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SUMMARY

Lindera glauca is a crucial source of diverse industrial oil and medicines. The spicy
aroma of tender leaves is caused by the presence of abundant aromatic com-
pounds. Here, we present its chromosome-level genome assembly comprising
12 pseudochromosomes (2,092.2 Mb; scaffold N50: 186.5 Mb), which was pre-
dicted to have 65,145 protein-coding genes. Comparative genomic analyses indi-
cated two whole-genome duplication (WGD) events in the Lauraceae family,
contributing to the production of numerous terpene synthase (TPS) genes. We
identified 138 TPS genes in L. glauca. Comparative transcriptomic analyses re-
vealed high expression of genes Lg03G2346 and Lg08G140 in TPS-a and
Lg07G2961 and Lg12G971 in TPS-b subfamilies, which regulated the biosynthesis
of the monoterpenoid b-ocimene and sesquiterpenoidD-germacrene in L. glauca.
The results suggested a molecular basis for species-specific terpenoid biosyn-
thesis and provided a foundation for molecular breeding to produce desired
characteristics and a valuable reference genome.

INTRODUCTION

L. glauca, a deciduous shrub or small tree of the Lauraceae family, is widely distributed in low-altitude

montane forests of central and southern China as well as in Japan, Korea, and Vietnam and has been

usedmedicinally for centuries (Tsui andWerff, 2008). It contains compounds such as terpenoids, flavonoids,

and alkaloids that have anti-inflammatory (Ruan et al., 2020), antioxidative (Kim et al., 2019), antiviral (Park

et al., 2018), and antitumor activities (Kim et al., 2014; Suh et al., 2015). The fruits of L. glauca are a rich

source of fatty acids and aromatic oils, which are used as raw materials to produce lubricants and biodiesel

(Wang et al., 1994; Qi et al., 2016; Xiong et al., 2018). Its leaves are used to prepare a traditional folk

beverage or in Chinese medicine because of their high terpenoid content (Sun et al., 2011; Zhu et al.,

2016). L. glauca is especially popular in parts of southwest China because of the special scents produced

by its leaves.

The aromatic compounds produced by many species of the Lauraceae family have various components,

primarily terpenoids or their derivatives. Terpenoids constitute the largest class of structurally diverse

metabolites, with more than 80,000 members found in numerous living organisms including plants

(Christianson, 2017). They play crucial roles in the physiological functions of plants, including growth and

development, environmental adaptation, pollinator attraction, and resistance to pests, diseases, and

heat (Nagegowda, 2010). Terpenoids are widely used in cosmetics (e.g., limonene for producing essential

oil) and as medicines, such as the anticancer drugs paclitaxel, oleuropein, and ginsenoside (Bulotta et al.,

2011; Gutensohn et al., 2013); artemisinin for treating malaria; and tanshinone for treating coronary heart

disease. Terpenoids are classified into monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), triter-

penes (C30), tetraterpene (C40), and polyterpenes, according to the number of five-carbon units present in

their chemical structures (Nagegowda and Gupta, 2020). Terpenoids including monoterpenes, sesquiter-

penes, and diterpenes, are abundant in the leaves, flowers, fruits, and seeds of L. glauca. In particular, the

fruits and leaves have the highest content; their extracts contain 52.96 and 15.17%monoterpenes and 42.16

and 76.14% sesquiterpenes, respectively (Sun et al., 2011). The most abundant terpenoid in L. glauca fruits

is (Z)-3,7-dimethyl-1,3,6-octatriene (31.90%) and in L. glauca leaves is D-germacrene (45.56%) (Sun et al.,

2011).
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In plants, dimethylallyl pyrophosphate and isopentenyl diphosphate are the common precursors of terpe-

noids, and terpenoid synthesis occurs through the following pathways (Nagegowda and Gupta, 2020): the

mevalonic acid (MVA) pathway, which is found in the cytoplasm of eukaryotes, and the methylerythritol

phosphate (MEP) pathway, which occurs in the plastids of prokaryotes and plants (Cordoba et al., 2009).

