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Abstract: Diarylheptanoids are a family of plant secondary metabolites with a 7 carbon skeleton
possessing two phenyl rings at the 1- and 7-positions. They can be subdivided into acyclic and
cyclic diarylheptanoids where the latter are further divided into meta,meta-bridged biphenyls
([7.0]metacyclophanes) and meta,para-bridged diphenyl ether heptanoids (oxa[7.1]metapara-
cyclophanes). Since the isolation of curcumin from the rhizomes of turmeric (Curcuma longa) in 1815
which was named curcumin, a variety of diarylheptanoids have been isolated from a number of plant
families such as Aceraceae, Actinidiaceae, Betulaceae, Burseraceae, Casuarinaceae, Juglandaceae,
Leguminosae, Myricaceae, and Zingiberaceae. Earlier studies on these diarylheptanoids have been
summarized on several occasions, of which the main themes only focus on isolation, structure
elucidation, and the biological properties of linear types. Only a few have covered cyclic
diarylheptanoids and their chemical synthesis has been covered lastly by Zhu et al. in 2000.
The present paper has, therefore, covered recent progress in cyclic diarylheptanoids focusing on the
isolation, structural and biological features, and chemical synthesis.
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1. Introduction

Diarylheptanoids are a family of plant secondary metabolites with a seven-carbon skeleton
possessing two phenyl rings at positions 1 and 7. They can be subdivided into acyclic diaryheptanoids
(type I, linear) and cyclic diarylheptanoids where the latter are further divided into meta,meta-bridged
biphenyls (type II, [7.0]metacyclophanes) [1] and meta,para-bridged diphenyl ether heptanoids (type III,
oxa[7.1]metaparacyclophanes) [2,3].
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1. Introduction 

Diarylheptanoids are a family of plant secondary metabolites with a seven-carbon skeleton 

possessing two phenyl rings at positions 1 and 7. They can be subdivided into acyclic 

diaryheptanoids (type I, linear) and cyclic diarylheptanoids where the latter are further divided into 

meta,meta-bridged biphenyls (type II, [7.0]metacyclophanes) [1] and meta,para-bridged diphenyl ether 

heptanoids (type III, oxa[7.1]metaparacyclophanes) [2,3]. 

 
Vogel and Pelletier isolated a “yellow coloring-matter” from the rhizomes of turmeric (Curcuma 

longa) in 1815 and named it curcumin [4], and a century passed before the structure of curcumin by 

synthesis was defined as the first diarylheptanoid [5]. Since then, a variety of diarylheptanoids have 

been isolated from a number of plant families including Aceraceae, Actinidiaceae, Betulaceae, 

Burseraceae, Casuarinaceae, Juglandaceae, Leguminosae, Myricaceae, and Zingiberaceae. The 

Vogel and Pelletier isolated a “yellow coloring-matter” from the rhizomes of turmeric
(Curcuma longa) in 1815 and named it curcumin [4], and a century passed before the structure of
curcumin by synthesis was defined as the first diarylheptanoid [5]. Since then, a variety of
diarylheptanoids have been isolated from a number of plant families including Aceraceae,
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Actinidiaceae, Betulaceae, Burseraceae, Casuarinaceae, Juglandaceae, Leguminosae, Myricaceae,
and Zingiberaceae. The extracts of these plants has long been used in traditional oriental medicine in
China, India, Japan and Korea as well as ethno-medicine in western countries. Occurrences of three
major diarylheptanoids in plants reported so far in the literature are summarized in Table 1. It should be
noted that the Zingiberaceae family has long been the sources of many linear diarylheptanoids
including curcumin; no cyclic diarylheptanoids, to the best of our knowledge, have been isolated
as yet [6].

Table 1. Occurrence of diarylheptanoids in plants reported in the literature.

Family Genus Diarylheptanoids Reference(s)

Linear
(Type I)

Biphenyl
(Type II)

Diphenyl Ether
(Type III)

Aceraceae Acer + + + [7]
Actinidiaceae Clematoclethra − − + [8]

Betulaceae Alnus + + + [9]
Betula + + + [10]

Corylus − + − [11,12]
Carpinus − + − [13]
Ostrya − + − [14]

Ostryopsis + + + [15,16]
Burseraceae Garuga − + + [17,18]

Boswellia − − + [19]
Casuarinaceae Casuarina − + − [20]
Juglandaceae Engelhardia + − + [21]

Juglans + + + [22,23]
Platycarya − + + [24]
Pterocarya − − + [25]
Rhoiptelea + + + [26]

Myricaceae Myrica − + + [27,28]
Morella + + + [29]

Rubiaceae Scyphiphora − + − [30]
Zingiberaceae Alpinia + − − [31]

Curcuma + − − [4]

Their unique and characteristic structural features and wide range of biological properties have
contributed to their popularity, which has led to continual isolation, evaluation of biological properties,
and total synthesis. The earlier studies on diarylheptanoids were summarized by Claeson et al. [32,33],
and by Lv and She [34,35], which included all of these three subcategories. Although the two reviews
by Claeson et al. covered the general aspects of diarylheptanoids, the reviews by Lv and She focused on
their structures, distributions, biological activities and 13C-nuclear magnetic resonance (NMR) spectral
data of over 400 diarylheptanoids. In addition, additional reviews and papers covering linear
diarylheptanoids have appeared recently [36–39], but reviews addressing cyclic diarylheptanoids
are very limited. Furthermore, the main themes of the reviews focused on the isolation, structure
elucidation, and biological properties while attention to synthesis was somewhat out of scope. Reviews
by Keserü and Nógrádi [2] and by Zhu et al. [3] paid attention to the total synthesis of three categories of
diarylheptanoids; no additional summaries have been made since then. The present paper has,
therefore, covered the recent progress in macrocyclic diarylheptanoids with a focus on their isolation,
structural features, biological properties, and synthesis.

2. Isolation, Structural Features, and Biological Properties

Diarylheptanoids have been typically isolated from the (inner) stem and the root bark of parent
trees and shrubs, from the rhizomes of herbs, and also from the extracts of leaves and twigs of terrestrial
plants. Two unusual sources of the green pericarps of walnuts, Juglans regia L. [40], and the nest of the
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paper wasp (Polistes), Nidus vespae [41], have been reported as possible sources of two types of cyclic
diarylheptanoids; juglanin A (jugcathanin, 26f) and B (12ba) from the former, and alnusone (4a) and
its five congeners from the latter, respectively. Recently, the marine sponge Tedania ignis was found to
be a new source of cyclic diarylheptanoids, tedarene A (41a) and B (22) [42].

Owing to the phenolic nature of diarylheptanoids, MeOH, MeOH/CH2Cl2 mixtures, and EtOH
are commonly used for their extraction. However, acetone [43], hexane [44], and toluene [45] have
also been used. A recent review paper by Alberti et al. summarized not only the methods and
techniques of extraction and isolation, separation and characterization, but also the spectroscopic tools
and techniques for structure elucidation of diarylheptanoids in detail [46].

2.1. Biphenyl Diarylheptanoids

Biphenyl heptanoids were classified into 4 categories based on their basic structural properties:
(1) asadanin and related derivatives, (2) myricanone, myricanol, and related derivatives, (3) garuganins,
and (4) miscellaneous.

