˇ�.t/, 0 < �.t/ � 1, where �.t/ is a known function specified according to given
control measures. This specification allows to assess the effectiveness of a target preventive
measure, as well as to compare different preventive strategies. Clearly, the model with �.t/ � 1
represents disease progression in the absence of any mitigation effort, which sets up the baseline
situation in the policy assessment and comparison. The flexibility in specifying �.t/ allows easy
incorporation of future business reopening events; for example, in the COVID-19 pandemic,
this function may be specified as a U-shaped curve in that control measures (e.g. social distanc-
ing) gradually relax after a certain time point (see more details from Wang et al., 2020, and
some numerical results of the COVID-19 data analysis). More discussions on the time-varying
transmission rate are given in Section 5.5.

2.6 Extension II: Susceptible–Infectious–Removed Model with Vital Dynamics

The assumption of a fixed population size is restrictive, especially when an epidemic remains
for a long period of time before it is contained. In this setting, inclusion of natural birth and
death dynamics is needed to adequately characterise the time-varying size of each compartment
in the SIR model. First, let � be the natural birth rate and let 	 be the natural death rate. So, the
population size will change according to the ODE of the form dN.t/

dt
D �N.t/� 	N.t/. In this

case, there are three exits for natural deaths, each occurring at one compartment. An extension
of the basic SIR model is given as follows:

dS.t/

dt
D �N.t/ � ˇ

S.t/I.t/

N.t/
� 	S.t/;

dI.t/

dt
D ˇ

S.t/I.t/

N.t/
� �I.t/ � 	I.t/;

dR.t/

dt
D �I.t/ � 	R.t/:

Noting that S.t/C I.t/CR.t/ D N.t/, we obtain that dS.t/
dt
C dI.t/

dt
C dR.t/

dt
D �N.t/�	N.t/ D

dN.t/
dt

; as desired. Note that when model (2) is used, N.t/ will be automatically absorbed into
the proportions and thus no longer appears in the model formulation.

3 Multi-compartment Mechanistic Models

In this section, we review several four-compartment mechanistic models as extensions of
the basic SIR model introduced in Section 2. Being a simple version of a mechanistic model
with three compartments, the SIR model has some limitations in real-world applications. Thus,
extensions of this basic type to account for different disease mechanisms and assumptions have
been widely considered in the literature.
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Figure 4. Flow of infection states in the four-compartment Susceptible–Exposed–Infectious–Removed model.

3.1 Susceptible–Exposed–Infectious–Removed Model: An Extension with Exposure
Compartment

The commonly studied SEIR model takes into account an incubation period by adding an
exposed compartment in between susceptible and infectious compartments (see Figure 4). The
underlying assumption here is that individuals in this exposure subpopulation have contracted
the virus but are not yet contagious and are bound to become contagious. In the current lit-
erature, most infectious diseases that are suitable for the SIR model are believed to fit in the
SEIR model. The exposed compartment may be regarded as a waiting room for virus carriers
who are about to spread the virus in the population. Let ı be the rate for an exposed individ-
ual becoming contagious. Then, the basic SIR model can be extended to a four-compartment
model consisting of the following four ODEs:

dS.t/

dt
D �ˇ

S.t/I.t/

N
;

dE.t/

dt
D ˇ

S.t/I.t/

N
� ıE.t/;

dI.t/

dt
D ıE.t/ � �I.t/;

dR.t/

dt
D �I.t/;

(4)

where E.t/ is the size of the exposed compartment at time t. In this case, the compositional
constraint becomes S.t/C E.t/C I.t/C R.t/ D N, and with N being fixed over time, it implies
that dS.t/

dt
C dE.t/

dt
C dI.t/

dt
C dR.t/

dt
D 0. This constraint is clearly satisfied by the SEIR dynamic

system defined in (4). Let �E.t/ be the probability (or proportion) of being exposed to the virus.
Then, the rates based SIR model (2) can similarly be extended from the model (4) earlier.

Technically, the SEIR model often suffers from the issue of parameter identifiability because
determining a correct incubation period of an infectious disease and thus the parameter ı is a
rather difficult task in practice. First, incubation period varies from one person to another; in the
case of COVID-19, the incubation period ranges from 0 to 15 days, with a median of 5.1 days
(Lauer et al., 2020). In another study of COVID-19 patients in China, Guan et al. (2020) have
reported that the estimated incubation period is between 0 to 24 days with a median of 3 days.
It is clear that this quantity is very person dependent. Second, ascertainment of contagion may
be largely delayed because of shortage of virus testing sources. This length-biased sampling
problem is notoriously challenging for the estimation of the incubation period (Qin et al., 2020).
Third, in the literature (e.g. He et al., 2020) researchers found that COVID-19 carriers tend to
be more contagious right after contracting the coronavirus than a week later because they are
not self-quarantined in the absence of clinical symptoms. In other words, in the case of the
COVID-19, the incubation period (or sojourn at exposed state) is too short to play a substantial
role in the modelling of the pandemic.

© 2020 International Statistical Institute.

476 TANG ET AL.

International Statistical Review (2020), 88, 2, 462–513



Figure 5. Flow of infection states in the Susceptible–Exposed–Infectious–Removed–Susceptible model.

3.2 Susceptible–Exposed–Infectious–Removed–Susceptible Model: An Extension
with Reinfection

Not all infectious diseases will develop long-term immunity. Individuals may develop
immunity after recovery only for some time and could lose immunity such that they
become susceptible again. Thus, recovered individuals rejoin the susceptible compart-
ment after a certain duration of immunity. This disease evolution is intuitively called the
Susceptible–Exposed–Infectious–Removed–Susceptible (SEIRS) model. We assume no death
in the removed compartment (see Figure 5 where the recovered branch in the removed com-
partment is connected to the susceptible compartment). An example of diseases studied using
this model includes the common cold. This SEIRS model is defined as follows:

dS.t/

dt
D �ˇ

S.t/I.t/

N
C 
S.t/;

dE.t/

dt
D ˇ

S.t/I.t/

N
� ıE.t/;

dI.t/

dt
D ıE.t/ � �I.t/;

dR.t/

dt
D �I.t/ � 
R.t/;

(5)

where 
 is the rate of losing immunity and becoming susceptible again after recovery.

3.3 Susceptible–Antibody–Infectious–Removed Model: An Extension with Antibody
Compartment

Different from the SEIRS model, there are some infectious diseases where long-term immu-
nity is yielded by individuals who survive from their infection. To build the self-immunisation
into the infection dynamics, Zhou et al. (2020) introduce an antibody (A) compartment to the
SIR paradigm, shown in the bottom thread of Figure 6. Because individuals who enter the
antibody compartment will no longer be at risk of infection for a certain period of time, this
compartment is indeed an exit compartment, at least over a certain time window within which
immunity is active, in addition to the removed compartment. In some infectious diseases such
as the COVID-19, the subpopulation of self-immunised individuals is not directly observed or
clinically confirmed by the viral RT-PCR diagnostic tests because of mild or absent clinical
symptoms. They are self-cured at home with no clinical visits. Adding this compartment in the
modelling can help to greatly mitigate the issue of under-reporting for the actual number of
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Figure 6. Schematic flow of infection states in the Susceptible–Antibody–Infectious–Removed model.

infected cases in the population. This dynamic system consists of four compartments, that is,
Susceptible, Self-immunised, Infectious and Removed, with the following ODEs:

dS.t/

dt
D �˛S.t/ � ˇ

S.t/I.t/

N
;

dA.t/

dt
D ˛S.t/;

dI.t/

dt
D ˇ

S.t/I.t/

N
� �I.t/;

dR.t/

dt
D �I.t/;

(6)

where ˛ is the rate of self-immunisation, which is not identifiable because of the lack of
observed data. An approach to estimating the rate parameter ˛ is to collect data of antibody
serological surveys from the population. Refer to Zhou et al. (2020) for more discussions.

4 Statistical Methodology: Frequentist Approaches

4.1 Background

This section mainly focuses on an introduction of statistical models to analyse surveillance
data of an epidemic. Each statistical model consists of two components: a systematic component
and a random component. In the context of infectious disease data analysis, the former may
be specified by a dynamic infectious disease model from Sections 2 and 3. The latter is built
upon a random sampling scheme that enables a stochastic extension of the mechanistic model
(e.g. SIR model) given in the systematic component. Essentially, the notions about disease
transmission, recovery or other characteristics are used to define key population attributes or
parameters in an infection dynamic system of interest, which will be estimated by available
data via a statistical modelling framework, where some covariates may be incorporated to learn
some subgroup-specific risk profiles.

A clear advantage of statistical and stochastic extensions is the ability to quantify uncertainty
in both estimation and prediction in connection to sampling variability. This added uncertainty
is crucial to policymaking as models not only generate an average estimation or prediction but
also present the best and worst possible scenarios for more robust and confident handling of
epidemics, given that surveillance data are subject to various issues in the data collection. An
example presented in Britton (2010) vividly shows the uncertainty in the progression of an
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infectious disease. Consider patient zero, who will go on and infect on average R0 number of
other individuals, as defined by a certain disease mechanism. The number of individuals who
contract the virus from this patient is in fact stochastic, varying around the expected number
of infections R0, which could be described by a distribution (e.g. Poisson or negative bino-
mial) with mean R0 on the support of non-negative integers. With a non-zero probability of
taking the value zero due to the variability in human activities, there is a non-negligible chance
that an epidemic is completely averted. The opposite could be an outbreak with a non-zero
probability that infects tens of thousands of people. Without modelling such uncertainty, we
cannot see all these possibilities and associated likelihoods of their occurrences during the
course of an epidemic (Roberts et al., 2015). Infectious disease systems governed by the class
of multi-compartment models, though describing the population average, are useful to describe
individual-based stochastic processes if certain random components are introduced into the
modelling framework. Thus, the resulting statistical models present more natural approaches to
the analysis of surveillance infectious disease data.

Before introducing statistical methodologies that are commonly used for parameter estima-
tion, we distinguish model parameters into two categories. Those that can be determined a
priori with no need for estimation, which we term as hyperparameters. Those that cannot be
fully determined and need to be estimated using the data at hand, which we term as target
parameters. The choices of which parameter should be a target parameter versus a hyper-
parameter vary widely across methods. Intuitively, the more we know about the biological
characteristics of a disease, the more parameters can be held fixed a priori in the analysis. It is
however very difficult to determine most of the model parameters early in an outbreak because
of the limited amount of knowledge and data about the disease. Indeed, many model parame-
ters are not identifiable because of the lack of relevant data availability. One such example is
the rate parameter of immunity ˛ in the SAIR model (6). As relevant knowledge accumulates,
literature reveals increasingly precise characterisation of the disease, such as its latency period,
recovery rate, death rate, immunity duration and antibody acquirement. Such information is
typically obtained from surveys of high-quality individual-level data, which may provide much
better quantification of these hyperparameters than having to be re-estimated by epidemic mod-
els, which, on the other hand, are largely based on much coarser surveillance data. In the case
of the COVID-19 pandemic, this survey-based approach may be too costly to carry out in coun-
tries with large and heterogeneous populations. In general, target parameters are mostly those
that are location specific, for example, transmission rate and fatality rate. They vary largely
across regions because of non-uniform mitigation effort and hospital resources; hence, data-
driven estimations are preferred. In Section 6, we introduce an areal spatial modelling approach
to account for spatial heterogeneity in the analysis of infectious disease data.