Isopentenyl pyrophosphate (IPP) is the central precursor in both the MVA and MEP pathways (Enfissi

et al., 2005). The initial precursors in terpenoid biosynthesis are acetyl-CoA, pyruvate, and

D-glyceraldehyde-3-phosphate, which are produced in the pentose phosphate pathways (PPP) and

Embden-Meyerhof-Parnas (EMP) pathways (Tholl, 2006) andare subsequently involved in both the MVA

and MEP pathways. In the MVA pathway, the following six enzymes are directly involved in the conversion

of acetyl-CoA thiolase (ACOT) to IPP in the given order; the sequential action of the enzymes is as

follows: ACOT, 3-hydroxy-3-methylglutaryl-coenzyme A synthase (HMGS), HMG-CoA reductase (HMGR),

mevalonate kinase, phosphomevalonate kinase, and mevalonate diphosphate decarboxylase (Liao et al.,

2014; Nagegowda and Gupta, 2020). In the MEP pathway, seven enzymes catalyze pyruvate and

D-glyceraldehyde-3-phosphate conversion in seven steps to produce IPP and dimethylallyl diphosphate

(DMAPP): 1-deoxy-D-xylulose-5-phosphate synthase, reductoisomerase, 2-C-methyl-D-erythritol 4-phos-

phate cytidylyltransferase, 4-(cytidine 5-diphospho)-2-C-methyl-D-erythritol kinase, 2-C-methyl-D-

erythritol 2,4-cyclodiphosphate synthase, (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase, and

(E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (Rohdich et al., 2003; Nagegowda and Gupta,

2020).

The two pathways (MVA and MEP) are mainly divided into three stages (Nagegowda and Gupta, 2020). In

the first stage, IPP and its allylic DMAPP are synthesized. The second stage involves the synthesis of three

direct precursors: geranyl diphosphate (GPP), farnesyl diphosphate (FPP), and geranylgeranyl diphosphate

(GGPP). The third stage involves the formation of terpenoids and their structural modification. Monoter-

penes, sesquiterpenes, and diterpenes are formed by the condensation of C5 precursors by activating

terpene synthases (TPSs) (Tholl, 2006; Chen et al., 2011). TPSs catalyze the biosynthesis of monoterpenes

and sesquiterpenes and induce TPS expression (Zulak et al., 2009). Chen et al. (2020a) reported TPS gene

families in Lauraceae and the genome of Litsea cubeba; however, how these genes and aroma production

are interlinked remain unclear. Moreover, knowledge of the evolution and diversification of TPS genes in

some crucial economic plants, such as L. glauca, remains limited because of limited data on the Lauraceae

genome. Considering the chemical polymorphism evident in L. glauca terpenoids, identifying genes

related to TPSs and searching for potential differences in the biosynthesis pathway may yield valuable

findings.

Advancements in genomic analysis have markedly enhanced the identification of genes related to biosyn-

thesis and sequence evolution (Hu et al., 2019; Pu et al., 2020). To elucidate the evolution of biosynthesis

genes for aroma compounds, we present a high-quality de novo chromosome-level genome of male

L. glauca trees (2n = 2x = 24) obtained using Oxford Nanopore Technologies sequencing (ONT, Oxford,

UK), next-generation sequencing (Illumina, USA), and Hi-C technologies (Chromosome conformation cap-

ture, 3C). Genomic data, transcriptome, and gas chromatography-mass spectrometry (GC-MS) were used

to analyze the contents and composition of terpenoids in leaves and fruits and the genes involved in the

MEP/MVA pathway and terpenoid synthesis in the two chemical types. Our findings can contribute to

biological and agronomic research in Lindera species and other Lauraceae.
RESULTS

Genome assembly and main features

On the basis of K-mer genome survey analysis, L. glauca was estimated to have a genome size of 2,215.47

Mb. The length of 41-mer analysis indicates that the genome had high heterozygosity (1.42%) and a repet-

itive sequence content of 76.75% (Figure S1 and Table S1).

To mitigate the effects of high heterozygosity and repetitive sequence content on the assembly of a

chromosome-scale reference genome, a comprehensive de novo assembly strategy combining approxi-

mately 252.4 Gb (113.73 coverage) of raw ONT reads (read N50 = 20.2 kb; contig N50: 710.7 kb), 218.7

Gb of raw Illumina paired-end reads (98.53 coverage), and 129 Gb of Hi-C clean data (58.23 coverage)

was performed. Because of the unstable quality of ONT raw reads, the sequenced reads were first cor-

rected twice by using RACON, and 215.3 Gb of corrected reads were obtained (N50:22.3 kb) These reads

were then polished twice based on Illumina short reads by using PILON. The DNAmapping rate was 99.8%
2 iScience 25, 104761, August 19, 2022



Figure 1. Morphology and genome features of L. glauca

(A) L. glauca: individual, tender leaves, female inflorescence, and fruits (from top left to bottom right).