2.1.1. Asadanin and Related Derivatives

Asadanin (1a) was isolated from the MeOH extract of Ostrya japonica Sarg. (Betulaceae) by
Yasue et al. as the first biphenyl heptanoid [14]. They deduced the structure by a series of
elegant chemical conversion and degradation study, and later confirmed the structure by NMR
spectroscopy [47]. Additional biphenyl heptanoids, such as deoxoasadanin (1b), epiasadanol (1c),
isoasadanol (2), and di- and trideoxyasadanin-8-ene (3) were isolated from Ostrya japonica [48]. Recently,
Singldinger et al. isolated asadanin (1a) from hazelnuts (Corylus avellana L.) as the main contributor to
the bitter off-taste and reported complete analysis and assignment of all the proton and carbon
resonances of the molecule [49].
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Nomura and Tokoroyama reported a series of related cyclic biphenyl diarylheptanoids,
alnusone (4a), alnusonol (5a), and alnusoxide (6) from Alnus japonica (Betulaceae) [50]. Later,
an alnusdiol (7a) was additionally isolated from the same source [51]. It should be noted
that the absolute configuration of alnusdiol (7a) upon biphenyl axis was determined by X-ray
and CD analysis to be aS and two additional chiral centers in the heptane skeleton were
determined to be 3S,5S [52]. Alnusone and two other related compounds 4b,c were also isolated
from Corylus sieboldiana [53]. The same group isolated three more related heptanoids 5a, 8, and 9 from
C. sieboldiana [54]. The isolation of diarylheptanoid 8 is somewhat surprising due to the presence of the
isopropylidene group as a partial structure at the side chain even though its precursor 5c has been
isolated at the same time. Recently, the related compound 5d (see Table 2), which was also isolated from
Alnus japonica, showed very potent anti-adipogenic activity [55]. The diarylheptanoid alnusdiol (7a)
was also isolated from Casuarina junghuhniana (Casuarinaceae), along with casuarinondiol (5b) [20]
and Betula maximowicziana, along with 5b and an alnusdiol glycoside (7b) [56] later. The casuarinondiol
(5b) was additionally isolated from Scyphiphora hydrolphyllaceae (Rubiaceae) [30].
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A series of the related derivatives of alnusonol (5a) and alnusdiol (7a) are summarized in Table 2.
It should be noted that the biphenyl heptanoid 5j has a unique substitution pattern on the biphenyl
ring and has never been isolated elsewhere.

Structurally related systems have been isolated and named as aceroside XI, acerogenins E and K,
and giffonins. Diarylheptanoid 5k was isolated from Acer nikoense (Aceraceae) and named as aceroside
XI [57], of which hydrolysis afforded the known heptanoid, acerogenin E (5l), the first synthetic
biphenyl heptanoid previously reported from the hydrogenation of alnusone (4a) [50] and later
isolated from the inner bark of Betula ermanii [58], along with acerogenin K (7h) [59]. Acerogenin E
was also isolated from Betula platyphylla var. japonica [60] and Acer nikoense [59]. There are 11 species of
Betula in Japan, in which the constituents vary; acerogenin E derivatives 10a,b as the major biphenyl
heptanoids in B. davurica [61]. Compound 10b was also isolated from leaves of B. platyphylla [62] and
showed promising leishmanicidal activity (IC50 = 28 µg/mL) [63]. In addition, the biphenyl heptanoid
10c was isolated from the leaves and fruits of Rhoiptelea chiliantha (Rhoipteleaceae) [26].
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Recently, two series of biphenyl giffonins M, N, and T (5e–g) and giffonins L, O, P, and U (7d–g)
were isolated from hazelnuts (Corylus avellana) [11,12] and are summarized in Table 2. The relative
configurations of giffonins were established by a combined quantum mechanical (QM)/NMR
approach, comparing the experimental 13C/1H NMR chemical shift and the related predicted values.
Carpinontriol B (5i) and giffonin U (7g) at 40 µg/disk caused the formation of zones of inhibition
against not only Gram-positive bacteria such as Bacillus cereus and Staphylococcus aureus but also
Gram-negative Escherichia coli and Pseudomonas aeruginosa [64].
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Table 2. Derivatives of alnusonol (5a) and alnusdiol (7a), and their stereochemistry.
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giffonin M (5e) H H H H,H - H,OH (S) H,H OH (S) [12]
giffonin N (5f) H H H H,H - H,OH (S) H,H O-β-D-Glc (S) [12]
giffonin O (7e) H H H H,OH (R) H O H,OH (R) OH (S) [12]
giffonin P a (7f) H H H H,OH (R) OH (S) H,OH H,OH (S) OH (S) [12]
giffonin T (5g) H R′ b H H,H - H,OH (R) H,OH (S) OH (R) aS [64]
giffonin U (7g) H H H O OH (R) H,OH (R) H,OH (R) OH (R) aS [64]

carpinontriol A (5h) H H H H,OH (R) - H,H H,OH (S) OH (R) [13]
carpinontriol B (5i) H H H H,H - H,OH (R) H,OH (S) OH (R) aS [13], inhibit lipid peroxidation [64]

5j OH CH3 H H,H - H,H H,H H [56], leishmanicidal
(IC50 = 17 mg/mL) [63]

aceroside XI c (5k) H H R′ b H,H - H,H H,H H [66]

acerogenin E d (5l) H H H H,H - H,H H,H H NO production inhibitor
(IC50 = 24 µM) [67]

acerogenin K (7h) H H H H,H OH H,H H,H H NO production inhibitor
(IC50 = 24 µM) [67]

ostryopsitriol (7i) H H H H,OH OH H,H H,OH H [16]
betulatetraol (7j) H H H H,OH OH H,H H,OH OH [43]

a Giffonin A–K, Q, R, and S are diphenyl ether heptanoids (vide infra). b R’ = β-D-glucopyranosyl. c Aceroside I–X are cyclic diphenyl ether heptanoids (vide infra).
d Acerogenins A–D, F, H–J, L, and M are cyclic diphenyl ether heptanoids (vide infra).
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2.1.2. Myricanone, Myricanol and Related Derivatives

The second series of biphenyl diarylheptanoids, myricanone (11a) and myricanol (12a) were
isolated from Myrica nagi (Myricaceae) [68–70]. Myricanone has a variety of biological activities,
which have been summarized in Table 3, whereas myricanol has an anti-tau activity thus having
anti-Alzheimer’s disease activity. It has been figure out that the aS,11R enantiomer [(−)-12aa-(aS)(11R),
vide infra] is responsible for the majority of tau-lowering activity [71].
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The absolute configuration at C-11 of myricanol (12aa) was determined by an X-ray crystal
structure on 16-bromomyricanol (13), prepared by brominating myricanol, and found to be aR [69,70].
Although the absolute configuration of secondary alcohol at C-11 was assigned as S, the authors
did not mention about the atropisomerism [72,73] of the molecule developed by biphenyl axis.
However, the configuration of the biphenyl axis of 16-bromomyricanol could be readily assigned to P
(more likely aR) configuration by carefully analyzing X-ray crystal structure. Myricanol has also been
isolated from M. gale [74], M. rubra [28], M. esculenta [75], and M. cerifera [44], and Morella salicifolia [29]
as well. Later, an extensive NMR study revised a previous 13C-assignment and X-ray analysis study of
(±)-myricanol that confirmed the structure [44]. In addition, additional derivatives of myricanone and
myricanol as well as their glycosides isolated so far reported, are summarized in Tables 3 and 4.
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Table 3. The derivatives of myricanone (11a) and their biological properties.
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Table 4. The derivatives of myricanol (12a) and their biological properties.
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It should be noted that a series of myricananins A–H (12e, 12f, 11g, 14, 11h, and 12g–i) were also
isolated from Myrica nana and showed inhibitory activity (IC50 = 45–63 µM) on nitric oxide release in
LPS-activated peritoneal macrophages [82].