Because of the issue of parameter identifiability in some mechanistic models, specifying
hyperparameters in the model fitting is inevitable. However, holding hyperparameters fixed at
certain values according to some external data sources is indeed controversial, and the validity
of consequent analyses is highly dependent on the appropriateness of these certain prior values.
To relax this technical weakness, later in Section 5, we introduce a Bayesian framework in
which such prior information (e.g. hyperparameters) enters the statistical model via certain prior
distributions rather fixed values, so that the uncertainty on those hyperparameters is adaptively
compensated with the amount and quality of observed surveillance data. Such flexibility has a
great advantage in synthesising prior evidence and observed data.

To present this section at a reasonable technical level, most of the discussions in the succeed-
ing text are given in the setting of the basic SIR model, and generalisation to other compartment
models should follow with slight modification. In closing, it is noteworthy that the frequentist
statistical methods discussed in the succeeding text are based on a fundamental assumption of
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data collection; that is, the population-level compartment data S.t/, I.t/ and R.t/, and others
if relevant, can be directly collected from the study population. In other words, at given time,
every individual in the population can be observed directly for his or her current status of being
susceptible, infectious, recovered or died. This is practically impossible. Thus, the interpretation
of the estimation results should be carried out with caution.

4.2 Least Squares Estimation

In the SIR model (1), the transmission rate ˇ and recovery rate � are two target parameters
of interest. Estimation of ˇ and � can be carried out through optimisation in search for a model
that best fits to the data. A commonly used minimisation criterion is the least squares loss. Given
ˇ and � , numerical approximations (e.g. Runge–Kutta methods) can be used to solve for the
trajectories, S.t/; I.t/ and R.t/. These expected trajectories are then compared with the observed
trajectories to compute a discrepancy score, such as the sum (over time) of the squared errors,
represented as a loss function of target parameters. Now, it remains to find the estimates of
these parameters that give rise to the curve that best fits the data through standard optimisation
tools. In this case, the optimisation pertains to a two-dimensional search, which should be
computationally straightforward. Even a greedy search is computationally cheap. We illustrate
using both simulated data and real data in Examples 2 and 3, respectively.

Example 2. We first generate an observed sequence of cumulative infectious counts following
Example 1, namely, the SIR model with the true parameter values ˇ D 0:5 and � D 0:2. For
simplicity, we fix � D 0:2 in this example. We then evaluate the sum of squared error (SSE) loss
between the expected cumulative infectious count I.t/ and its sample counterpart Iobs.t/, and
the value that minimises this loss gives an estimate of ˇ. Figure 7 plots the SSE loss versus ˇ
using the simulated data Iobs.t/, t D 1; : : : ;T, with T D 10; 20; 50, respectively. It is found that
the SSE loss is minimised at Ǒ D 0:5 as expected. The longer the observed sequence, the more
curved around 0.5 the SSE appears, so the better we can identify the minimum of the SSE curve.
The R script shows the example for the case of T D 10. Note that the sequence we used to define
the fit is I.t/, but S.t/ and R.t/ can also be used in the estimation. Similarly, a two-dimensional
grid search can be used for estimating ˇ and � jointly when � is not fixed in which the data of
R.t/ must be used in the estimation. Here we present only one replicate for illustration.
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Figure 7. Searching for ˇ in Example 2 using 10, 20 and 50 observations, respectively.

Example 3. We apply the same approach as given in Example 2 for analysing the daily time
series of the COVID-19 cumulative infectious counts in Michigan during 11 March to 1 May
2020. Details of the data are described in Appendix A2, including the I.t/ sequence. The already
defined SIR function from Example 1 is used as the dynamic model, and the already defined
sse function from Example 2 is used as the loss function. By fixing � D 0:2 (i.e. average con-
tagious period of 5 days) the following code computes the solution Ǒ D 0:79 using the first 10
observations (11 to 20 March). We then increase the number of observations in the estimation;
as shown in Figure 8, the value of Ǒ decreases when more data are used. This is noticeably
different from Example 2 where Ǒ remains constant regardless of the number of observations
used. The gradual decrease in our estimate of ˇ indicates a potential reduction in the trans-
mission rate over time in Michigan due to the enforcement of statewide social distancing. In
other words, the assumption of a constant transmission rate ˇ is inappropriate for the Michi-
gan data. This result suggests a need for using a more proper modelling technique, which will
be demonstrated in Section 5.5.
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Figure 8. Estimate of ˇ in Example 3 using different lengths of observed I.t/ time series.

Being often used as a classic textbook example, this least squares approach is equivalent to
the maximum likelihood estimation (MLE) under the assumption that measurement errors are
independent and normally distributed with a homogeneous variance. In general, this approach
gives consistent estimation and does not require a distributional assumption for the data gener-
ation and thus can be applicable to non-normal data. However, the ordinary least squares loss
used in the earlier example assumes that data are independently sampled over time, which is
not true because the observations are time series and are thus temporally correlated. Because
of this, the least squares estimation is not efficient. Cintrón-Arias et al. (2009) have discussed
the use of a generalised least squares approach to account for more complex error structure,
including temporal autocorrelations.

It is not always the best practice to directly use data of I.t/ and R.t/ in the estimation of the
model parameters. The COVID-19 projection by Gu (https://covid19-projections.com/) adopts
a loss optimisation approach based on the SEIR model using only death counts due to quality
concerns with infection counts (e.g. under-reporting issue). The model uses a discrete state
machine with probabilistic transitions to minimise a mixture of loss functions, such as mean
squared error, absolute error and ratio error. In the literature, there are many other estimation
procedures (e.g. Wallinga & Teunis, 2004; Cori et al., 2013; Thompson et al., 2019). Some of
these alternatives do not estimate ˇ and � , but more directly target the effective reproductive
number Re.t/ in estimation and inference.

4.3 Method of Moments

Here we present the method of moments, another routine estimation approach in the statisti-
cal literature for estimating the model parameters in the SIR model (1). During the early phase
of an epidemic, one may assume S.t/=N � 1 and set dt D 1 (e.g. a time unit of 1 day for
discretisation), so that the second ODE of (1) leads to the approximate exponential function
solution:

I.t/ � I.0/ expf.ˇ � �/tg; t D 1; : : : ; T;

where without loss of generality I.0/ > 0 (otherwise time 0 may be redefined in the time series),
and T is the last observation time of data collection. Taking the logarithmic transformation,
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we obtain ln I.t/ � ln I.0/ C .ˇ � �/t , which provides a linear mean model with intercept
parameter ln I.0/ and slope parameter .ˇ��/ of the covariate time. This slope parameter may
be estimated by the least squares method. Likewise, � may be estimated through another similar
approximated linear relationship (without intercept) of the form: �R.t/ D R.tC 1/ � R.t/ �
� I.t/, from the third ODE of the SIR model (1) at discrete times at which data are actually
recorded. After estimate O� is obtained, we obtain Ǒ immediately. However, the estimation of
ˇ is only accurate during the early phase of disease outbreak because the approximation of
S.t/=N � 1 is used.

In the literature, other types of moments are also used to derive parameter estimates. For
instance, using the approximation from the first ODE of the SIR model (1) at discrete times,
one can easily obtain the following expression:

ˇ �
S.t/ � S.t C 1/

S.t/I.t/
N; t D 1; : : : ; T:

An estimate of ˇ may be obtained by averaging the quantities given in the right-hand side
of the equation earlier. In the case when ˇ.t/ varies over time because of changes of a
certain mitigation measure, the earlier method of moments estimator may still be applied
locally with a possible utility of a kernel weighting function such as the Nadaraya–Watson
estimator (Nadaraya, 1964; Watson, 1964). A very similar approach leads to the following
approximation:

Re.t/ �
S.t/ � S.t C 1/

�I.t/
; t D 1; : : : ; T;

which may give rise to a non-parametric estimator of the effective reproductive number.
Although Re.t/ can be identified at each time point using data solely from t, for numerical
stability, the same idea of a kernel weighting (e.g. running-bin method) smoother is applied
to estimate Re.t/ at t (see, e.g. Wallinga & Teunis, 2004). Linear approximations are easy to
implement; however, the variances produced from such linear fits are typically inadequate in
describing the true randomness of an infectious disease to allow valid inference and prediction.
Alternatively, it is promising to investigate the local linear fitting method (Cleveland & Devlin,
1988) that produces non-parametric estimates of the time-varying model parameters to better
reflect temporal dynamics of the infection.

4.4 Probabilistic Transmission and Recovery

In both the least squares estimation and method of moments estimation, there are no explicit
assumptions about probability laws for data sampling. Implicitly, both methods are based on
the sampling scheme on the entire population; that is, the current status of every individual in
the study population is recorded. This is certainly not true in practice. To overcome this, some
estimation methods are proposed to account for sampling variability under certain parametric
distributions. Distribution assumptions can be made for many quantities in an infectious disease
model. Some are fully specified based on given knowledge. For example, the distribution of
incubation period of a disease can be represented as a probability mass function by days
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(Lauer et al., 2020). On the other hand, some distributions are only specified to be from a family
of shapes, with the exact form to be estimated. We illustrate the latter using a stochastic SIR
model.

Stochastic SIR models typically require the same assumptions as a deterministic SIR
model (Section 2.3). To reflect the stochastic nature of disease transmission and recov-
ery, stochastic processes such as a Poisson process are used to model the accumulation
of cases. Following the earlier definitions of ˇ and � , the number of effective contacts in the
population is a Poisson process with rate ˇN. Of these contacts, only those between the conta-
gious and susceptible will lead to new infections. Hence, the counting process defined by the
number of exposed (i.e. I.t/CR.t/, or equivalently N�S.t/) follows a Poisson process with rate
ˇS.t/I.t/=N. Hence, the number of newly exposed in an instantaneous duration of dt follows a
Poisson distribution with mean ˇS.t/I.t/

N
dt . On the other hand, the duration of time individu-

als staying infectious is assumed to be independent and identically distributed according to an
exponential distribution with rate � , and hence, the mean infectious duration is 1=� . When we
jointly consider all I.t/ infectious subjects at time t, exit events occur independently with a rate
� I.t/, and the gap times between two adjacent exits are exponentially distributed with mean
1=f� I.t/g. In summary, the number of removed individuals is a counting process following a
Poisson process with rate � I.t/. Such stochastic formulation is commonly used, for example,
in Bailey (1975) and Andersson and Britton (2000). Through the earlier definitions, S.t/; I.t/
and R.t/ are now random variables that can be directly sampled. In fact, it suffices to assume
only two of the three counting processes in order to define a stochastic SIR model due to the
constant sample size constraint.