(B) Landscape of genome assembly and annotation (chr1-chr12, chr Unn: contigs were unmapped to chromosomes): (a) Chromosome-scale

pseudomolecules (chr1-chr12, chr Unn). (b-f) Distributions of gene density, repeat density, copia and gypsy LTR density, and GC density, respectively. (g)

Syntenic blocks.
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and the complete genome assembly was 94.2% based on the Benchmarking Universal Single-Copy Ortho-

logs (BUSCO) assessment, indicating a high degree of genomic assembly integrity. (Figures 1 and S14,

Tables S2, S3, and S4). Using Hi-C sequence data, we anchored scaffolds into 12 pseudomolecules (Fig-

ure S14 and Table S5), which improved scaffold N50 to 186.5 Mbp, with the largest scaffold being 236.3

Mb (Table 1). The final chromosome-level genome of L. glauca was 2,092.2 Mb (scaffold N50: 186.5 Mb),

accounting for 94.4% of the estimated genome size.

With the largest genome size among the published Lauraceae genomes (Chaw et al., 2019; Chen et al.,

2020b) (Table S7), the L. glauca genome was composed of 62.78% (1,313.4 Mb) transposable elements

and 35.53% (743.5Mb) long terminal repeat (LTR) retrotransposons (Figure 1 and Table S6). Thus, LTR gypsy

and copia elements were found to contribute considerably much to the large size of the L. glauca genome

(Table 1 and Table S6).

A total of 70,484 L glauca genes were predicted, and BUSCO assessments indicated that the completeness

of genome annotation was 92.3% (Table S8). After nonfunctional annotations were removed, a high-confi-

dence set of 65,145 protein-coding genes were predicted, with an average coding sequence length of 832

nt. We annotated 37,097 (56.95%), 42,253 (64.86%), 36,659 (56.27%), 20,256 (31.09%), 12,736 (19.55%),

51,311 (78.76%), and 54,394 (83.50%) of the genes of L. glauca by using Uniprot, Pfam, Gene Ontology

(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Pathway, Interproscan, and NR, respectively

(Table S9). Finally, 59,646 (91.56%) of 65,145 genes were annotated. In particular, 3,550 noncoding RNAs

(ncRNAs) were identified, including 496 rRNAs and 858 tRNAs.
Comparative genomic and phylogenomic analyses

An analysis of genomic synteny using MCScanX revealed 13,724 colinear blocks across the whole L. glauca

genome, which included 18,250 (25.89%) of the genes. Among these syntenic blocks, 6,412 (46.7%) of the

paralogous gene pairs were located interchromosomally, and 7,312 (53.3%) were within chromosomes. In

addition, 1,280 colinear blocks and 11,315 colinear gene pairs were detected between Vitis vinifera and

L. glauca, and 1,339 and 13,329, respectively, between V. vinifera and L. cubeba (Figures 2A, 2C, S8, and

S9). Two-to-three and one-to-two syntenic relationships were observed when comparing L. glauca with

V. vinifera (Figure 2A), and the same relationship was observed between L. cubeba with V. vinifera (Fig-

ure S8), suggesting similarity in the genome features of L. glauca and L. cubeba.
iScience 25, 104761, August 19, 2022 3



Table 1. Major indicators of the Lindera glauca genome

Assembly feature Statistic

Estimated genome size (by 41-mer analysis)

(Mb)

2,215.47

Contig N50 (bp) 710,747

Contig N90 (bp) 183,155

Scaffold N50 (Mb) 186.54

Scaffold N90 (Mb) 115.15

Longest scaffold (Mb) 236.26

Assembled genome size (Mb) 2,092.24

GC content 39.62%

Assembly % of genome 94.44%

Predicted gene models 70,484

Average coding sequence length (bp) 4,347.60

Average exons per gene 3.78
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Gene order analysis revealed colinear regions with up to five (but mostly two or three) paralogous segments in

the L. glaucagenome (Table S16). The calculated synonymous substitution rate (Ks) of these gene pairs peaked

at 0.14-0.19 was based on the slow substitution rate of basal angiosperms. The distribution of synonymous sub-

stitutions perKS for all paralogous genes indicated three clear peaks (Figures 3A andS10):KSz 0.08,KSz 0.52,

and KSz 0.88. The first Ks peak (0.08) corresponds to a recent polyploidy event, then the later two Ks peak also

correspond to a polyploidy event, respectively, suggesting that L. glauca experienced three polyploidy events.