A compound with a close structural relationship to myricanol (12a) in structure, was isolated
from Juglans regia and named as juglanin B (12ba) [40]; the structure of this was originally proposed in
error [91]. Subsequently, two esters of sulfuric acid such as myricanol 11-sulfate (12ab) and juglanin B
11-sulfate (12bb), and related glycosides (12j–n) were isolated from M. rubra [89]. The juglanin B (12ba)
showed cytotoxic activity against human hepatoma Hep G2 cells [40].
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A series of biphenyl heptanoids with a heptene skeleton have also been reported. Garuganin II
(17a) [93], garuganin V (17b) [17], and 6′-hydroxygaruganin V (18) [18], were isolated from Garuga
pinnata as biphenyl heptanoids in the garuganin series I-VII (vide infra). The X-ray structures of
garuganin II [93] and V [94] showed that the (Z)-heptene is the basic skeleton, unlike the (E)-heptene of
alnusone series. As it is thought that adapting (E)-alkene geometry to accommodate a bulky methoxy
substituent inside the cyclic diarylheptanoids generally imposes substantial strain to the ring system,
the (E)-heptene structure in 6′-hydroxygaruganin V (18), proposed by Ara et al. is somewhat surprising.
Indeed, the minimized total energies of the two (Z)-18 with (E)-hepta-6-en-5-one skeleton and (E)-18
with (Z)-hepta-6-en-5-one skeleton calculated by MM2 are 166.8 Kcal/mole and 45.6 Kcal/mole,
respectively, reflecting the fact that 18 with (Z)-heptene moiety is much more stable. The structure of 18,
thus, remained to be clarified. Garuganin V showed strong bactericidal activity against Bacillus sereus
and B. subtilus as well as Gram-negative Salmonella enterica paratyphi [95].
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2.1.4. Miscellaneous

The structurally novel diarylheptanoid actinidione (19) was isolated from the leaves and twigs of
Clematoclethra actinidioides (Actinidiaceae) [8]. It is somewhat surprising that 19 is the first biphenyl
heptanoids with a [7.0]orthometacyclophane skeleton and a 1,4-benzoquinone, and showed promising
cytotoxicity (GI50 = 16.03–32.58 µg/mL) against Lun-06, Neu-04, Bre-04 cell lines. This compound was
later isolated from the bark of Myrica nana [82] along with two additional new [7.0]metacyclophanes,
rubanol (20) [96] and nanaone (21) [97], in which one benzene ring was oxidized to 1,4-benzoquinone.
As one may expect from the 1,4-benzoquinone moiety, 19 showed strong antioxidant activity
(IC50 = 7.9 µg/mL) against superoxide dismutase (SOD) [89].
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Recently, biphenyl heptanoid tedarene B (22) was isolated from marine sponge Tedania ignis [42].
Tedarene B has a unique structure with three chiral elements: one stereogenic carbon (C-9), one chiral
axis through the biphenyl unit, and one chiral plane in the double bond, yielding 4 potential
atropisomers for each of the two configurational stereoisomers at C-9; that is, 4 possible diastereomeric
atropisomers of the configuration stereoisomer 9-S, i.e., (9S,2Sa,10Sp or 9S,2M,10M), (9S,2Sa,10Rp

or 9S,2M,10P), (9S,2Ra,10Sp or 9S,2P,10M), and (9S,2Ra,10Rp or 9S,2P,10P) [98]. Among them,
22a (9S,2Sa,10Sp) was isolated, but the 1H NMR showed a 4:1 equilibrium mixture of 22a and 22b after
24 h due to the conformational isomerism of the alkene moiety as shown below.
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2.2. Diphenyl Ether Diarylheptanoids

The diphenyl ether diarylheptanoids were categorized into three major groups based on
their skeletal properties: (1) acerogenins and acerosides, (2) garuganins and garugamblins,
and (3) miscellaneous.



Molecules 2018, 23, 3107 11 of 42

2.2.1. Acerogenins and Acerosides

Nagai et al. reported the first diphenyl ether diarylheptanoid, acerogenin A (23b) [99] and its
glycoside (23a) [100] from Acer nickoense and the latter could be enzymatically hydrolyzed to 23b.
Later its regioisomer, 24a, was isolated from the same plant and named as acerogenin B (24a) [101].
One of the most impressive characteristics of 23b and 24a is the chemical shift of H2, which resonate
at δ 5.84 and 5.46, respectively. Such resonances are highly upfield-shifted compared to the normal
chemical resonances of protons (δ 7.26) on the benzene ring [102] and neighboring H4 (δ 6.63 for
23b and 6.65 for 24a) in the molecule. Such a shift of resonances can be explained by the fact that
this proton orients towards the shielding region imposed by the ring current of the neighboring
phenyl ring [103]. X-ray crystallographic analysis of the related system such as galeon (26c) [104],
maximowicziol (24h) [52], and acerogenin B (24a) [105] has revealed that the main planes of the two
phenyls are very close to 90o to each other.
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Acer nikoense and named as acerogenin L (26a) [64].
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Table 5. The acerogenins with diphenyl ether heptanoid skeleton and their biological properties.
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Compound R1 R2 R3 X1 X2 X3 X4 Reference and Biological Properties

acerogenin A (23b) H H H H,H H,H H,OH (R) H,H anti-inflammatory (IC50 = 0.32 mg/ear) [107],
osteogenic activity [108]

acerogenin B (24a) H H H H,H H,OH H,H H,H cytotoxicity (IC50 = 25.1 µM) of (R)-isomer against
HL60 [109], Na+-glucose cotransporter inhibitor [105]

acerogenin C (25b) H H H H,H H,H O H,H antibacterial and neuroprotective [110],
NO production inhibitor (IC50 = 61.4 µM) [111]

acerogenin D (25c) H H H H,H H,OH O H,H radical scavenging activity (IC50 = 40 µM) [62]

acerogenin F (23e) a H H H H,H H,H H,OH (R) H,OH
(R) [60]

acerogenin H (23f) H H H O H,H H,OH H,H [64]

acerogenin I (24b) H H H H,H H,OH H,H H,OH [64]

acerogenin J (23g) H H H H,H H,H H,OH (R) H,OH
(S) [64]

acerogenin L (26a) H H H H,H O H,H H,H [64]

acerogenin M (24c) H H H O H,OH H,H H,H antitumor promoting activity [107]

pterocarine (26b) H OH H H,H O H,H H,H cytotoxic against K562 (51% @100 µg/mL) [25]

galeon (26c) H OCH3 H H,H O H,H H,H [104]

10-hydroxygaleon (26d) H OCH3 H H,OH O H,H H,H [104]

24d H OCH3 H H,H H,OH
(R) H,H H,H [23]

myricatomentogenin (26e) H OCH3 OH H,H O H,H H,H [112]

jugcathanin (juglanin A, 26f) CH3 OCH3 OH H,H O H,H H,H cytotoxicity [40,91]
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Table 5. Cont.