For demonstration, at time t, in an instantaneous time interval Œt; t C dt/, we may specify a
stochastic SIR model as follows:

�S.t C dt/C S.t/
ind
� Poisson

�
ˇ
S.t/I.t/

N
dt

�
;

R.t C dt/ �R.t/
ind
� Poisson .�I.t/dt/ ;

(7)

where I.t/ D N�S.t/�R.t/. As a result of this probabilistic formulation, the effective reproduc-
tive number is now defined as an expectation, that is, Re.t/ D EfˇS.t/I.t/=Ng. The stochastic
SIR model (7) is specified in continuous time, and we would hope that dt is very small. In
practice, approximation to (7) is used by letting dt D 1 or a unit of day, which is typically
the smallest time unit used in public surveillance data. As a result, S.t/ and R.t/ at time t are
used to approximate the average in the entire duration of Œt; tC 1/. This approximation turns a
continuous time stochastic model into a discrete time scholastic model to proceed with statisti-
cal analysis. Other distributions, such as negative binomial or general dispersion family (Song,
2007), may be considered to handle the issue of overdispersion in the counting processes. With
distributions in place, we turn the focus to estimation and inference by the maximum likelihood
approach.

4.5 Maximum Likelihood Estimation and Inference

Maximum likelihood estimation is often preferred in a parametric model where the under-
lying probability distribution is properly chosen. For convenience, we take day as the time of
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unit. By discretising time based on observed sequences, that is, t D 0; 1; : : : ;T, observed
daily increments of counts �S.t/ D S.t/ � S.t C 1/ in the susceptible compartment and
�R.t/ D R.t C 1/ � R.t/ in the infectious compartment are conditionally independent, given
historical accumulated counts S.t/ and I.t/, according to the definition of model (7). The sec-
ond model in (7) contains only the removal parameter � , so the log-likelihood function of �
with respect to the data of daily increments in the removed compartment, �R.t/, and daily
cumulative counts of infections, I.t/, can be written as

`.� jf�R.t/; I.t/; t D 0; 1 : : : ; T g/ D
TX
tD0

lnf .�R.t/I �I.t//;

where f.kI�/ is the Poisson probability mass function of variable k with mean parameter �,
and �R.0/ D R.1/ � R.0/ with R.0/ D 0 as well as I.0/ D 1. An estimate of � can be
obtained through the conventional MLE. Likewise, the MLE for ˇ can be obtained from the first
Poisson process of model (7). To estimate ˇ and � jointly, we can write the joint log likelihood
of multiple observed sequences of increments. Note that �S.t/ and �R.t/ are conditionally
independent Poisson random variables, given S.t/ and I.t/. The log likelihood can be written as

`.ˇ; � jf�S.t/;�R.t/; S.t/; I.t/; t D 0; 1; : : : ; T g/ D
TX
tD0

lnf .�S.t/IˇS.t/I.t/=N /

C

TX
tD0

lnf .�R.t/I �I.t//;

where S.0/ D N and I.0/ D 1. However, one caveat in the simplistic likelihood formulations
earlier is that the cumulative time series S.t/ and I.t/ are assumed to be directly measured with-
out errors. In other words, the earlier likelihood accounts only for the sampling uncertainties
in the increments not those in the cumulative counts, so the resulting statistical inference may
suffer from underestimated standard errors.

There are two types of statistical inference theory considered in this context, namely, the
infill asymptotic theory and the outreach asymptotic theory. The former pertains to the sit-
uation where the sampling points increase within a fixed time window (i.e. fixed T), while
the latter is a situation of practical relevance where the time window of the data collection
tends to infinity (i.e. T ! 1). Britton et al. (2019) discuss the infill large-sample properties
under the assumption that the complete epidemic data, that is, continuously observed count-
ing processes .S.t/; I.t//t2[0,T], are available. Under such setting, the asymptotic distribution
of the MLE based on continuously observed trajectories is established. Obviously, it is really
rare in practice to collect infectious disease data via such infill sampling schemes. Neverthe-
less, for the sake of theoretical interest, we refer readers to Britton et al. (2019) and references
therein.

The outreach large-sample theory for the MLE with discrete time series data provides a sta-
tistical inference relevant to most of infectious disease applications. As an epidemic evolves,
the number of equally spaced time points (say, daily) for data collection increases. When
sampling errors in both I.t/ and S.t/ are allowed, the likelihood earlier is indeed a kind of
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conditional composite likelihood (Varin et al., 2011). Thus, the standard theory of composite
likelihood estimation implies that the asymptotic covariance of the estimator is given by the
inverse Godambe information matrix (or a sandwich estimator). The sensitivity matrix in the
Godambe information is hard to obtain analytically because of the serial dependence in the
time series. Instead, one may take a non-parametric bootstrap approach similar to that con-
sidered by Gao and Song (2011) to evaluate the standard errors in order to conduct a valid
statistical inference.

Conditional independence is a strong assumption for mathematical convenience in the MLE.
Relaxing it has drawn some attention in the literature. For example, Lekone and Finkenstädt
(2006) and Allen (2008) construct likelihood-based approaches using discrete time Markov
chain SEIR models; Becker (1977) and Becker and Britton (1999) consider the MLE in the SIR
model using martingale methods when all transition events for each individual are observed.
It is however unlikely that such individual-level details are observed in most surveillance data
used for modelling of infectious disease mechanisms. Estimators using less detailed data have
been proposed (e.g. Becker, 1979; Rida, 1991).

As part of efforts on further relaxing strong conditions in the earlier stochastic SIR model
(7), in Section 5.1, we review a state-space modelling approach that generalises the current
likelihood model and estimation framework, where S.t/, I.t/ and R.t/ are not directly measured
and rather treated as Markov latent processes. Also, hyperparameters are included via their
prior distributions instead of fixed values, and a Bayesian estimation similar to the MLE is
established through the MCMC approach. This class of state-space models is so far one of the
most flexible statistical modelling frameworks to analyse infectious disease data.

4.6 Software

We highlight several software packages that are publicly available for estimation of parame-
ters in the multi-compartment models. Overall, additional efforts in this computational domain
are needed. Several packages focus on the estimation and inference for R0 and Re.t/. For
example, Obadia et al. (2012), in their R package R0, implements multiple methods, includ-
ing a method of moments-type approach (Dietz, 1993), a Bayesian method (Bettencourt &
Ribeiro, 2008) and likelihood-based estimation procedures (Forsberg White & Pagano, 2008;
Wallinga & Teunis, 2004; Wallinga & Lipsitch, 2007). Along this line, Cori et al. (2013)
and Thompson et al. (2019) develop Bayesian methods to estimate the effective reproduc-
tive number and are made available through the R package EpiEstim and Microsoft Excel
(https://tools.epidemiology.net/EpiEstim.xls). Their methods use a moving window approach,
assuming that the reproduction number Rt,� in this window Œt � 
 C 1; t� is constant. A
gamma prior distribution is used to derive the posterior distribution of the Rt,� given new
infectious counts.

5 Statistical Methodology: Bayesian Approaches

5.1 State-space Models

State-space models refer to a class of linear or non-linear hierarchical stochastic models
with parametric error distributions. The conventional state-space model is not formulated as
a Bayesian model, but later, its Bayesian formulation has gained great popularity because
of the availability of MCMC methods for the estimation of the model parameters (Carlin
et al., 1992). This class of models primarily attempts to explain the dynamic features of
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Figure 9. Graphical representation of a state-space model.

time series of continuous and discrete variables. In particular, it has been used to model the
time series of proportions associated with multi-compartment models given in (2) (see Osthus
et al., 2017, for seasonal influenza, and Wang et al., 2020, for the COVID-19 pandemic,
among others).

The state-space model framework is advantageous over the stochastic compartment mod-
els introduced in Section 4.4 in the following aspects of statistical modelling: (i) state-space
model does not assume that the compartment processes S.t/, I.t/ and R.t/ are directly observed,
which are treated as latent processes to be estimated from observed data. (ii) State-space model
allows an explicit sampling scheme to be part of the model specification, which enables the
quantification of both estimation and prediction uncertainties in the statistical analysis. (iii)
State-space model is built upon the compartment probabilities (or rates or proportions) that
automatically adjust for potentially varying population sizes. This conveniently relaxes the
condition of a constant population size in the basic SIR model. (iv) State-space model pro-
vides a flexible statistical modelling framework that embraces time-varying model parameters
and integrates prior knowledge of disease mechanisms (e.g. R0 value from other studies) via
prior distributions of the model parameters. (v) Implementation of MCMC methods in state-
space modelling provides a powerful approach to parameter estimation and predictions using
conditional distributions given the history. This is different from all estimation methods in
Section 4 that are always formulated via marginal distributions under strong assumptions of
sampling rules.

A state-space model consists of two stochastic processes: a d-dimensional observation
process fYtg and a q-dimensional state process f� tg given as follows:

� The state process �0; �1; : : : is a Markov chain with initial condition �0 � p0.�/, and
transition (conditional) distribution is given by Ytj� t � ft.yj� t/:
� The observation process fYtg is conditionally independent given the state process f� t; t �

0g, and each Yt is conditionally independent of � s; s ¤ t; given � t, the conditional
distribution is Ytj� t � ft.yj� t/.

This model can be graphically presented by a comb structure shown in Figure 9. According
to Cox et al. (1981), the state-space model is a parameter-driven model in that the processes
of the compartment proportions are unknown population parameters to be estimated, while the
stochastic multi-compartment model such as the stochastic SIR model in (7) is a data-driven
model where the compartment proportions are directly observed. As pointed out earlier, the
validity of the latter is questionable in practice, especially in the analysis of the COVID-19
pandemic data.
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Let Ys be the collection of all observations up to time s, namely, Ys D .Y1; : : : ;Ys/. Let 
 be
a generic notation for the set of model parameters. Denote the conditional density of � t, given
Ys D ys, by ft|s.� jy

s; 
/. Then, the prediction, filter or smoother density is defined, respectively,
according to whether t > s, t D s or t < s. This conditional density ft|s.� jy

s; 
/ is the key
component of statistical inference in state-space models.

To develop the maximum likelihood inference for model parameters in state-space models,
the one-step prediction densities ft|t�1 are the key components for the computation of the likeli-
hood function (see Chapter 10 of Song, 2007). Given a time series data fYt; t D 1; : : : ; ng, the
likelihood of Yn is

f .Y nI 
/ D

Z
Rq
f .Y1; : : : ; Yn�1j�nI 
/fn.Ynj�nI 
/gn.�nI 
/d�n

D

nY
tD1

Z
Rq
ft jt�1

�
�t jY

t�1I 

�
ft .Yt j�t I 
/d�t ;

(8)

where f1.Y1I 
/ is expressed as follows:

f1.Y1I 
/ D

Z
Rq
f1.Y1j�1I 
/g1.�1I 
/d�1 D

Z
Rq
f1.Y1j�1I 
/f1j0.�1jY

0I 
/d�1;

where by convention, g1.�1I 
/ D f1|0.�1jY0I 
/, conditional on an initial observation Y0 at time
0.