The analysis collinear point diagram (Figure 2B) also confirmed that these three polyploidy events of L. glauca

were WGD events. The KS peak values for the two earlier ancient whole-genome duplication (WGD) events

were nearly identical in L. glauca, L. cubeba (Chen et al., 2020c), and Phoebe bournei (Chen et al., 2020a), sug-

gesting that the two WGD events were common to these taxa (Lauraceae). The two ancient KS peaks were

greater than these differentiation KS peaks of L. cubeba, P. bournei, and L. glauca (Figure 3A), indicating

two ancient WGD events before the common ancestor of Lauraceae diverged. The differentiation peak

(KS z 0.83) between L. glauca and Liriodendron chinense was greater than the second peak (KS z 0.52) and

smaller than the third peak (KSz 0.88) for the ancientWGDevent in L. glauca, suggesting that themost ancient

WGD event occurred in the L. glauca genome before the differentiation of L. chinense (Magnoliales) and Laur-

aceae and that the second event occurred after their differentiation. These results are consistent with those of

previous studies on L. cubeba (Chen et al., 2020b), L. chinense (Chen et al., 2019), and Persea americana (Re-

ndón-Anaya et al., 2019). The recent WGD peaks of Lauraceae species (Figure S10) occurred shortly after the

divergence of Lauraceae, implying that theseWGDeventsmight have facilitated the rapid radiation of this fam-

ily (Figures 3A and 3B).

We compared the L. glauca genome with the genomes of four Lauraceae plants, two magnoliids, one

Juglandales plant, one Rosales plant, one Salicales plant, one Sapindales plant, one Euphorbiales plant,

two Ranales plants, and one species of Amborellales (Amborella trichopoda) as the outgroups. Divergence

estimates were based on fossil data for the node (A. trichopoda/L. chinense (173-199 Mya), Cercidiphyllum

japonicum/Prunus mume (102-120 Mya), L. cubeba/P. americana (27-63 Mya), and P. bournei/P. americana

(17-58 Mya)) and an ancient WGD event of L. chinense (116 Mya) (Chen et al., 2019). The phylogenetic tree

based on 390 single-copy orthologs among the 15 species indicated that Piperales first diverged from the

magnoliids at approximately 126.9-155.6 Mya, and Magnoliales (L. chinense) subsequently diverged from

Laurales at approximately 119.8-135.6 Mya (Figure 3B). The divergence (the peak Ks differentiationz 0.10)

between L. glauca and L. cubeba was closer than that between other Lauraceae species analyzed; they

diverged from their last common ancestor approximately 14.90-23.18 Mya (Figures 3A, 3B, and S10),

with a substitution rate of 3.02E�9 mutations per site per year (Cui et al., 2006).

In angiosperms, gene family expansion or contraction facilitates evolutionary adaptation and trait innova-

tions (Wang et al., 2019). The expansion or contraction of gene families can occur throughWGDs or tandem

duplications together with natural selection (Hartl and Clark, 2007). We estimated the ancestral gene con-

tent at each node of the species tree covering the 15 taxa, and significant changes along each branch were
4 iScience 25, 104761, August 19, 2022



Figure 2. Intergenomic synteny

(A) Dot plots of orthologues between L. glauca and V. vinifera. The red and blue circles highlight examples of major

duplication events which suggest 2:3 and 1:1 syntenic relationships, respectively.

(B) Collinear point diagram of the L. glauca genome. Green copy region provides evidence of recent WGD and extra red

copy (no diagonal) regions provide evidence of ancient WGD events.