Compound R1 R2 R3 X1 X2 X3 X4 Reference and Biological Properties

platycarynol (24e) CH3 OCH3 H H,H H,OH
(R) H,H H,H [24], cytotoxic against A549 (IC50 = 11.5 µg/mL) [22],

NF-kB inhibitor [113]

aceroside B1 (24fa) β-D-GlcH H H,H H,OH
(R) H,H H,H [61], osteogenic activity [108]

aceroside B2 (24fb) β-D-GlcH H H,H H,OH
(S) H,H H,H [61]

aceroside I (23h) β-D-GlcH H H,H H,H H,OH (R) H,H [114], osteogenic activity [108]

aceroside II (24g) H H H H,H H,
O-β-D-Glc H,H H,H [60]

aceroside III (23i) H H H H,H H,H H,Y c H,H radical scavenging activity (IC50 = 40 µM), osteogenic
activity [108]

aceroside IV (25a) β-D-GlcH H H,H H,H O H,H [106]

aceroside V (25d) β-D-GlcH H H,H H,OH O H,H [62]

aceroside VI b (23j) H H H H,H H,H H,O-β-D-Glc H,H [115]

9-oxoacerogenin A (23k) H H H H,H O H,OH H,H anti-melanogenesis (17.6% @100 µM) [109]

maximowicziol A (24h) H H H H,H H,OH
(S) H,H H,OH

(S) [52]

24i CH3 OCH3 OH H,H H,OH H,H H,H cytotoxic against A549 (IC50 = 11.5 µg/mL) [22]

jugsigin A (24j) H H OH H,H H,OH
(S) H,H H,H cytotoxic against HT-29 [116]

2-methylacerogenin A (23l) CH3 H H H,H H,H H,OH (S) H,H [100]
a Acerogenin E (5l) and K (7h) are biphenyl heptanoids, acerogenin G is a linear diarylheptanoid, 7-(3-hydroxyphenyl)-1-(4-hydroxyphenyl)heptan-3-one [117]. b At present,
11 acerosides have been reported: acerogenins VII and VIII are 3-O-β-D-glucopyranosides of linear diarylheptanoid, 1,7-di(4-hydroxyphenyl)heptan-3-ol [118], acerosides IX
and X are β-D-glucopyranosides of linear diarylheptanoid, 1,7-di(4-hydroxyphenyl)heptan-3-one [117], and aceroside XI is 5k. c Y = O-β-D-Api-(1->6)-β-D-Glc.
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To determine the geometries of acerogenins, the splitting pattern of the 4 protons (H2, H3, H5

and H6) on para-disubstituted phenyl rings of acerogenins A (23b), C (25b), B (24a) and L (26a) in
their 1H NMR spectra may afford important information. Only two resonances were found for these
protons appearing as an AB quartet (3J = 8.3 Hz) in the spectra of acerogenins C and L, while four
resonances, each being a doublet of doublet, were observed for the those of acerogenin A and B,
respectively. These results may indicate that two sets of protons on the para-substituted phenyls in
acerogenins A and B, such as H2 and H6, H3 and H5, are not equivalents, and may indicate a possible
difference in the rotational energy barrier around the diaryl ether bond, unlike those in acerogenins
C and L. The energy barriers in acerogenins C and L are, therefore, somewhat lower than those of
acerogenins A and B, respectively. Indeed, the minimized energies of 25b (2.65 Kcal/mole) and 26a
(3.85 Kcal/mole) calculated by Chem3D Pro® are much lower than those of 23b (10.11 Kcal/mole) and
24a (10.15 Kcal/mole). The presence of sp2-hybridized carbon (carbonyl) in the heptyl chain of
25b and 26a may reduce both angle strain and H–H steric interactions relative to those of 23b
and 24a, respectively. Such a rotational energy barrier in the systems with a substituent such as
galeon would be increased sufficiently enough not to rotate, leading to two atropisomers. Indeed,
galeon has been isolated on two separate occasions in both levo- [104] and dextrorotatory [112]
ones from Myrica gale, respectively. The configuration of planar chirality was determined by X-ray
crystallographic analysis of the corresponding 4-bromobenzoate (26d) of (−)-galeon to be M-(−)-galeon
(26cb) and thus dextrorotatory one was determined as P-(+)-galeon (26ca). It should be noted that the
nature of conformational chirality, the racemization mechanisms, and predictions of these for diaryl
ether heptanoids have been recently studied [119].
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After we isolated galeon (26) [22] and its derivatives 27a,b,c [23] from the roots of
Juglans mandshirica, and a series of related diaryl ether heptanoids, 27d-f from the stem of
Engelhardia roxburghiana [21,120], were additionally isolated. Unfortunately, the plane chirality was
not defined in all cases and remained to be clarified. The originally proposed structure 28 [120] as
engelhardione was later revised as to 27f [21], which is identical to previously reported pterocarine
(26b) [25] and revised structure was confirmed by total synthesis (vide infra). The compound 27c
showed strong inhibitory activity (95.7%) on topoisomerase II at 50 µg/mL level [121]. Engelhardiols
A (27d) and B (27e) displayed anti-tubercular activity with MIC values of 72.7 and 62.1 µM,
respectively [21]. Related engelhardione has MIC of 0.2 µg/mL against Mycobacterium tuberculosis
(H37Rv) [120].
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2.2.2. Garuganins and Garugamblins

A series of cyclic diarylheptanoids with a double bond in a heptyl skeleton were isolated such as
29a (garugamblin-1) and 31 (garugamblin-2) from Garuga gamblei [122,123], garugamblin-3 from
Alnus japonica [124], and 29b (garuganin I) [125,126], 30a (garuganin III) [127], 30b (garuganin IV),
32 (garuganin VI) [17], and related garugamblins such as 29c and 30c [18] from Garuga pinata.
Although the structures of garugamblin-1 (29a), garugamblin-2 (31) [123] and garuganin I (29b) [125]
were confirmed by X-ray structure analysis, the originally proposed structures of garuganin III
(30a), garuganin IV (30b), and 1,9′-didesmethylgaruganin III (30c) were revised later through total
synthesis to be 33, 29a, and 30d (garuganin VII), respectively [128,129].
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2.2.3. Miscellaneous

In addition, a very potent (IC50 = 3.9 µg/mL) leishmanicidal [59] diaryl heptenoid, 34 from
Betula platyphylla [65], B. davurica [66], and B. ovalifolia [131], and ovalifoliolatin (35) from
Boswellia ovalifoliolata [19] were reported as additional diaryl ether heptenoids. The cyclic diaryl
ether heptenoids 35 are unusual trans-cycloalkenes isolated from the nature and showed potent
antibacterial activity against Staphylococcus aureus and Chromobacterium violaceum.
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A unique cyclic diaryl heptadienoid tedarene A (41a) was isolated from the marine sponge
Tedania ignis [42] and exhibited a couple of intriguing features. Although two double bonds can impose
strain onto the cyclic heptanoid ring in tedarene A, the energy barrier between the two atropisomers
is not sufficiently high to prevent interconversion at room temperature showing only one set of
1H resonances in NMR spectrum without any of protons on para-substituted phenyl ring. Such a
phenomenon reflects that the interconversion rate between the two atropisomers is, coincidently, in the
coalescence region at room temperature to cause the proton resonances of H2 and H6, as well as H3 and
H5, of the para-substituted phenyl ring to be sufficiently broadened to be undetectable. The rotational
energy barrier of 41a was calculated by molecular dynamics simulation to be 14.0 Kcal/mol, which
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is way below the energy barrier (23.3 Kcal/mol) to define atropisomers [134,135]. A diphenyl ether
heptatrienoid 42 was also isolated from Ostryopsis nobilis (Betulaceae) and the structure was confirmed
by X-ray crystal structure analysis [16].
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3. Total Synthesis of Biphenyl Diarylheptanoids