In the earlier likelihood evaluation, one-step prediction densities, ft|t�1, and filter densities,
ft|t, can be respectively given by the recursions

ft jt�1

�
�t jy

t�1I 

�
D

Z
Rq
ft�1jt�1

�
�t�1jy

t�1I 

�
gt .�t j�t�1I 
/d�t�1; (9)

ft jt
�
�t jy

t I 

�
D

ft jt�1

�
�t jy

t�1I 

�
ft .yt j�t I 
/R

Rq
ft jt�1 .�t jyt�1I 
/ ft .yt j�t I 
/d�t

; (10)

with the recursion starting with f0|0.�/ D p0.�/. In general, exact evaluation of the integrals
in (9) and (10) is analytically unavailable, unless in some simple situations, such as both pro-
cesses being linear and normally distributed. For the linear Gaussian state-space model, all ft|s
are Gaussian, so the first two moments of (9) and (10) can be easily derived from the conven-
tional Kalman filtering procedure, as discussed in Chapter 9 of Song (2007). However, with
some computational costs, all integrals in the earlier likelihood and the filter can be evaluated
numerically by MCMC methods.

5.2 State-space Models for Compartment Proportions

Recently, Wang et al. (2020) have developed an extended SIR (eSIR) model that is built upon
a state-space model with two (d D 2) observed time series of daily proportions of infectious and
removed cases, denoted by Y It and Y Rt , which are generated from the q-dimensional underlying
infection dynamics f� t; t � 0g governed by a mechanistic SIR model. In the case of the SIR
model, q D 3. As shown in Figure 9, the latent process is a time series of the three-dimensional
latent vector of population probabilities �t D

�
�St ; �

I
t ; �

R
t

�>
that satisfies a three-dimensional

Markov process of the following form:

�t j�t�1; 
 � Dirichlet.�f .�t�1; ˇ; �//; (11)
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where parameter � scales the variance. The function f.	 / is a three-dimensional vector as
a solution to the SIR model (2), which determines the mean of the Dirichlet distribution
via the RK4 approximation. In comparison with the stochastic SIR model in (7), here the
compartment proportions � t are unobserved and explicitly modelled by a Markov process
to account for temporal correlations, so the parameter estimation can be carried out with
multivariate likelihood functions. Because the serial dependence is accounted for in the state-
space model, the resulting estimation and prediction are more powerful than those given
in Section 4.5.

Two observed time series
�
Y It ; Y

R
t

�>
that are emitted from the underlying latent dynamics

of infection � t are assumed to follow the beta distributions at time t:

Y It j�t ; �
I � Beta.�I�It ; �

I .1 � �It //; (12)

Y Rt j�t ; �
R � Beta.�R�It ; �

R.1 � �It //; (13)

where �It and �Rt are the respective probabilities of being infectious and removed at time t, and
�I and �R are the parameters controlling the respective variances of the observed proportions.
It is easy to see that Y It and Y Rt are conditionally independent given � t, and E

�
Y It j�t

�
D

�It and E.Y Rt j�t / D �Rt , and 
 D .�I; �R; �; ˇ; �/. Because Y It and Y Rt share a common
latent variable � t, their marginal correlation is modelled. In fact, these two beta distributions
define a sampling scheme of observed data, including daily empirical proportions of infectious
cases and removed cases, which are a collection of daily signals from the underlying latent SIR
infection dynamic system.

5.2.1 Application I—extended Susceptible–Infectious–Removed model

The earlier state-space model (11), (12) and (13) is useful to assess the effectiveness of
control measures (e.g. social distancing) via the projected epidemic evolution in the future time.
To process, one can replace the constant transmission rate ˇ by a time-varying transmission
rate ˇ�.t/, where �.t/ is a given transmission rate modifier. It is specified as a function in
time to reflect different forms and strengths of control measures. This results in an eSIR model
proposed by Wang et al. (2020):

d�St
dt
D �ˇ�.t/�St �

I
t ;

d�It
dt
D ˇ�.t/�St �

I
t � ��

I
t and

d�Rt
dt
D ��It ;

where �.t/ � 0. Obviously, the basic SIR model is a special case with no intervention in place,
�.t/ � 1. In general, the �.t/ may be specified by a practitioner to reflect a particular control
measure. For an example of the COVID-19 in Hubei Province, China, a possible choice of
�.t/ given in the following is a step function that reflects government-initiated macroisolation
measures:

�.t/ D

8<
:
�01; if t � 23 January; no concrete quarantine protocols;
�02; if t 2 .23 January; 4 February/; city lockdown;
�03; if t 2 .4 February; 8 February/; enhanced quarantine;
�04; if t > 8 February; opening of new hospitals.

When �0 D .�01; �02; �03; �04/ are chosen with different values, as shown in
Figure 10(A)–(C), we obtain different types of transmission rate modifiers. Alternatively, �.t/
can be a continuous function, say, �.t/ D exp.��0t / or �.t/ D expf�.�0t /

!g; �0 > 0; ! > 0,
that reflects steadily increased community-level surveillance and personal protection (wearing
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face masks and washing hands) as shown in Figure 10(D)–(F). Note that this modifier function
does not have to be a monotonic decreasing function and may take a U-shape to capture the
relaxation of control measures. With such a modelling framework, one can carry out compar-
isons of different preventive protocols via the resulting projected infection risk � I.t/ or other
epidemic features such as the time of the effective reproduction number Re.t/ < 1 and the time
of a disease recurrence associated with relaxed control measures.

5.2.2 Application II—Susceptible–Quarantined–Infectious–Removed model

A clear advantage of the state-space model is that it enjoys the resilience of MCMC being a
primary method for statistical estimation and prediction. In other words, the statistical analysis
methods can be easily modified to accommodate changes made in the latent multi-compartment
models and/or in the observed time series models. One example of the COVID-19 pandemic
modelling given in Wang et al. (2020) is to extend the three-compartment eSIR model to a
four-compartment model by incorporating stringent quarantine measures issued by the Hubei
government via a new addition of in-home quarantine compartment. This new model is termed
as Susceptible–Quarantined–Infectious–Removed (SQIR) model. This quarantine compartment
collects in-home isolated individuals who would have no chance of meeting any infectious
individuals in the infection system. So, it is another exit from the dynamic system in addition to
the removed compartment. Let �.t/ be the chance of a susceptible person being willing to take
in-home isolation at time t. The basic SIR model in Equation (2) is then extended to include a

four-dimensional latent process
�
�St ; �

Q
t ; �

I
t ; �

R
t

	>
:

d�
Q
t

dt
D �.t/�St ;

d�St
dt
D �ˇ�St �

I
t � �.t/�

S
t ;

d�It
dt
D ˇ�St �

I
t � ��

I
t ;

d�Rt
dt
D ��It ;

(14)

where �St C �
Q
t C �

I
t C �

R
t D 1. The quarantine rate �.t/ may be specified as a Dirac delta

function with jumps at times when major quarantine policies are issued by the government. For
example, one may specify the time-dependent quarantine rate function �.t/ for Hubei Province
as follows:

�.t/ D

8<
:
�01; if t D 23 January; city blockade;
�02; if t D 4 February; enhanced quarantine;
�03; if t D 8 February; opening of new hospitals;
0; otherwise.

Note that at each jump, the respective proportion of individuals would leave the susceptible
compartment and enter the quarantine compartment. Figure 10(G)–(I) shows three different
types of in-home quarantine rates during the period of the COVID-19 pandemic in Hubei
Province.

5.2.3 Application III—Susceptible–Antibody–Infectious–Removed model

In a similar spirit to the SQIR example of Application II earlier, Zhou et al. (2020) consider
an interesting extension of the basic SIR model in the analysis of the US COVID-19 data to
include an antibody compartment to handle the subpopulation of self-immunised individuals.
This four-compartment model is termed as SAIR model, which has been discussed in detail in
Section 3.3. Because the antibody compartment is also a second exit from the infection system,
similar to the quarantine compartment, one can turn the SAIR model given in (6) into a similar
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Figure 10. Different types of transmission rate modifiers �.t/ and the quarantine rate �.t/: (A–C) step functions with �0 D
.�01; �02; �03; �04/ equal to .1; 1; 1; 1/, .1; 0:9; 0:8; 0:5/ and .1; 0:9; 0:5; 0:1/ at change points (23 January, 4 February
and 8 February). (D–F) Exponential functions under difference microquarantine measures over time with �0 D 0:01, �0 D
0:05 and �0 D 0:1. (G–I) Multi-point instantaneous quarantine rates with �0 D .0; 0; 0; 0/, �0 D .0:1; 0:4; 0:3/ and �0 D
.0; 0:9; 0/ at change points of (23 January, 4 February and 8 February). [Colour figure can be viewed at wileyonlinelibrary.
com]
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form of the SQIR model in (14), where �.t/ is replaced by ˛.t/, the rate of self-immunisation.
It is known that the population immunity rate cannot be estimated from observed surveillance
data, which needs to be figured out by using large-scale serological surveys in the population.
Thus, ˛.t/may be specified as a Dirac delta function (e.g. Figure 10(G)–(I)) with jumps at times
when the surveys are conducted and function values based on the survey results. It is worth
pointing out that although the SQIR and SAIR models have very similar model structures,
their interpretations are very different. The former is applicable to the case of very stringent
self-isolation control measures in Hubei, while the latter is reflective to the situation of self-
immunisation due to mild control measures in the USA, so that a substantial proportion of
individuals who contracted the virus, recovered and became immunised.

5.3 Estimation and Prediction via Markov Chain Monte Carlo

Markov chain Monte Carlo has been extensively used for the estimation and prediction in
the state-space model (see, e.g. Carlin et al., 1992; Chan & Ledolter, 1995; Czado & Song,
2008; De Jong & Shephard, 1995; Zhu et al., 2011, for a vast literature on this topic). Such
popularity of MCMC in the state-space model is rooted in its power to handle the evaluation
of high-dimensional integrals involved in the likelihood function (8). The essential strategy
for the calculation of each high-dimensional integral is to approximate it by a sample mean
of the involved integrand. This sample average is obtained from many MCMC sample draws
from posterior distributions of the model parameters, including the time series of the latent
probability vector � t.

Let t0 be the current time up to which we have observed data .Y I0Wt0 ; Y
R

0Wt0
/. Performing M

draws of Y It ; Y
R
t for t 2 Œ0; t0� [ Œt0 C 1;T� may produce both the in-sample draws over Œ0; t0�

and the out-sample draws over Œt0 C 1;T�. The sampling scheme proceeds as follows: for each
m D 1; : : : ;M,

(1) draw 
 (m) from the posterior
h

 j�

.m�1/
0Wt0

; Y
.m�1/I

0Wt0
; Y

.m�1/R
0Wt0

i
;

(2) draw �
.m/
t from the posterior

h
�t j�

.m/
t�1 ; 


.m/
i

of the q-dimensional latent process, at
t D 1; : : : ; t0; t0 C 1; : : : ;T;

(3) draw
�
Y
I.m/
t ; Y

R.m/
t

	
from

h
Y It j�

.m/
t ; 
 .m/

i
and

h
Y Rt j�

.m/
t ; 
 .m/

i
according to the

observed process, at t D 1; : : : ; t0; t0 C 1; : : : ;T, respectively.