(C) Synteny patterns between genomic regions from two Lauraceae and V. vinifera. A colinear relationship (terpene

synthase genes) is highlighted by one syntenic set shown in red colors.
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modeled using CAFE software (Figure 3C). L. glauca exhibited the expansion of 1,544 gene families and

contraction of 1,750 gene families compared with the inferred ancestral Lauraceae genome (Figure 3C,

Tables S17, S18, S19, and S20). In the 20 genes displaying the most significant enrichment in the GO terms,

eight, nine, and three of the expanded genes were significantly enriched in the pathways of molecular

function, biological processes, and cellular component, respectively (Figure S4 and Table S19), whereas

2, 14, and four of the contracted genes were significantly enriched in the pathways of molecular function,

biological process, and cellular component, respectively (Figure S7 and Table S17). Unique gene families

in the L. glauca genome were enriched in the ‘‘interspecies interaction between organisms,’’ ‘‘anion trans-

membrane transporter activity,’’ and ‘‘plastid translation’’ GO functional categories, and in the ‘‘photo-

transduction,’’ ‘‘aldosterone synthesis and secretion,’’ and ‘‘gastric acid secretion’’ KEGG pathways

(Figures S2 and S3; Tables S10 and S11). The significantly expanded gene families were enriched in the
iScience 25, 104761, August 19, 2022 5



Figure 3. Comparative genomic analysis of L. glauca and WGD

(A) The distributions frequencies of synonymous substitution rate (Ks) for orthologs among four Lauraceae species.

(B) Phylogenetic tree with 390 single-copy orthologs from 15 species identified by OrthoMCL software to show divergence times (J Jurassic, K Cretaceous,

Pg Paleogene, N Neogene).

(C) Gene family expansion/contraction identified by CAFE software. The green and red circles with corresponding numbers (p < 0.05) indicate gain

(expansion) and loss (contraction) of gene families in different species, respectively.

(D) Sharing of gene families by L. glauca and four other Lauraceae species.
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GO terms of ATPase activity, transmembrane transport, and auxin transport and in the KEGG pathways of

ABC transporters and photosynthesis (Figures S4 and S5, Tables S12 and S13), whereas the contracted

gene families were significantly enriched in the GO terms of the anchored component of membranes

and protein heterodimerization activity but did not display significant enrichment in any KEGG pathway

(Figures S6 and S7, Tables S14 and S15).

Evolution of TPS gene family

Terpenoids are synthesized from two direct precursor substrates—IPP and DMAPP—in two reactions: the

first is catalyzed by FPP synthase (FPPS), GPP synthase, and GGPP synthase, and the second is catalyzed by

TPSs (Nagegowda andGupta, 2020). Thus, terpenoid production is associated with twomajor gene groups
6 iScience 25, 104761, August 19, 2022



Figure 4. Phylogenetic placements of L. glauca TPS genes

The phylogenetic tree was constructed using putative or characterized TPS genes from eight sequenced plant genomes.
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(Figure 5B): group I genes in the MVA pathway and group II genes in the MEP pathway (KEGG pathway:

map00095). To determine the genomic basis of terpenoid biosynthesis, OrthoMCL was used to identify or-

thologous genes, and CAFE software was used to identify gene family clusters, focusing on expansion

(gain) and contraction (loss) events related to the two gene groups in L. glauca. The results revealed

27,561 gene families comprising 285,460 genes across the 15 species (Figure 3D; for clarity, only Lauraceae

species are shown). Thirteen gene families containing 1,118 genes were unique to L. glauca.

One of the most striking features of the L. glauca genome is many of TPS genes—138 LgTPS genes (Figure 4),

which is the largest number for a genome of any Lauraceae species to date (Tables 2 and S21). These genes

belong to six of seven gene subfamilies in gymnosperms and angiosperms (Chen et al., 2011), including TPS-a

(69), TPS-b (45), TPS-c (1), TPS-e/f (15), and TPS-g (8). LgTPS genes in TPS-a, TPS-b, and TPS-g subfamilies

encode proteins involved in specialized monoterpene (C10), sesquiterpene (C15), or diterpene (C20) biosyn-

thesis. The genes in TPS-c (1) and TPS-e/f (15) subfamilies probably encode copalyl diterpene and kaurene

synthases, which catalyze the formation of 20-carbon isoprenoids (C20s) and regulate plant primary meta-

bolism (Martin et al., 2004; Chen et al., 2011). TPS-a and TPS-b subfamilies are the most diverse in the