3.1. Biosynthetic Pathway

Before the total synthesis of cyclic diarylheptanoids was considered, studies on the biosynthetic
pathways are addressed. Elegant studies on the degradation of acerogenin A and the
radioisotope-tracing biosynthetic pathway for 1,7-diaylheptanoids revealed that two cinnamate units
coupled to a malonate via acetyl CoA leading to the 1,7-diphenylheptanoid, curcumin [136,137], which
was further converted to centrolobol. In addition, Fujita and his coworkers performed two radioisotope
experiments [138]: They fed labelled compounds, DL-[3-14C]phenylalanine and [3-14C]cinnamic acid to
the young shoots of Acer nikoense and found that 95% of the radioactivity of acerogenin remained on the
C1/C7, but in the case of L-1-13C]phenylalanine, only 5% of the radioactivity was incorporated at the
positions C1/C7 in acerogenin A. On the other hand, feeding [2-14C] sodium acetate, [2-14C]malonic
acid, and [1-14C] sodium acetate resulted in the sufficient incorporation of [2-14C] sodium acetate and
[2-14C]malonic acid into the acerogenin, but not [1-14C] sodium acetate. These observations indicate the
possible biosynthetic pathway of acerogenin A (Scheme 1), via an intramolecular oxidative coupling of
its linear precursor, centrolobol (43).
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It should be noted that Watanabe et al. isolated alnusonol (5a) along with its suspected precursor
platyphyllonol (44) [53], from which one may deduce the presence of dicarbon radical as a possible
intermediate in the biosynthetic pathway for the (9S)-alnusonol (5a) via C–C coupling.
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Such a premise was proved by the isolation of three cyclized diarylheptanoids such as
acerogenin A (23b), (R)-acerogenin B (24a), and acerogenin E (5l), and a linear diarylheptanoid,
(−)-centrolobol together from the same plants indicates that the former two are biosynthetically
related to (−)-centrolobol [107]. In addition, many plants have afforded various combinations of two
from the three diarylheptanoids (i.e., linear, biphenyl heptanoids and diphenyl ether heptanoids).
One possible explanation for these results comes from the intramolecular oxidative coupling of
phenolic linear diarylheptanoid via the free diradicals: A phenolic oxidative C–C coupling would
lead to meta,meta-bridged biphenyl heptanoids, whereas the corresponding C–O coupling would result
in the alternative, meta,para-bridged diphenyl ether heptanoids.Molecules 2018, 23, x FOR PEER REVIEW  17 of 39 
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3.2. Total Synthesis of Biphenyl Heptanoids

The formation of the aryl–aryl bond has long been of interest in the development of facile synthetic
methods, i.e., metal catalyzed coupling reactions, such as Suzuki [139], Stille [140], Negishi [141],
Ullmann [142,143], and electro- as well as photochemical methods [144]. Among these, the Suzuki
reaction, the Ullmann reaction, and the photochemical process have been applied to biphenyl
diarylheptanoids at the final step. The Wittig [145], Thorpe [146], and olefin metathesis [147] reactions
have also been employed for the C–C bond formation in the heptane moiety. However, attempts
using Thorpe reaction failed to afford the desired cyclic biphenyl heptanoids [148], which would, thus,
not be discussed herein.

3.2.1. Aryl–Aryl Bond Formation via Metal Catalyzed Coupling

The Ni(0)-promoted intramolecular coupling of aryl halide developed by Semmelhack [149]
was applied to the total synthesis upon biphenyl heptanoid, alnusone (4a) for the first time [150].
The reaction of diiodide 49 in the presence of tetrakis(triphenylphosphine)nickel afforded
methyl-protected alnusone (50) in 46% yield. The acid-catalyzed deprotection of methyl group
produced 4a with 72% yield.
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The starting compound 49 was prepared from 3-(4-methoxyphenyl)propanal (45)
via thioacetal formation with propane-1,3-dithiol, lithiation by n-BuLi, a reaction with
2-(4-methoxyphenethyl)oxirane, dehydration by DBU, and iodination.

The same strategy has been applied to the synthesis of myricanone and myricanol by Whiting
and Wood [151]. The intramolecular ring closure of diiodides 54 provided the corresponding
benzyl-protected myricanone (55a) and myricanol (55b) in 10% and 7.3% yield, respectively.
The low yield was explained by angle strain and van der Waals hydrogen interaction caused by
the sp3-hybridized methylene units compared to those of sp2-hybridized E-methine in the former
molecule, alnusone. The subsequent hydrogenolysis of 55a afforded 11a while 12a was prepared by
hydrogenolysis of 55b followed by hydrolysis. It should be noted that authors did not mention about
either the presence of stereoisomers or NMR spectral data for the compound 55b even though 55b
has both a chirality center and a chiral axis. The starting 54a,b were prepared by iodination of 53a,c,
respectively. The Grignard reagent generated from 51 was reacted with 3-(4-benzyloxyphenyl)propanal
(52) to provide 53a in 21% yield. Acetylation of 53a gave 53b and oxidation of 53a with pyridinium
chlorochromate (PCC) gave 53c [152].
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Ogura and Usuki employed the same strategy to prepare acerogenin E (5l) and K (7h) [153],
in which the Ni(0)-catalyzed reaction was modified by a more recent methodology of a domino
sequence of a Miyaura arylborylation and an intramolecular Suzuki reaction [154] of 59 to
dimethylacerogenin E (60), of which deprotection by BBr3 to yield acerogenin E (5l). The reduction of
60 with NaBH4 was followed by demethylation with BBr3 to provide acerogenin K (7h) in 95%
yield. The starting 59 was prepared from 56 via Claisen–Schmidt condensation, catalytic reduction,
and CF3CO2Ag mediated iodination.
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It should be noted that neither the reduction of the double bond in 63 to 64 nor the direct
cyclization of 63 to 65 under Suzuki–Miyaura coupling was successful [153]; thus, the cyclization of 64
using the above reaction conditions has not been pursued.
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Such a method was revisited by Martin et al. for the synthesis of myricanol [71]. The intramolecular
cross Suzuki–Miyaura coupling of compound 67, possessing an arylboronic acid pinacol ester and
an aryl iodide resulted in a benzyl protected compound 68 as a racemic mixture. Debenzylation by
hydrogenolysis, followed by enantioselective reduction of the keto group using K-selectride, led to a
racemic mixture of 12aa, which was then resolved by chiral high-performance liquid chromatography
(HPLC) to afford (+)-12aa-(aR)(11S) and (−)-12aa′-(aS)(11R), of which the absolute configuration were
determined by X-ray analysis. The starting compound 67 was prepared by Claisen-Schmidt reaction of
65 and 66 in 39% yield.
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The emerging interest in (−)-aS,11R-myricanol owing to its ability to lower the tau protein
level led to a couple of the enantioselective total synthesis: one covers a synthesis of the biaryl
macrocycle skeleton via Suzuki–Miyaura cross coupling and ring-closing metathesis reactions [156],
and the other includes an enantioselective asymmetric Suzuki cross-coupling, and an indium-mediated
allylation of an aliphatic aldehyde [157]. Unfortunately, detailed procedures for these methods are
currently unavailable. However, the successful enantioselective Suzuki–Miyaura cross coupling
for synthesis of subclass linear diarylheptanoid, diospongin B [158], may open a vista to the
enantioselective synthesis of biphenyl heptanoids.