Prior distributions are specified for some of the hyperparameters; for example, �0 �
Dirichlet

�
1 � Y I1 � Y

R
1 ; Y

I
1 ; Y

R
1

�
, R0 D ˇ=� and � follow some log-normal distributions, and

�I, �R and � follow some gamma distributions or inverse gamma distributions, respectively.
Convergence diagnostics of the MCMC algorithm may use standard diagnostic tools such as

the Gelman–Rubin statistic based on multiple chains with different initial values, monitoring
trace plots of the model parameters and so forth. The R package coda provides a comprehen-
sive toolbox of convergence diagnostics (Brooks & Gelman, 1998). Using the MCMC draws
collected after the burn-in, various summary statistics may be obtained to estimate model
parameters, conduct inference and make prediction. The summary statistics (e.g. posterior mean
and posterior mode) from the in-sample draws of the model parameters can provide point esti-
mates and 95% credible intervals with the left and right limits set respectively at the 2.5th
percentile and 97.5th percentile, and those of the observed processes may be used to check
the goodness of fit of a proposed model and to perform model selection via the deviance
information criterion (Spiegelhalter et al., 2002; Gelman et al., 2013). More importantly, the
summary statistics from the out-sample draws of the latent process � t; t > t0 provide point

© 2020 International Statistical Institute.

492 TANG ET AL.

International Statistical Review (2020), 88, 2, 462–513



predictions and their 95% credible prediction intervals. It is interesting to note that the ear-
lier MCMC implementation does not depend much on the form of the Runge–Kutta solution
f.� t�1; ˇ; �/ in the latent process (11). As long as a mechanistic infectious disease model has
an approximate analytic solution f.	 /, the Bayesian estimation and inference can be carried out
using MCMC. Such flexibility is appealing to develop software applicable for a broad range of
practical studies.

MCMC procedures are well suited for the estimation and inference in the setting of state-
space models because of fast and reliable numerical performances. For the Michigan data
analysis example in Section 5.5, using an average personal computer, we spend 1.5 h complet-
ing all MCMC calculations of 200 000 draws with thinning bin size of 10 after the burn-in
judged by four separate MCMC chains. This computing speed can be improved by using high-
performance computing facilities and/or some recent posterior sampling methods. As suggested
by Zhou and Ji (2020) for a state-space SIR model, one may set a more efficient sampler
over highly correlated posterior spaces by parallel-tempering MCMC algorithm (Geyer, 1991),
which provides rapid mixing in MCMC chains. Also, along the line of online learning, sequen-
tial Monte Carlo methods for posterior sampling (Doucet et al., 2001; Dukic et al., 2012) are
promising, as they permit efficient updating of existing posteriors with sequentially arrived
data, in the hope to avoid refitting the model by running MCMC from scratch using the updated
complete data.

5.4 Software

Wang et al. (2020) and Zhou et al. (2020) have developed a series of extended SIR models
by introducing time-varying transmission rate, quarantine process and asymptomatic immu-
nisation process (details in Section 5.2). The proposed methods have been established in an
open-source R package eSIR, available on GitHub (https://github.com/lilywang1988/eSIR).
This package calls rjags to generate MCMC chains and retains a few MCMC controllers
from rjags. The package is also updated weekly with new summarised US state-level count
data for the COVID-19 pandemic.

Several robust methods that are developed specifically for the prediction of the COVID-19
are cited by the Centers for Disease Control and Prevention (https://www.cdc.gov/coronavirus/
2019-ncov/covid-data/forecasting-us.html). To name a few, the Bayesian approach (Verity
et al., 2020) developed by researchers at Imperial College London (featured in Adam, 2020)
and the hybrid modelling approach (IHME COVID-19 health service utilization forecasting
team & Murray, 2020) adopted by the University of Washington Institute for Health Metrics and
Evaluation (IHME) (discussed by Jewell et al., 2020) have attracted great public and govern-
ment attention. We refer to their original work for modelling details. It is difficult to appreciate
the original work and followed comments without running real COVID-19 data using their
software, which is lacking for the IHME models, among some others. To increase research
transparency, releasing software or computing code used in statistical methods to the public is
strongly encouraged.

5.5 Example: Analysis of Michigan State-level Data

We now illustrate the use of R package eSIR to analyse the COVID-19 surveillance data
during the period of 11 March to 9 June 2020 from Michigan state, USA. The Michigan data
used in this analysis are listed in Appendix A2, including both I.t/ and R.t/. In the data anal-
ysis, we demonstrate the use of both the state-space model described in Application I and the
MCMC method, where the transmission rate modifier �.t/ is set as exponential functions. From
package eSIR, we can extract many useful statistics related to estimation and forecasting.
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For example, we can obtain both mean and median projections of the prevalence curve � I.t/; t >
t0 as well as their 95% credible prediction intervals. In addition, this package provides the esti-
mated first and second turning points of an epidemic. The former is the time when the daily
number of new infectious cases stops increasing, while the latter is the date when the daily
number of new infections becomes zero. Mathematically, the first corresponds to the time t at
which R�It D 0 or the gradient of P�It is zero, and the second is the time t at which the rate of
prevalence is zero P�It .t/ D 0: The following is the R script to perform the data analysis:

In the above program, we consider a time-dependent declining transmission rate with the
modifier value �.t/ D exp.��0t / where the parameter �0 is chosen so that the modifier
equals to 0.6 on 2 May. This value is determined based on the social distancing scoreboard
posted by Unacast, Inc. (https://www.unacast.com/covid19/social-distancing-scoreboard). One
needs to set exponential D TRUE, to activate such setting. Alternatively, as shown in
Figure 10(A)–(C), one may use a step function by providing a vector of pi0, values and the
corresponding vector of changes dates in change_time. In the main function above, we let
the starting date be 11 March and conduct the estimation and projection of 200 days ahead
(T_fin D 200) on 10 June and after. We run four separate MCMC chains with different ini-
tial values, each with length of 5 
 105, kept from every 10 draws (thn D 10) (a thinning
operation to reduce autocorrelations) after 2 
 105 draws are dropped. Thus, with a relatively
squandering setting, we expect a better performance of convergence and reliable quantification
of prediction uncertainty using sample quantiles.

There are two different prior settings for sensitivity analysis. One follows the example code
earlier, with the prior mean for the log-normal distribution of the basic reproduction number
to be 3.5, the removal rate 0.1 and thus the mean transmission rate 0.35, and the other with all
these values to be 4, 0.2 and 0.8, respectively. The two distinct settings provide similar estimat-
ing and forecast results as can be seen in Figure 11. Their estimated reproduction numbers are
3.154 (95% credible interval [2.162, 4.369]) and 3.143 (95% credible interval [2.294, 4.147]),
respectively, which are similar considering that their prior settings are quite different. The out-
put Gelman–Rubin statistic developed by Gelman and Rubin (1992) are close to 1 (data not
shown). Both pieces of evidence as well as stationary trace plots warrant the convergence of the
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Figure 11. Estimation and forecast from two different prior settings. The cyan areas denote the 95% in-sample credible
intervals of prevalence �It ; t � 9 June, and the salmon areas denote the 95% out-sample credible intervals of the projected
prevalence Y It ; t � 10 June, of confirmed infectious cases. The grey and red curves denote the posterior mean and median of
the prevalence �It ; t � 10 June, respectively. The vertical lines denote the landmark dates with the maximum increasing rate
(green), the maximum prevalence value (purple) and the last observation (blue), respectively. [Colour figure can be viewed
at wileyonlinelibrary.com]

MCMC chains. One can further check the quality of the MCMC draws through the output by
setting save_mcmc D TRUE. The estimation and forecast plots for the rates of infection and
removal compartments, diagnostic trace plots and other useful ancillary plots are automatically
saved under the directory assigned via file_add by setting save_plot_data D TRUE.
Other statistics for the posterior distributions of the parameters and dates of turning points can
be saved by setting save_filesD TRUE.

The Michigan COVID-19 data have been preprocessed to smooth away some unnatural gaps
caused by the clustered reporting issue as discussed in Appendix A2. Figure 11 shows an
adequate model fitting, where all observed numbers of confirmed infections fall in the 95% in-
sample credible intervals of prevalence �It ; t � 9 June. In contrast, the 95% out-sample credible
intervals of the projected proportion (Y It ) are much wider, reflecting to the significant amount of
uncertainty in the prediction. Such uncertainty elevates as the time moves further away from the
present time. Despite the large uncertainty, the projected mean and median prevalence curves
show a decreasing trend over time, which means that the social distancing works to mitigate the
epidemic in Michigan although the rate of improvement is moderate. Also the fact that the two
estimated turning points have occurred before 9 June is another piece of evidence for the posi-
tive effects of the series of social distancing orders issued by the state governor since 23 March
2020.

Model diagnosis is an important part of a statistical analysis, which is typically conducted
using various residual plots. As illustration, in this Michigan data analysis, let N�t be the poste-
rior means over the period of 11 March to 9 June. We consider residuals of the two observed
processes, defined by rIt D Y It �

N�It and rRt D Y Rt �
N�Rt , noting from (12) and (13) that

E
�
Y It j�t

�
D �It and E

�
Y Rt j�t

�
D �Rt . To check the conditional independence between Y It

and Y Rt , we make a scatter plot (the top row of Figure 12) of residuals rRt versus residuals rIt ,
where two large residuals (not outliers) are excluded in order to display the detailed patterns of
their relationship. Clearly, in this plot, all points are randomly distributed with no clear patterns,
which confirms the assumption of conditional independence of the two observed processes, as
well as approximately constant variances. We also plot partial autocorrelation functions (partial
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Figure 12. Top: a scatter plot of the residuals of the two observed processes Y It and Y Rt . Bottom: partial autocorrelation
functions of the posterior means of the latent processes, �It , �Rt and �St . [Colour figure can be viewed at wileyonlinelibrary.
com]

ACF) of the posterior means of the latent processes to check if the first-order Markov process is
appropriate. The bottom row of Figure 12 shows that there are dominant lag-1 autocorrelation
(the three coefficients are about 0.97) and no any additional significant autocorrelations beyond
the lag-1 dependence. This confirms the assumption that the three latent processes are all the
first-order Markov processes.

6 Spatio-temporal Multi-compartment Models

6.1 Modelling of Infections Disease with Spatial Heterogeneity

All mechanistic models discussed in the previous sections are useful to analyse the infection
dynamics for a large population such as a country or a state in which most of model parameters
may be assumed to be homogeneous and representing the entire population. This type of macro-
modelling approach is particularly valuable at the early phase of disease outbreak when the
national public health administration aims to come up with nationwide macrointervention pro-
tocols with very limited amounts of relevant data available. Once an epidemic evolves further
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into its middle phase, with more and more surveillance data collected from local communities,
a macromodel is no longer suitable for an in-depth analysis of microinfection dynamics owing
to the existence of substantial heterogeneity across local communities. This section concerns
a review of significant extensions of infectious disease models by incorporating spatial het-
erogeneity across different geographical locations into modelling and analysis. The focus will
be on the recent development of integrating the classical spatial cellular automata (CA) (von
Neumann & Burks, 1966) with the previously discussed temporal multi-compartment mod-
els, leading to an important class of spatio-temporal multi-compartment models. This class of
models is useful to predict local infection risk.