L. glauca genome, contributing to the mass andmixed production of volatile C15s and C10s (Sun et al., 2011).

LgTPS genes were not uniformly distributed across all chromosomes except for chromosome 1, and many

members from individual gene subfamilies were clustered as tandem duplicates (Figure 5A). Chromosome

12 contained the most TPS genes (38). Specifically, 31 of them belonged to different subfamilies, namely

LgTPS-a (10), LgTPS-b (20), and LgTPS-g (1), and were located in the 25-31-Mb region. Moreover, 107

LgTPS genes did not correspond to syntenic regions but were found elsewhere in the genome, and

most of them belonged to the TPS-a subfamily.
iScience 25, 104761, August 19, 2022 7



Figure 5. Scent biosynthesis of fruits and leaves in L. glauca

(A) in Distribution of LgTPS genes on chromosomes in L. glauca.

(B) MVA pathway mevalonate pathway and MEP pathway mevalonate-independent (deoxyxylulose phosphate) for the biosynthesis of (Z)-b-ocimene and D-

germacrene and heatmap of related LgTPS genes. L1_, L2_, and L3_ represent 20, 50, and 140 DAF of leaf. F1_, F2_, and F3_ represent 50, 80, and 140 DAF of

fruit. c-d Extracted ion chromatograms showing the content of the corresponding LgTPS gene expression products with three different stages of fruits and

leaves.
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Monoterpenes are generally formed fromGPP by the action of monoterpene synthases (mTPSs), which belong

to the TPS-b, TPS-d-1, and TPS-g subfamilies (Nagegowda, 2010; Ruan et al., 2016). In this study, 16 and two

predicted genes displayed high homology with b-ocimene synthase and E-b-ocimene/myrcene synthase,

which are involved inmonoterpene (C10H16) synthesis. Phylogenetic analysis (Figure 4) revealed that these un-

igeneswere clustered into TPS-a and TPS-bgroups; we conjectured that TPS-b typemonoterpene synthases in

L. glauca fruit might be involved in specific monoterpene synthesis. A study reported that 13C10H16monoter-

pene isomers are themain components of the essential oil of L. glauca fruit (Lin et al., 2017). b-ocimene synthase

may be a multifunctional enzyme that can catalyze the synthesis of different monoterpenes, and their high

sequence identity and functional diversity among predicted ocimene synthase members suggest the rapid

evolution of a species-specific paralogous gene cluster in the L. glauca genome.
Comparative transcriptome analysis of terpenoid biosynthesis

In precursors, 412 and 231 unigenes in transcripts of L. glauca fruits and leaves were annotated to EMP and

PPP pathways, respectively. A total of 286 and 126 unigenes were annotated to terpenoid biosynthesis and

metabolism pathways, respectively, covering 15 enzymes involved in terpenoid synthesis pathways
8 iScience 25, 104761, August 19, 2022
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(Figure 5B). Transcriptome sequencing of three stages (fruits at 50, 80, and 140 days after flowering [DAF];

leaves at 20, 50, and 140 DAF) identified 19,882 unigenes with differential expression. In total, 7,208 (4,311),

11,498 (6,772), and 5,344 (2,008) unigenes were specific for 50:80 (20:50) DAF, 50:140 (20:140), and 80:140

(50:140) DAF, respectively, for the fruits (leaves) differential transcripts.

The comparative transcriptome of L. glauca fruits and leaves revealed the upregulation and downregula-

tion of catalytic synthase genes in theMVA (in the cytosol) andMEP (in plastid) pathways to the biosynthesis

of terpenoids, respectively (Figure 5B). For monoterpene synthesis, most catalytic synthase genes had the

highest expression in 80 DAF fruits and in 50 and 140 DAF leaves. HDR gene on chromosome 4 (Lg04G785)

had signally expression in all three developmental stages, in both fruits and leaves. The expression level of

MECPS on chromosome 12 (Lg12G4365) in leaves was significantly higher than that in fruits, especially in

the last two stages. For sesquiterpene synthesis, although the expression trend of the catalytic synthase

genes in fruits and leaves was similar, their expression levels in leaves were significantly higher than that

in fruits. HMGS2 on chromosome 1 (Lg01G5132) and FPPS on chromosome 4 (Lg04G2147) in leaves had

the highest expression at 20 DAF, with significantly higher expression than in fruits. The expression of

two IDI genes, however, was the opposite. The expression level of HMGR on chromosome 6

(Lg06G6647) in leaves was the highest at 20 DAF, whereas in fruits, it was the highest at 140 DAF. Overall,

the expression levels of genes for monoterpene synthesis were upregulated with fruit development,

whereas those for sesquiterpene synthesis were downregulated with leaf development.