3.2.2. Aryl–Aryl Bond Formation via Photochemical Cyclization

Whiting and Wood employed photo-induced radical cyclization for the synthesis of
myricanol [27,151]. The irradiation of the bromide 70 in EtOH in the presence of NaOH with a 252
nm wavelength light for 30 min afforded 72 in 10%, which could be readily converted to myricanol.
However, an additional heptanoid 73, expected to be formed via C,O-coupling in 71, was not observed.
The starting compound 70 were prepared from 52 by the method described for 53a [152].
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3.3. Total Synthesis of Cyclic Diphenyl Ether Heptanoids

The formation of diphenyl ether has long been challenging especially in the chemistry of
polypeptide macrocycles and, therefore, led to the development of a couple of practical methods,
such as oxidative coupling of phenols [159], the SNAr reaction [160], the Ullmann reaction [161,162],
and others [163,164].

3.3.1. Formation of Macrocycles via Oxidative Coupling

The first attempt for the synthesis of diphenyl ether heptanoid comes from the biomimetic
oxidative coupling of diarylheptanoid 76b with Tl(OCOCF3)3 to yield a trace amount of the
corresponding diarylheptanoid 77 [27]. Reactions with K3Fe(CN)6, Ag2O, MnO2 and VOCl3 produced
only tars and thus no further applications were reported. Under these conditions, only C,O-coupling
was proceeded to lead diphenyl ether heptanoid 77 unlike the result previously described above for 72a.
The prerequisite 76a was prepared via Grignard reaction of 4-(2-benzyloxy-3,4-dimethoxyphenyl)butyl
bromide (51) with 3-(4-benzyloxyphenyl)propanal (74), followed by hydrogenolysis.Molecules 2018, 23, x FOR PEER REVIEW  21 of 39 
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Recently, Salih and Beaudry examined various oxidative cyclization conditions for acerogenin
G (81) [165] and identified the classical phenoxy radical-forming agent PbO2 in HOAc [166] as the
oxidant of choice. Oxidative coupling of 81 with PbO2 in HOAc, thus, resulted in cyclization with
concomitant oxidative hydroxylation of the diphenyl ether and with esterification of a resident
phenol, leading to acetyl pterocarine (82a) and its regioisomer (82b) in a ratio of approximately
3:1. Interestingly, the reaction was completely chemoselective and this no oxidative C–C coupling
product (i.e., acerogenin E) was observed. Although the yield was not somewhat low, one promising
result is that 40% of the starting acerogenin G (81) was recoverable. The subsequent hydrolysis of
70a afforded pterocarine (26b). The Horner–Wadsworth–Emmons reaction of phosphonate 78 with
aldehyde 79 gave diene 80 in 88% yield, which was then subjected to catalytic hydrogenation to lead to
starting acerogenin G (81) in 96% yield.
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3.3.2. Formation of Macrocycles via SNAr Reaction

The first successful synthesis of acerogenin C (25b) included an intramolecular nucleophilic
aromatic substitution (SNAr) macrocyclization of 88a to yield 89 [167]. In order to undertake
such an SNAr reaction efficiently, one or more strong electron withdrawing groups, such as a
nitro group, are required at the proper positions [168]. The removal of the nitro group after
the cyclization requires a couple of additional steps: the reduction of nitro to amine, followed
by Doyle’s one-step deamination [169] to provide O-methylacerogenin C (90a). AlCl3 catalyzed
demethylation of 90a afforded acerogenin C (25b). The reaction of acerogenin C (25b) with
2,3,4,6-tetrabenzoylglucopyranosyl bromide in the presence of (n-Bu)4NBr provided glycoside 91
with 93% yield, of which subsequent saponification resulted in aceroside IV (25a) in 95% yield.
The starting linear heptanoid 88a was prepared by employing methyl acetoacetate ester synthesis.
Dicarbanion generated from methyl acetoacetate (83) by LDA (2.1 equiv) was alkylated with 84 to
give 85, which was then subjected to 2nd alkylation with 86 in presence of NaH (1 equiv.) to provide
87. Deprotection of the isopropyl group of 87, followed by decarboxylation under acidic conditions,
resulted in a linear diarylheptanoid 88.
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3.3.3. Formation of Macrocycles via Intramolecular Ullmann Ether Synthesis

Keserü et al. has reported a synthesis of acerogenin A and C via an intramolecular Ullmann ether
synthesis [171]. The linear diarylheptanoid 95 was heated at 130 ◦C in the presence of CuBr-Me2S
and t-BuOK to afford the corresponding O-methylacerogenin C (90a) in 16% yield, which was
then converted to acerogenin C (25b) via demethylation by pyridinium chloride. The subsequent
reduction of 25b by NaBH4 led to acerogenin A (23b). The prerequisite starting compound 95
was prepared by Wittig reaction of 93 with 4-iodobenzaldehyde and the subsequent catalytic
hydrogenation of the double bond in 94.
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Jahng and his coworkers [172] employed the same methodology for the synthesis of a series of
acerogenins; the linear diarylheptanoids were prepared by employing a series of cross aldol
condensations. Retrosynthetic analysis of the methods shown in Scheme 2 revealed that such a method
holds the advantage that two types of acerogenins such as acerogenin C and L, can be prepared by the
same reaction sequence via starting compounds of 4-halo-3-hydroxybenzaldehydes (96 series) and
3-halo-4-hydroxybenzaldehydes (97 series), respectively.
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Scheme 2. Retrosynthetic analysis for the synthesis of acerogenins.

The Claisen–Schmidt condensation of 98a with 4-benzyloxybenzaldehyde gave diarylheptenoid
99a, which was then subjected to catalytic hydrogenation to yield 96a. In the classical Ullmann reaction
condition, CuO-K2CO3 in pyridine was applied to diarylheptanoid 96a to yield O-methylacerogenin C
(90a), from which the cleavage of methyl by treating AlCl3 afforded acerogenin C (25b). It is noteworthy
that the application of 50 psi H2 to 99b in the presence of 10% Pd/C resulted in the reduction of a
double bond, the hydrogenolysis of benzyl ether as well as the Ar–Br bond. However catalytic
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hydrogenation at 1 atm H2 for 10 h led to the reduction of a double bond and the hydrogenolysis of
benzyl ether without cleavage of the Ar–Br bond. The subsequent intramolecular Ullmann reaction
cyclization reaction followed by demethylation afforded acerogenin L (26a).
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The same reaction sequence was applied to the synthesis of galeon and pterocarine [173].
The catalytic reduction of the double bond of 99c afforded 97b. The hydrogenation reaction time is
critical for keeping the benzyl group: it can be minimized by stopping the reaction in 2.5 h at room
temperature. The intramolecular Ullmann reaction of 97b with CuO/K2CO3 in pyridine afforded
90c, from which hydrogenolysis gave galeon (26c) and through subsequent demethylation of 26c
afforded pterocarine (26d). The starting 99c was prepared by the same synthetic sequence employed
above for 99a,b by Claisen–Schmidt condensation of 6-(4-hydroxy-3-methoxyphenyl)hexan-2-one
with 4-benzyloxy-3-bromobenzaldehyde.
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The same methodology was applied to 100a to afford 101, which gave the corresponding
didemethylated product (28) in 42% yield by AlCl3-mediated cleavage of methyl ether moiety [174].
The 1H NMR spectrum of the product is not identical to that of engelhardione reported previously [120]
and but did match that of pterocarine (vide ante). Based on these data, Shen and Sun revised
the structure of engelhardione to be pterocarine [174] (vide ante). The starting 100a was
prepared from 6-(3-hydroxy-4-methoxyphenyl)hexan-2-one and 3-bromo-4-methoxybernzaldehyde
via Claisen–Schmidt condensation followed by catalytic hydrogenation.
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Recently, Salih and Beaudry reported the synthesis of a series of diphenyl ether-type
diarylheptanoids such as myricatomentogenin (26e) and jugcathanin (juglanin A, 26f) [175].
The Horner–Wadsworth–Emmons reaction of 102 with phosphonate 103 yielded hept-3,5-dien-2-ones
104. The catalytic hydrogenation of 104a and 104b, followed by cyclization under Ullmann reaction
conditions provided cyclophanes 90d and 90e, respectively. The selective cleavage of the isopropyl
ether using BCl3 completed the synthesis of myricatomentogenin (26e) and jugcathanin (26f).Molecules 2018, 23, x FOR PEER REVIEW  25 of 39 
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The starting cinnamaldehyde 102 was prepared in 4 steps from the corresponding
coumarins via methanolysis, isopropyl ether formation, diisobutylaluminum hydride reduction and
Dess–Martin oxidation.