Technically speaking, the majority of existing macromechanistic models to study the spread
of infectious disease are based on the assumption that the system is homogeneous in space.
This means that the spatial characteristics that could potentially play a non-trivial role in the
development and outcome of disease infection are not taken into consideration. This is a valid
assumption if the population vulnerable to the infectious disease is mixed well and the human
interventions (e.g. vaccination strategies) are homogeneous across different spatial locations.
However, in reality, there exists substantial heterogeneity in the urbanisation, ethnic distri-
bution, political views, governance and economic composition across different subgroups of
individuals distributed over geographical locations, all of which will influence the spread of
infectious disease and make the previous macromechanistic model not appropriate to address
the dynamics spatially. One possible extension is to utilise partial differential equations (PDEs)
(Murray et al., 1986) in spatial homogeneity, which is relaxed to allow area-specific spread
patterns of epidemics. As noted in the literature, one limitation of PDEs is that this approach
ignores the fact that infectious disease is spread through person-to-person interactions, rather
than by a continuous population. Thus, PDEs may lead to impractical results about the dynam-
ics of an epidemic (Mollison, 1991). A natural strategy is to embrace a micromodel mimicking
an interactive particle system, and CA is one of the well-studied systems with the strength
of modelling spatially varying infection dynamics. Originated in the works of von Neumann
and Burks (1966) and Ulam (1962), the CA paradigm has been used in many applied fields,
including the modelling of infectious diseases.

6.2 Building a General Cellular Automaton

When applied to model spatial variations of epidemic spread, CA has three distinctive fea-
tures: (i) it treats individuals as discrete entities in order to study person-level movements in
the infection dynamics. This high-resolution paradigm necessitates the incorporation of indi-
vidual's heterogeneity such as residential address, age, race, pre-existing medical conditions
and others in the modelling. In surveillance data, geographical information is publicly available
(e.g. county that an individual lives), so it is feasible to utilise this variable in the extension of
the macromechanistic model. (ii) CA allows to introduce local stochasticity; for example, the
CA paradigm may be built upon a person-to-person infectious mechanism if individual-level
information is available; otherwise, it may be based on a group-group infection process. (iii)
CA is formulated in a network of particles (e.g. individuals, groups, villages and counties) with
certain rules of connectivity and stochastic laws of disease transmission. This network topology
is well suited for computations and simulations. Because of these unique advantages, the CA
paradigm has been employed by researches as an efficient method to study spread patterns of
epidemics (Beauchemin et al., 2005; Ahmed & Agiza, 1998; Boccara et al., 1994; Quan-Xing
& Zhen, 2005; Fuks & Lawniczak, 2001; Willox et al., 2003; Rousseau et al., 1997; Sirakoulis
et al., 2000; Fuentes & Kuperman, 1999; Liu et al., 2006; Yakowitz et al., 1990; Sun et al.,
2011).
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Figure 13. One-step forward evolution of the infection prevalence (� 103) for the central cell in the simulation study.
Four different neighbourhood types are illustrated, including (A) von Neumann neighbourhood, (B) Moore neighbourhood,
(C) MvonN neighbourhood and (D) extended neighbourhood. The numeric value indicates the proportion of infectious
people in each cell. The letter indicates target (T) or neighbour (N) cells, respectively. [Colour figure can be viewed at
wileyonlinelibrary.com]

In the modelling of infectious diseases, the basic CA formulation involves three primary
components: (i) a two-way array of cells (e.g. an age group or a county) that contain groups
of individuals under study, and each individual belongs to one cell; (ii) a set of discrete
states (e.g. susceptible, self-immunised, contagious, recovered and death) that describe dif-
ferent conditions of individuals during an epidemic; and (iii) some specific rules or updating
functions that determine spatially how local interactions with a target cell from its neighbour-
ing cells can influence and change the states of individuals in the target cell; all cells in a
CA system achieve a global propagation of infection status updates instantaneously and con-
tinuously. In the application of the CA, determining neighbouring cells is tricky, and different
types of neighbourhood topology have been proposed in the literature, including von Neumann
neighbourhood, Moore neighbourhood, MvonN neighbourhood and extended neighbourhood
(Hasani & Tavakkoli, 2007) (see Figure 13 for an example of these four neighbourhood
types).

In the modelling of influenza A viral infections, Beauchemin et al. (2005) use a simple
two-dimensional CA model to investigate the influence of spatial heterogeneity on viral kinet-
ics. Their study population consists of two types of cell species, the epithelial cells and the
immune cells. The epithelial cells are the target of viral infection, and the immune cells
are those fighting the infection. The CA model is built upon a two-dimensional square lat-
tice with the Moore neighbourhood (see Figure 13(B)), where the condition of a certain cell
will only be influenced by the eight closest cells around it. The set of states for the epithe-
lial cells include healthy, infected, expressing, infectious or dead, while an immune cell can
be in any of two states: virgin or mature. Decision rules of updating the CA system are
governed by parameters, such as INFECT_RATE that models the probability of a healthy
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epithelial cell being infected by contacting each infectious nearest neighbour. Detailed updat-
ing functions are discussed in Beauchemin et al. (2005). Simulations show that the proposed
CA model is sophisticated enough to reproduce the basic dynamic features of the cell-to-cell
infection.

Different from the modelling of the influenza A viral infection earlier, Fuks and Lawniczak
(2001) propose a lattice gas CA that is closely connected to an SIR framework of an epi-
demic, where the interacting patterns of individuals are modelled. It is assumed that the
status of individuals will change between three types, susceptible, infectious and recovered,
denoted as fS; I;Rg. The space where the epidemic takes place is set as a group of regular
hexagonal cells, in which the individuals are located at the centre of each cell and can move
through a channel that is created by connecting two centres of adjacent cells. The evolution
of the CA occurs at discrete time steps under the operation of three basic functions, including
contact C, randomisation R and propagation P. With the application of function C, an individ-
ual who is susceptible can become infected with probability 1 � .1 � ˇ/NI , where ˇ is the
transmission rate and NI is the number of infectious individuals within the same cell. Mean-
while, an individual who is infectious can recover with probability � , where � is the recovery
rate. The function R randomly assigns individuals in each cell to move through the channels,
which contributes to modelling the mixing process of individuals. In the final propagation
step, individuals simultaneously move to the cells that they are randomly assigned to by R.
In addition to the basic epidemic dynamics modelled by the proposed lattice gas CA, Fuks
and Lawniczak (2001) also study the effect of heterogeneous spatial distribution of individuals
with states S, I and R and the influence of different types of barriers in controlling the spread
of an epidemic.

6.3 Building an Susceptible–Infectious–Removed Cellular Automaton

Although the two applications discussed earlier in Section 6.2 give a framework of how CA
models the dynamics of epidemic spread, White et al. (2007) provide a more direct incorpora-
tion of spatial CA with the temporal SIR compartments at the population level, where each cell
stands for a small population (e.g. a county) with different proportions of susceptible, infec-
tious or recovered individuals. The resulting CA-SIR given in White et al. (2007) is formulated
by four parts (C, Q, V and f). First, C D f.i; j/; 1 � i � r; 1 � j � cg defines the cellular
space, or a collection of r
 c cells on a two-way array, where r
 c is referred to the dimension
of the cells. Second, Q represents a finite set that contains all the possible states of a cellular
space. In the case of the SIR model, Q D fS; I;Rg corresponding to the susceptible, infectious
and removed states. Third, V D f.pk; qk/; 1 � k � ng is the finite set of indices defining the
neighbourhood of each cell, and consequently, Vij D f.i C p1; j C q1/; : : : ; .i C pn; j C qn/g
denotes the set of neighbouring cells for the central cell .i; j/. Specifically, V� D V � f.0; 0/g
represents all the neighbouring cells without the cell at the centre of consideration. Fourth,
function f stands for certain updating rules to govern the dynamics of interactions between
cells in the a CA-SIR system. For each cell at a discrete time t (say, today), its current sta-
tus is described by three cell-specific compartments f�Sij .t/, �

I
ij .t/ and �Rij .t/g, where �Sij .t/,

�Iij .t/ and �Rij .t/ 2 Œ0; 1� represent the cell-specific probabilities of being susceptible, infec-
tious and recovered, respectively. Clearly, �Sij .t/C�

I
ij .t/C�

R
ij .t/ D 1 to form a microcell-level

SIR model. The CA-SIR model is updated based on the following transition functions: for
cell .i; j/ 2 V,
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�Sij .t/ D �
S
ij .t � 1/ � ˇ�Sij .t � 1/�Iij .t � 1/ � ˇ�Sij .t � 1/

X
.p;q/2V �

!.i;j /pq

NiCp;jCq�
I
iCp;jCq.t � 1/

Nij
;

�Iij .t/ D .1 � �/�
I
ij .t � 1/C ˇ�Sij .t � 1/�Iij .t � 1/C ˇ�Sij .t � 1/

X
.p;q/2V �

!.i;j /pq

NiCp;jCq�
I
iCp;jCq.t � 1/

Nij
;

�Rij .t/ D �
R
ij .t � 1/C ��Iij .t � 1/;

(15)

where ˇ is the population macrotransmission rate and � is the population macrorecovery rate.
First, when the set V� D ∅, that is, an empty set, the CA-SIR model for cell .i; j/ reduces a cell-
level SIR model similar to that given in (2). Second, the numeratorNiCp;jCq�IiCp;jCq.t �1/ is
the expected number of infectious cases yesterday (time t�1) in a neighbouring cell .p; q/ 2 V�

whose cell population is Ni+p,j+q. So, the ratio
NiCp;jCq�

I
iCp;jCq

.t�1/

Nij
is an empirical probability

that a person in cell .i; j/ randomly runs in a contagious person from its neighbouring cell
.p; q/. Third, this random chance is weighted by a factor of intercell connectivity, denoted by
!
.i;j /
pq ; the stronger tie of cell .i; j/ with cell .p; q/, the higher likelihood of a person from cell
.i; j/ running in contagious individuals in cell .p; q/. Fourth, summing up all such likelihoods
gives a total likelihood that an individual from cell .i; j/ would run in the virus carriers from
all the neighbouring cells. A typical form of the intercell connectivity coefficient is given by
!
.i;j /
pq D c

.i;j /
pq m

.i;j /
pq , where c.i;j /pq and m.i;j /pq are broadly defined as a connection factor and a

movement factor, respectively. They are used to characterise the intercell mobility or how easily
individuals in the cells can move between the centre cell and its neighbouring cells. This CA-
SIR system, which is integrated with the SIR model, can serve as a basis for the development
of useful algorithms to emulate real-world epidemic infection spatially.