Identification of major single components and its scent biosynthesis-associated genes

The essential oils produced by L. glauca are widely used commercially and contain various compounds.

GC-MS results revealed that the accumulation of terpenoids in fruits and leaves is at the early and

middle-late stages (Figures 5C and 5D). Fruits at 140 DAF and leaves at 50 DAF exhibited the highest essen-

tial oil content of 0.78 mL/100 g and 0.23 mL/100 g, respectively, with a total of 74 and 25 constituents,

respectively (Table S22). The monoterpene b-ocimene content was the highest (>30%) in 140 DAF fruits,

and D-germacrene content was the highest in 140 DAF leaves (>40%). The result was consistent with

patterns of essential oil content and changes in essential oil composition during fruit development and

is supported by some studies (Sun et al., 2011; Zhu et al., 2016).

TPSs are the rate-limiting enzymes in the production of plant terpenoids (Tholl, 2006). L. glauca has numerous

TPS-a and TPS-b members, which regulate the biosynthesis of monoterpenes and sesquiterpenes. Compara-

tive transcriptome analysis revealed the expression levels of TPS-a and TPS-b members in D-germacrene

(sesquiterpene) and b-ocimene (monoterpene) synthesis of L. glauca (Figure 5B). A total of 16 TPS-a and 22

TPS-b genes were significantly expressed during the leaf and fruit development stages, respectively.

Lg07G2961 on chromosome seven and Lg12G971 on chromosome 12 shared the most considerable accumu-

lation of major aromatic compounds during fruit development. Moreover, Lg03G2346 on chromosome three

and Lg08G140 on chromosome 12 shared the most considerable accumulation of major aromatic compounds

during leaf development. In addition, Lg07G2961 expressions reached their peak at the 50 DAF of fruit devel-

opment and then began to rapidly decrease, whereas Lg12G971 had the highest expression at 80 DAF.

Lg3G2346 was significantly expressed at 20 DAF of leaf development and then decreased gradually.

Lg08G140 expression was stable in all stages of leaf development, and the peak was at 50 DAF. In summary,

genes related to terpenoid biosynthesis were highly expressed in the early stage of fruit and leaf development,

consistent with the significant accumulation of essential oil at this stage.

DISCUSSION

The Lauraceae family is well-suited for studying the linkage between phytochemistry, ecology, and evolu-

tion because of its characteristic secondary metabolism (Chen et al., 2011; Chaw et al., 2019), especially

given its diversity of aromatic compounds (Chen et al., 2020c). The L. glauca genome is a valuable resource

for phylogenomic analyses and studies of the TPS family, as we demonstrated here by elucidating mech-

anisms underlying the synthesis of its terpenoid products. The chromosome-level genome assembly also

enhanced the status of L. glauca as a model in the Lindera genus. Our findings are expected to further the

understanding of the biosynthesis of some natural products that are essential in traditional Chinese

medicines, such as flavonoids (Huh et al., 2014) and lignan (Kim et al., 2014).

A final set of 65,145 protein-coding genes were predicted in the L. glauca genome, considerably higher

than that predicted in other species in the Lauraceae family (Table S7), including Cinnamomum camphora
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Table 2. Numbers of TPS subfamilies in 13 sequenced plant genomes