The last part of diphenyl ether-type heptanoids describes the synthesis of garuganins and
garugamblins. Beaudry and his coworkers reported an elegant synthesis and conformational dynamics of
these series, in which they employed 1,7-diarylhept-3,5-diones as key intermediates [128,129].
To the lithium enolate of 105 was added an aldehyde 106 to produce an aldol product 107.
The oxidation of β-hydroxy ketone using IBX gave 1,3-diketone 108, which was subjected to selective
debenzylation by BCl3 at -78 ◦C to give 109. An intramolecular Ullmann reaction using stoichiometric
CuO in pyridine at the elevated temperature gave the cyclized product 110 in 38% yield. Methyl
ether was achieved by treating CH3OH in presence of p-TsOH. In addition, the treatment of 28b with
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CH3I afforded garuganin VI (31). Most of garuganins and garugamblins were prepared by using
dihydrocinnamaldehyde derivatives 106 with appropriate substituents.
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Finally tedarene A (41a) was prepared by the dehydration of 116, which was prepared 4 steps from
3-(4-methoxyphenyl)propanal (111) and (4-(but-3-yn-1-yl)phenoxy)(t-butyl)dimethylsilane (112) [6]
via Ullmann cyclization as a key reaction. An acetylide generated from 112 was reacted with 113 to
afford the expected propargyl alcohol 113. The optimized, controlled (6 atm of H2 for 18 h), and
stereospecific hydrogenation of alkyne in 113 produced a Z-alkene (114a), which was then subjected to
deprotection of the t-butyldimethylsilyl (TBS) group by tetra-n-butylammonium fluoroborate (TBAF) to
give 114b. The intramolecular Ullmann reaction of 114b, followed by demethylation with NaSEt in
refluxing DMF, afforded 115. Kozikowski’s dehydration method using methanesulfonyl chloride in
the presence of NEt3 in CH2Cl2 from 0 ◦C to room temperature [176] was applied to 115 to allow
the elimination reaction to proceed, along with the unavoidable mesylation of the phenol leading to
a mixture of diene E,Z- and E,E-isomers 116a and 116b in a 6:4 ratio (as determined by 1H NMR)
in 80% yield. Hydrolysis of the mesylates was finally accomplished by aq. NaOH in an optimized
1:1 CH3OH/dioxane mixture at 60 ◦C, in 67% yield. Preparative HPLC chromatography using a
chiral-phase column in direct phase allowed the separation of the two macrocycles, tedarene A
(41a) and its isomer 41b in 38.5% and 23% isolated yields, respectively, of which the structures
were confirmed by X-ray structure analysis. The starting compound 111 was prepared in 2 steps
from 3-(4-benzyloxyphenyl)propanal by regioselective bromination on the aromatic ring by Br2 in
presence of AlCl3, and the subsequent IBX oxidation of the resulting alcohol led to the aldehyde.
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3.3.4. Formation of Macrocycle via Formation of Heptane Skeleton

Via Wurtz and/or Wittig Reactions

The Wurtz and Wittig reactions were employed for the synthesis of garugamblin I, II, and
III. Vermes et al. reported a synthesis of garugamblin I [177]: The Wittig reaction of the biaryl
aldehyde 118 with 119 in the presence of t-BuOK afforded the alkene compound 120, which was
then converted to the dibromide compound 121 by a three-step reaction sequence. The radical
anion induced by intramolecular Wurtz reaction with synchronistical cleavage of isoxazole provided
β-enaminoketone 122 in 16% yield, where the intramolecular hydrogen bonding may force to adapt
(Z)-alkene. The subsequent hydrolysis followed by methylation of enol with diazomethane led to two
regioisomeric (Z)-enol ethers 123a and 123b Compound 123a slowly isomerized to natural garugamblin
I (28a) by simply standing in a chloroform solution for 2 weeks. The same isomerization has also been
observed for 123b to 124. These observation may imply that (Z)-isomers [(E)-heptenes, 28a and 124] are
somewhat more stable than the corresponding (E)-isomers [(Z)-heptenes, 123a and 123b, respectively.
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On the other hand, the same group employed a Wittig reaction for the synthesis of garuganin
III (32) [128]. The intramolecular Wittig reaction was pursued by the addition of t-BuOK to a dilute
solution of 125 in DMF to produce macrocycle 126. The catalytic hydrogenation over PtO2 doped with
Raney nickel saturated the double bond and cleaved isoxazole ring to give the enaminoketone 127.
The hydrolysis of 127 quantitatively resulted in the corresponding ketoenol, which was then methylated
with diazomethane to yield garuganin III (32) with a mixture of its region- and stereoisomers. Based on
the synthesis, the originally proposed structure was revised as shown. The same group employed
identical synthetic methodology for the synthesis of garugamblin-2 (31) [178].



Molecules 2018, 23, 3107 30 of 42
Molecules 2018, 23, x FOR PEER REVIEW  28 of 39 

 

 

Via Ring-Closing Metathesis 

Ring-closing metathesis has been used as a powerful tool for macrocyclization [147]. The 

intermolecular Ullmann reaction of 128 and 129 afforded the prerequisite precursor 130, of which the 

ring closure metathesis with a variety of Grubbs’ catalysts for the synthesis of ovalifoliolatin B (35b) 

[179] did not proceed at all. On the other hand, it is worth noting that an intermolecular ring closure 

metathesis of 128 and 129 led to an inseparable mixture of stereoisomers of the precursor 131, which 

was then CuO mediated Ullmann cyclization to provide ovalifoliolatin B (35b) and its cis-isomer 132 

in a ratio of 13:1. The catalytic hydrogenation of these two isomers, followed by demethylation by 

AlCl3 afforded acerogenin C (25b). All attempts for the synthesis of cyclic diarylheptanoids 

employing ring closing metathesis have, thus far, failed implying the scope of such a reaction for the 

application towards the synthesis of cyclic diaryl ether heptanoids. 