Example 4. We perform a simulation study to illustrate the one-step ahead evolution of the
infection dynamics in a simple CA-SIR model (15). Assume that there is a 5 
 5 square array
of 25 cells that hold the population under the study of a certain epidemic. Our target cell is the
one at the centre (see Figure 13). The prevalence of infection in the central cell is influenced
by its neighbouring cells, for which different types are considered, including von Neumann
neighbourhood, Moore neighbourhood, MvonN neighbourhood and extended neighbourhood
(all cells in the array are neighbouring cells). For simplicity, we assume that all the cells have
the same population size. At time t0, the prevalence of being infectious �Ic .t0/ in each cell c,
except for the central one, is simulated from a Uniform U.0; 0:01/ distribution. We intentionally
set Ic.t0/ D 0 for the central cell to clearly show the change of infection after a one-step
evolution at time t0 C 1. It is set that the macrotransmission rate ˇ D 0:5 and the recovery
rate � D 0:2. For those cells within the neighbourhood of consideration, it is specified that
cpq D 1 and mpq D 0:5 if a cell is a ‘near’ neighbour (i.e. if the cell shares a common edge
or vertex with the target cell) and cpq D 0:5 and mpq D 0:25 for a ‘distant’ neighbour cell.
The prevalence of being infectious in the central cell is updated using the second model in
Equation (15). The codes for data simulation are listed as follows, and the infection prevalence
updates for the central cell and for all its neighbouring cells are shown in Figure 13.
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6.4 Spatio-temporal Models for Infectious Diseases

Based on the basic CA-SIR model proposed in White et al. (2007), extensions can be easily
applied to better model the dynamics of infectious diseases using real data. Zhou et al. (2020)
propose a spatio-temporal epidemiological forecast model that combines CA with an extended
SAIR (eSAIR) model to project the county-level COVID-19 prevalence over 3 109 counties in
the continental United States. This model is termed as CA-eSAIR model in which a county is
treated as a cell. To carry out cell-level infection prevalence updates, the macroparameters ˇ
and � need to be estimated from the macromodel eSAIR model. In comparison with the eSIR
model discussed in Section 5.2, a new antibody compartment (A) is included in the eSAIR
model to account for the individuals who are self-immunised and have developed antibodies to
the coronavirus. The inclusion of the antibody compartment can address the under-reporting
issue known for available public databases and to build self-immunisation into the infection
dynamics. In this way, better estimation of the macromodel parameters can be obtained. The
eSAIR model can be described using the following ODEs, which govern the law of interac-
tive movements among four compartments or states of susceptible (S), self-immunised (A),
infectious (I) and removed (R):

d�At
dt
D ˛.t/�St ;

d�St
dt
D �˛.t/�St �ˇ�.t/�

S
t �

I
t ;

d�It
dt
D ˇ�.t/�St �

I
t ���

I
t and

d�Rt
dt
D ��It ;

where ˛.t/ is the self-immunisation rate, �.t/ is a time-varying transmission rate modifier, ˇ is
the basic disease transmission rate and � is the rate of being removed from the system (either
dead or recovered). The earlier eSAIR model is an alternative expression of model (6) based on
the compartment probabilities.

In order to apply the CA-eSAIR system to model the epidemic spread in the USA, Zhou
et al. (2020) relax the classical CA-eSAIR from spatial lattices (or cells) to areal locations
of counties. Let C be the collection of 3 109 counties. Here we consider the extended neigh-
bourhood type (all counties are neighbouring ones given high mobility in the US population).
For a county c 2 C, Nc denotes the county population size, and C�c denotes the set of all the
other counties except county c. For county c at time t, the county-specific probability vector is
denoted by �c.t/ D .�Sc .t/; �

A
c .t/; �

I
c .t/; �

R
c .t//

>. The CA-eSAIR model at discrete times is
expressed by the following form:

�Ac .t/ D �
A
c .t � 1/C ˛c.t/�

S
c .t � 1/;

�Sc .t/ D .1 � ˛c.t//�
S
c .t � 1/ � ˇ�c.t/�

S
c .t � 1/�Ic .t � 1/

� ˇ�c.t/�
S
c .t � 1/

X
c02C�c

!cc0.t/fNc0�
I
c0.t � 1/=Ncg;

�Ic .t/ D .1 � �/�
I
c .t � 1/C ˇ�c.t/�

S
c .t � 1/�Ic .t � 1/

C ˇ�c.t/�
S
c .t � 1/

X
c02C�c

!cc0.t/fNc0�
I
c0.t � 1/=Ncg;

�Rc .t/ D �
R
c .t � 1/C ��Ic .t � 1/;

where ˛c.t/ is the county-specific self-immunisation rate and �c.t/ is the county-specific trans-
mission modifier. Same as the parameter mentioned in the CA-SIR model (15) earlier, !cc0.t/
is a connectivity coefficient that quantifies the inter-county movements between counties c and
c0. By applying the proposed CA-eSAIR model, Zhou et al. (2020) have proposed a t-day ahead
risk forecast of the COVID-19 as well as a personal risk related to a travel route.
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6.5 Example: Analysis of Michigan County-level Data

We illustrate the predicted risk of infection with the COVID-19 for all 83 counties in Michi-
gan state using the state-space model with the mechanistic CA-eSAIR latent process (Zhou
et al., 2020). In the first step, we apply the MCMC method to estimate the model parameters
(ˇ and �) and the vector of four probabilities � t of being susceptible, self-immunised, infec-
tious and removed by fitting the eSAIR model with the state-level surveillance data since 11
March. This can be performed easily using the R package eSIR, which has been illustrated in
Section 5.5. Both the antibody rate function ˛.t/ and the transmission rate modifier �.t/ are
pre-specified using other data sources with the detail given in the succeeding text. After getting
the estimates of the model parameters, we use them as the initial values to make county-level
risk prediction by the CA-eSAIR model (15). In this example, we consider only a 1-day ahead
infection rate prediction (i.e. 3 May 2020) for all the counties in Michigan, namely, �Ic .t0C 1/.
Given that the COVID-19 pandemic evolves fast in the state of Michigan in early May 2020,
this kind of short-term forecast or nowcast is of great interest to the Michigan government for
timely decision making on either extending an existing governor's ‘Stay-At-Home’ order or
relaxing this executive order. To perform the prediction, one important task is to specify the
inter-county connectivity coefficient !cc0.t/. As discussed in Zhou et al. (2020), it is challeng-
ing to define !cc0.t/ objectively, as it involves many variables. In this illustration, we specify
this coefficient as !cc0.t/ D �cc0expf��r.c; c0/g, where � is a tuning parameter to be deter-
mined. Briefly speaking, the first factor �c,c0 is the inter-county mobility factor characterising
the decrease of human encounters in terms of their potential movements between counties,
which has been given online (https://www.unacast.com/covid19/social-distancing-scoreboard).
The second factor r.c; c0/ is a certain travel distance between two counties c and c0 in terms of
both geodesic distance (Karney, 2013) and ‘air distance’ based on the accessibility to nearby

Figure 14. (A) Statewide 1-day ahead county-level predicted infectious prevalences and (B) statewide 1-day ahead weighted
(by county population) prediction error (WPE) for all the 83 counties of Michigan, USA, using data up to 2 May. [Colour
figure can be viewed at wileyonlinelibrary.com]
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airports. In addition, the tuning parameter � enables to adjust the scale of the travel distance by
minimising the sum of (county-level) weighted absolute prediction error for the one-step ahead
risk prediction of the infection rate. In addition to the specification of the connectivity coeffi-
cient !cc0.t/, the self-immunisation rate ˛c.t/ is calculated based on the results of the New York
statewide antibody test surveys released by the New York governor Andrew Cuomo on 29 April
(New York State Report, 2020), and the transmission modifier function �c.t/ is specified by the
effectiveness score of state-specific social distancing using cell phone data in the USA from the
Transportation Institute at the University of Maryland (https://data.covid.umd.edu/). Additional
details of the determination of �c,c0 , r.c; c0/, ˛c.t/ and �c.t/ and the tuning of � can be found in
Zhou et al. (2020). Figure 14(A) shows the 1-day ahead projected infectious rate for 83 counties
in Michigan on 3 May, and Figure 14(B) plots the corresponding county-level weighted predic-
tion errors (WPE), which is at the order of 10�7 for the counties. The R package CA-eSAIR is
available on GitHub (https://github.com/leyaozh/CA-eSAIR).

7 Future Directions

In this paper, we have presented the basics of multi-compartment infectious disease models
from both deterministic and stochastic perspectives. We emphasise on the probabilistic exten-
sion of mechanistic models, which opens the door to a suite of statistical modelling techniques
while still preserving the infectious disease dynamics in multi-compartment models. Within the
stochastic modelling framework, both the frequentist and the Bayesian schools of modelling
considerations and statistical methods are visited, along with high-level review and illustrative
examples. Epidemic models have played a key role in the past century to provide understanding
of past and ongoing infectious diseases, and it is our belief that they will continually be val-
ued and be improved to help us better understand the current COVID-19 pandemic as well as
future infectious diseases. We conclude with several remarks on future directions of stochastic
infectious disease modelling.

7.1 Data: Sources, Quality and Sharing

7.1.1 Data quality

Although publicly available surveillance data are useful to build preliminary models for the
understanding of spreading patterns of infectious diseases, their data quality in terms of mea-
surement biases and under-reporting has been known an outstanding issue that significantly
impacts the validity of statistical analysis results (Angelopoulos et al., 2020). This is indeed
an open problem to date with no appropriate solutions yet. With no insurance of reliable data,
statistical methods, regardless of macromodels or micromodels, would fail to produce mean-
ingful results. One potentially promising solution to such a fundamental concern is to build
reliable and well-validated open-source benchmark databases that include not only traditional
surveillance data but also personal clinical data from various sources such as hospital electronic
health records, drug trials and vaccine trials. In addition, data from serological surveys and data
from mobile devices or as such are also useful to increase information resolution and reliabil-
ity, to remove major measurement biases and to calibrate data analytics. This task requires also
efforts of data integration and international collaborations. Research on the COVID-19 pan-
demic certainly gives rise to a new opportunity of developing data integration methods to not
only address challenges of data multi-modality but also overcome many data-sharing barriers
and data confidentiality concerns.
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7.1.2 Serological survey

The population of self-immunised individuals is a significant source of bias in COVID-19
surveillance data; they have never been captured by public health monitoring systems. Accord-
ing to survey results (New York State Report, 2020), 20% of individuals in the city of New
York have been tested antibody positive to the coronavirus. This simply means that a nation-
wide serological survey is a must in order to come up with an appropriate assessment for the
underlying epidemiological features of the COVID-19 pandemic in the USA. The design of
this nationwide serological survey is a challenging statistical problem. Solving it requires some
innovative ideas and methods; for example, a cost-effective design of pooling several serum
samples to perform a pooled test (e.g. Gollier & Gossner, 2020), and an efficient design of
hierarchical stratified survey sampling schemes. The SAIR model introduced in Section 3.3
presents a basic framework for statistical models incorporating antibody serological surveys
into the multi-compartment dynamics of infectious diseases.

7.1.3 Mobile tracking data

Large-scale tracking data have played an important role in evaluating the effectiveness of
social distancing in communities. The precision of intervention efficacy helps improve both
estimation and prediction that directly impact government's decisions on tightening, extending
or lifting control measures. One emerging data source pertains to the information of real-time
cell phone locations, which allows better contact tracing so that individual data sequences can
be recovered and used for modelling of personal risk and regional hotspots. A research group
in the University of Maryland (https://data.covid.umd.edu/) proposes several algorithms to pro-
cess the cell phone data in the USA to extract key features of personal mobility, including
location identification, trip identification, imputation of missing trip information, multilevel
data weighting scheme, comprehensive trip data validation, and data integration and aggrega-
tion (Zhang et al., 2020; Ghader et al., 2020). However, these types of data are proprietary and
subject to the issue of personal privacy (Ienca & Vayena, 2020). Integrating such data type or its
summary statistics into infectious disease models should be encouraged, but in a cautious and
responsible manner. In this field, statistical learning methods with differential privacy (Dwork,
2008) are of great interest.

7.2 Statistical Models

Statistical methodologies have been greatly challenged in the modelling and analysis of
infectious diseases; almost every methodological troubling issue known the statistical literature
surfaces, which presents new opportunities to statisticians and data scientists to develop inno-
vative solutions. Among many challenges, we emphasise a few of critical importance, which
may be easily ignored in the new methodology development.

7.2.1 Transparency and reproducibility

We strongly advocate for the urgent need to build models that are transparent and repro-
ducible (Peng, 2011). As most methods and models for the COVID-19 pandemic are fairly
recent and many have not yet been carefully peer reviewed, researchers should document the
sources of data used, data preprocessing protocols, source computing code and sufficient mod-
elling details to allow external validation from the public. Such details are also necessary to
allow others, who may have better quality data but without sufficient statistical expertise, to
easily adopt new methodologies to obtain high-quality results. As mentioned in an original
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post by Dr Nilanjan Chatterjee (https://link.medium.com/hqUQILEAd6), transparency, repro-
ducibility and validity are three criteria to assess and assure the quality of prediction models.
His essay also mentioned the difficulty in reproducing the work given by the IHME to obtain
accurate predictions and appropriate confidence intervals. Similar to the IHME method that has
no software available, Gu's method for the COVID-19 prediction (https://covid19-projections.
com/) that has recently received much attention does not provide software, either, unfortunately.
Without clear guidance and full reproducibility, even models that currently do well might fail
in the future because predictions are relying on certain kinds of extrapolation assumptions
that need to be unveiled to the scientific community with full transparency for validation and
comparison.

7.2.2 Nowcasting and short-term projection

Given that model projections for the COVID-19 pandemic have been changing dramatically
from day to day primarily because the underlying models are changing, the primary aim may
be set at optimising prediction models for nowcasting or short-term projections and be aware
of the probable worst case scenarios for longer-term trends. As shown in the data example in
Section 6.5, the optimal tuning parameter is determined by the minimal short-term 1-day ahead
prediction error. As pointed out by Huppert and Katriel (2013), transmission models with dif-
ferent underlying mechanisms may lead to similar outcome in one context (e.g. short term) but
fail to do so in another (e.g. long term). The further we project, the more we are uncertain about
the validity of model assumptions. Hence, extra caution is needed when reporting and inter-
preting long-term projection results. With the available surveillance data, making a nowcast of
infection risk in next few hours is difficult; but it may become feasible when certain data sources
of local information are accessible, such as electronic health records from local hospitals, viral
testing results from local testing centres and mobile tracking data from individual cell phones.
This requires a finer-resolution prediction machinery that may be established by generalising
the CA to certain spatial point processes. Despite being challenging, such prediction paradigm
would be very useful and worth a serious exploration.

7.2.3 Bias correction

Because of the potential bias in surveillance data, either delayed reporting of infected case
or inaccurate ascertainment of death caused by a virus, there are many measurement errors in
data. This calls for statistical methods that can directly handle various data collection biases
or are robust to such biases. There is little work performed in this important field of statistical
modelling and analyses.

7.2.4 Model diagnostics

In the current literature, model diagnostics for infectious disease models are largely lacking.
Given that most of the existing mechanistic models are based on certain parametric distri-
butions (e.g. Poisson processes), checking model assumptions is required. For example, for
the proposed Poisson process, the assumption of incremental independence and overdispersion
should be checked. In addition, procedures of validating prediction accuracy are also important
in which the choice of test data is tricky and needs to be guided by some objective criteria.

7.2.5 Adding covariates

A major weakness noted for the existing mechanistic models is the inflexibility of adding
individual or subgroup covariates (e.g. age and race). The current strategy of handling these
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extra variables is via stratification, which would end up with strata with small sample sizes,
so that subsequent statistical analyses lose power in both estimation and prediction of infec-
tion dynamics. An extension from the CA seems promising as the CA presents a system of
particles distributed in different cells (or strata), where individual characterisations on particles
may be added via covariates. The resulting model would assess and predict personal risk, as
well as identify hotspots of new infection. This is worth serious exploration in the future with
appropriate data available (e.g. electronic health records from hospitals).

7.2.6 Meta-analysis

For a global pandemic such as the COVID-19 that affects over 200 countries in the world, an
integrative analysis is appealing to understand common features of the pandemic so to learn dif-
ferent control measures. Given the fact that a pandemic evolves typically in a certain time lag,
experiences from countries with earlier outbreaks may be shared with countries with later out-
breaks, where statistical methods may borrow relevant information to set up prior distributions
in the model fitting. For example, the estimated reproduction number estimated from the Euro-
pean COVID-19 data may be a hyperparameter in the statistical analysis of the US COVID-19
data. There is a clear need of more comprehensive meta-analysis methods to better integrate
data from different countries than using the data to create hyperparameters. Along this line, one
of the earliest attempts is to combine COVID-19 forecasts from various research teams using
ensemble learning (see, e.g. https://github.com/reichlab/covid19-forecast-hub).

7.3 Impacts on Public Health Policy and Economy

Most investigation efforts made by quantitative researchers have been relatively independent
in an academic setting, and it is high time that policymakers and stakeholders are involved and
play an active role in such modelling efforts. Long-term projection of the COVID-19 is most
sensitive to and highly dependent on public health policy. A major source of uncertainty is due
to the conflicting demands between public health (disease mitigation) and the need to sustain
economic growth (livelihood), and the balance of the two is a moving target. One way to account
for the modelling uncertainty is to factor in economic planning as a time-varying modifier
of projection models. Although some efforts have been made to incorporate economical data,
most are retrospectively oriented, and we believe more efforts should be spent to prospectively
incorporate expert inputs and economic forecasts. This is a research area of great importance
worth serious exploration.

7.4 Some Open Questions

We like to close this review paper by casting a few open questions of great interest to the
public (at least to ourselves) that statisticians may help deliver answers with existing or new
data to be collected by innovative study designs. We also hope that these questions motivate
new methodological developments.

Question 1: How would researchers assess both timing and strength of the second wave
of the COVID-19 pandemic? Is the second wave worse than the first one? Answers
to these questions need a relatively accurate long-term prediction of the infection
dynamics. Among so many different statistical models being able to predict future
spreading patterns, we need to identify few ones or their combinations that are
particularly useful to make long-term predictions.

Question 2: As many countries and regions started to reopen business, how would govern-
ment monitor the likelihood of a recurring surge of COVID-19 caused by business
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reopenings? Does the social distancing measure help reduce a potentially rising risk?
Answers to these questions require adequate data that may not be easily collected
by routine approaches. Statisticians may work with practitioners to develop good
sampling instruments and schemes for community risk surveillance.

Question 3: Is face mask protective? If so, how to assess the compliance of face mask wear-
ing? Questions about the causal effect of face mask wearing on disease progression
are very challenging. This is because there is no randomisation in the intervention
allocation and many confounding factors are unobserved.

Question 4: Is there evidence that the contagion of the coronavirus decays over time because
of an increasing recovery rate of virus carriers and a decreasing rate of case fatality?
Statisticians ought to work out some thoughtful and convincing answers to the public.
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Appendix A

A1 The Runge–Kutta Approximation

The Runge–Kutta method is an efficient and widely used approach to solving ordinary dif-
ferential equations when analytic closed-form solutions are unavailable. It is typically applied
to derive a numerical functional system of high-order accuracy with no need of high-order
derivatives of functions. The most well-known Runge–Kutta approximation is the Runge–Kutta
fourth-order (RK4) method. For example, in the case of the mechanistic SIR model (1), because
the three ordinary differential equations of the SIR model are non-linear, there exist no closed-
form solutions of S.t/, I.t/ and R.t/. These approximate solution can be obtained by the RK4
method.

Assume a general ordinary differential equation problem:

dy

dt
D f .t; y/; with a boundary condition y.t0/ D y0;

where y is an unknown function in time t, which can be either a scalar or a vector. Then for
a preselected (small) step size h > 0, a fourth-order approximate solution of y satisfies at a
sequence of equally spaced grid points yn; n D 0; 1; : : : ; with jyn � yn�1j D h,

ynC1 D yn C
1

6
h.k1 C 2k2 C 2k3 C k4/; n D 0; 1; : : : ;

where
k1 D f .tn; yn/;

k2 D f

�
tn C

h

2
; yn C h

k1

2

�
;

k3 D f

�
tn C

h

2
; yn C h

k2

2

�
;

k4 D f .tn C h; yn C hk3/:

Because four terms k1, k2, k3 and k4 are used in the approximation, the earlier method is termed
as an RK4 method of the ODE solution to function y. For a general RK approximation, refer to
Stoer and Bulirsch (2013).

A2 Michigan Coronavirus Disease 2019 Data

In the succeeding text, we list Michigan data from 11 March to 10 June 2020. The num-
bers of daily confirmed cases and deaths are obtained from the GitHub repository JHU CSSE
(https://github.com/CSSEGISandData/COVID-19), and the daily recovery data are collected
from 1Point3Acres (https://coronavirus.1point3acres.com). The daily cumulative numbers of
deaths and recovered cases are then summed as the cumulative number of removed cases. In
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Figure A1. The prevalence of cumulative removed subjects before (points) and after (red curve) smoothing. [Colour figure
can be viewed at wileyonlinelibrary.com]

such surveillance data, there are data reporting gaps shown in Figure A1 that are possibly
caused by the so-called clustered reporting; that is, the recovered cases have not been released
on the daily basis. To mitigate this data reporting artefact, we invoked a simple local poly-
nomial regression procedure (LOESS) to smooth such unnatural jumps, resulting in a smooth
fitted curve shown in Figure A1. The calibrated cumulative numbers of removed cases from
the fitted curve (rounded to the corresponding integers) are available from the corresponding
author upon request. The total population in Michigan is set as 9.99 million. The summarised
US state-level count data, which are weekly updated, can be also be found directly from the
eSIR package introduced in Section 5.4.
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