 

3.3.5. Enantioselective Synthesis of Diaryl Ether Heptanoids 

Two types of enantioselective reactions, such as enantioselective Ullmann ether coupling and 

chiral phase-transfer-catalyzed atropselective diaryl ether formation via SNAr reaction, have been 

reported. 

Salih and Beaudry reported the first asymmetric syntheses of (−)-myricatomentogenin, (−)-

jugcathanin, (+)-galeon, and (+)-pterocarine by enantioselective Ullmann cross-coupling reaction 

[180]. The intramolecular coupling reaction was evaluated using enantiopure ligands known to 

Via Ring-Closing Metathesis

Ring-closing metathesis has been used as a powerful tool for macrocyclization [147].
The intermolecular Ullmann reaction of 128 and 129 afforded the prerequisite precursor 130, of which
the ring closure metathesis with a variety of Grubbs’ catalysts for the synthesis of ovalifoliolatin B
(35b) [179] did not proceed at all. On the other hand, it is worth noting that an intermolecular ring
closure metathesis of 128 and 129 led to an inseparable mixture of stereoisomers of the precursor 131,
which was then CuO mediated Ullmann cyclization to provide ovalifoliolatin B (35b) and its cis-isomer
132 in a ratio of 13:1. The catalytic hydrogenation of these two isomers, followed by demethylation by
AlCl3 afforded acerogenin C (25b). All attempts for the synthesis of cyclic diarylheptanoids employing
ring closing metathesis have, thus far, failed implying the scope of such a reaction for the application
towards the synthesis of cyclic diaryl ether heptanoids.
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3.3.5. Enantioselective Synthesis of Diaryl Ether Heptanoids

Two types of enantioselective reactions, such as enantioselective Ullmann ether coupling
and chiral phase-transfer-catalyzed atropselective diaryl ether formation via SNAr reaction,
have been reported.
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Salih and Beaudry reported the first asymmetric syntheses of (−)-myricatomentogenin,
(−)-jugcathanin, (+)-galeon, and (+)-pterocarine by enantioselective Ullmann cross-coupling
reaction [180]. The intramolecular coupling reaction was evaluated using enantiopure ligands known to
accelerate the Ullmann reaction and some other privileged ligand structures. Cu-catalyzed cross
coupling of 97c in the presence of BINOL-type ligands would lead enantioselectivity with low chemical
yields. Among the 21 tested ligands, N-methyl-L-proline did lead to not only increased chemical yield
up to 41% but also enantioselectivity up to 68:32 in the presence of 20 mol% CuI. Variations in the
N-alkyl group, the ring size, and the carboxylic acid functionality did not significantly improve the
yield or enantioselectivity of the reaction. The survey of a variety of inorganic and organic bases in the
Ullmann coupling indicated that use of K3PO4 instead of Cs2CO3 could be the conditions of choice
with a higher enantiomeric ration without a significant loss of chemical yield (see Table 7). Thus,
enantioselective cross Ullmann coupling of 97c was pursued under the optimized reaction conditions
[CuI (20 mol %), N-methyl-L-proline (40 mol %), K3PO4 (2 equiv.) in dioxane] afforded (pR)-90f with
72:28 er. Although they did not find any better system, such enantiomeric ratio can be improved to
92:8 er by recrystallization. The partial and complete demethylation of (pR)-90f afforded (+)-galeon
(43%, (92:8 er) and (+)-pterocarine (45%, 92:8), respectively.
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K3PO4 39 72: 28

a Isolated yield (average of three trials). b Determined by HPLC.

Subsequent Ullmann cross-coupling of 97d under optimized conditions [CuI (20% mol) in
the presence of K3PO4 (2 equiv) and chiral ligand, N-methyl-L-proline (40 mol%)] afforded 90g in
moderate yield and with a degree of enantioselectivity (67:33 er). The enantiomeric ratio of cyclophane
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90g was increased up to 82:18 er by additional recrystallization. The treatment of 90g with BCl3
gave a 1:1 mixture of the product with one isopropyl group (90h) and (−)-myricatomentogenin
(26e) in nearly quantitative yield without any loss in enantioenrichment. Subsequent methylation
followed by the removal of isopropyl group in 90h provided (−)-jugcathanin (26f) without any loss in
enantiomeric ratio.Molecules 2018, 23, x FOR PEER REVIEW  30 of 39 
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Solvent Base (aq. Solution) Yield (%) b) Er c)

toluene (5 mL) 20% CsOH 47 87: 13
DMF (5 mL) 20% CsOH 90 50: 50

xylene (5 mL) 20% CsOH 47 82: 18
toluene (5 mL) 20% CsF <10 69: 31
toluene (5 mL) 20% KOH 17 64: 36
toluene (5 mL) 20% CsOH 46 89: 11

toluene (5 mL) d) 20% CsOH 80 91: 9
toluene (5 mL) d) 20% CsOH 47 91.5: 8.5

a) Reagents and reaction conditions: 88b (37.5 mg, 0.1 mmol), PTC (10 mol%), base (15 equiv),
rt, 40 h. b) Isolated yields. c) Determined by high-performance liquid chromatography (HPLC)
analysis. d) 20 mol% PTC used.

Therefore, the intramolecular SNAr reaction of 88b was explored on a 1 g scale in the presence of
PTC 133 (20 mol%), 20% CsOH (aq) in toluene at room temperature to afford the desired product
(pS)-89 in 81% yield with an er of 91:9. This er was improved up to 99:1 by recrystallization, with overall
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62% yield. In addition, the hydrogenation of (pS)-89 provided the corresponding amino compound
134, of which the absolute configuration was determined as pS by X-ray crystallography. Compound
134 was further converted to a hydroxyl compound 135 without any measurable loss of enantiopurity
by using a previously published method [170]. The demethylation of 135 led to pterocarine, which was
determined to be (−)-pterocarine by comparison with previously reported data for its enantiomer [25].Molecules 2018, 23, x FOR PEER REVIEW  31 of 39 
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highly (99:1 er) (−)-enriched 136 could be obtained by simple recrystallization, which then converted to
(−)-galeon by a simple transformation procedure reported previously.
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4. Conclusion

Steady progress in the chemistry and biology of cyclic diarylheptanoids has resulted in a diverse
range of new structures and new biological activity profiles. Slow but continuous efforts on the
synthesis of cyclic diarylheptanoids have led not only to the revision of originally proposed structures,
but also to the identification of synthetic methods to establish atropenantiomers. Partial success in the
enantioselective synthesis of (−)-myricatomentogenin, (−)-jugcathanin, (+)-galeon, and (+)-pterocarine
by Ullmann cross coupling in the presence of chiral ligands and enantioselective synthesis of
(−)-pterocarine and (−)-galeon by enantioselective SNAr formation in the presence of chiral
phase-transfer catalyst may open a door to the development of an enantioselective macrocyclization
for diphenyl ether heptanoids. On the other hand, a couple of the enantioselective total syntheses for
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the biaryl macrocycle skeleton via Suzuki–Miyaura cross-coupling and successful enantioselective
Suzuki–Miyaura cross-coupling for the synthesis of subclass linear diarylheptanoid, diospongin B [158]
may lead to a practical enantioselective synthesis of biphenyl heptanoids.

However, to the best of our knowledge, the structure–activity relationship (SAR) study of cyclic
diarylheptanoids is very limited [80,182,183]; thus, the identification of good drug candidates has not
been fruitful yet. Not only development of a facile enantioselective macrocyclization method but also
more intense SAR study have become a prerequisite for realizing such a goal.
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