TPS subfamilies

Genome size^a (Mb)

a b c d^b e/f g

Total numberFunction species C15 C10 (IspS) C20 (CPS) C10, C15, C20 C20 C10

Gymnosperms

G. biloba 10,609 – – 1 49 1 – 51

P. abies 12,301 – – 2 59 1 – 62

Angiosperms

A. thaliana 120 23 13 1 – 2 1 32

A. trichopoda 706 – 7 1 – 4 5 17

L. chinense 1,742 34 27 3 – 10 8 82

V. vinifera 434 29 10 2 – 3 14 58

P. mume 237 13 6 1 – 5 6 31

P. nigrum 761 192 81 2 – 1 17 293

Lauraceae

C. kanehirae 731 25 58 2 – 12 4 101

P. americana^c 912 18 6 2 – 7 2 35

P. bournei 989 17 44 3 – 7 13 84

L. cubeba 1,370 28 44 2 – 7 7 88

L. glauca 2,092 69 45 1 – 15 8 138

Note: a The genome sizes of all species are based on published data. b TPS-d subfamily is gymnosperm specific. c P. americana, Hass cultivar (Rendón-Anaya

et al., 2019). IspS, isoprene synthase; CPS, copalyl diphosphate synthase.
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(27,899; Chaw et al., 2019), L. cubeba (31,329; Chen et al., 2020a), P. bournei (28,198; Chen et al., 2020b), and

P. americana (Hass cultivar; 24,616; Rendón-Anaya et al., 2019). Most of these L. glauca genes were not

grouped in homologous gene clusters (Figure S11) and were enriched in the GO terms of the recognition

of pollen, UDP-glycosyltransferase activity, and fatty acid biosynthetic process (Figure S12) and in the

KEGG pathways of glutathione metabolism, purine metabolism, and glycolysis (Figure S13).

Ancient WGD (also known as polyploidization) events are crucial driving forces in the evolution of fauna, flora,

and fungi (Jiao et al., 2011; Adams, 2013). In the present study, KS analysis indicated that themost recent WGD

events of the L. glauca lineage closely followed the divergence of many Lauraceae genera, perhaps being the

key contributor to Lauraceae diversification. The KS peak value for the recent WGD event in L. glauca was

smaller than the orthologous KS peak value between L. glauca and L. cubeba, suggesting that the recent

WGD event had occurred shortly after the divergence of Lauraceae, and this may have caused L. glauca to

have a considerably larger genome and more protein-coding genes than L. cubeba and other Lauraceae spe-

cies. In addition, the other Lauraceae species experienced two ancient WGD events before the divergence of

the common ancestors of Lauraceae, implying that L. glauca experienced a recentWGDevent after the groups

diverged, thus explaining the abundance of gene models. That is similar to the Piper nigrum genome with

761.74 Mb, containing 63,466 genes and most of them unclustered.

Consistent with the results of early isozyme analysis and genome studies (Soltis and Soltis, 1990), we iden-

tified two independent WGD events before Lauraceae species diverged, and one recent WGD event of

L. glaucagenome, whichmay have contributed to gene family expansions and innovations in the interaction

of different organisms and generated numerous TPS genes. Gene tree topologies (Figure 4) for each of the

six angiosperm TPS subfamilies revealed the diversification of TPS genes and gene function in the ancestry

of L. glauca. Our results (Table 2) indicatedmassive diversification of TPS-a and TPS-b subfamilies within the

Lauraceae family, which is consistent with previous reports; the genes of these subfamilies encode the main

constituents of 58 essential oils produced inCinnamomum leaves, namely monoterpene (C10s) and sesqui-

terpene (C15s) (Cheng et al., 2015; Chaw et al., 2019), which are the main aroma constituents of fruits and

leaves of L. cubeba (Si et al., 2012; Chen et al., 2020c) and L. glauca (Sun et al., 2011; Zhu et al., 2016). The

number of C20s products of Lauraceae species, encoded by TPS-e/f genes, exceeded those of other angio-

sperms and may be Lauraceae-specific because this plant group contains numerous terpene compounds
10 iScience 25, 104761, August 19, 2022
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(Chen et al., 2011). In our study, candidate TPSs genes were identified in the KEGG database using BLASTP

(v.2.6.0), whichmay have led to overidentification. However, L. chinense, P. mume, P. nigrum, and four other

Lauraceae species were predicted for TPSs genes by using the same method (Table 2), suggesting that

L. glauca still had the largest TPS family among the Lauraceae species published.

Similar to other angiosperms, the initial precursors in terpenoid biosynthesis of L. glauca are acetyl-CoA, py-

ruvate, and D-glyceraldehyde-3-phosphate, which are produced in the PPP and EMP pathways (Tholl, 2006).

Our analyses of the critical enzymes involved in the monoterpene and sesquiterpene biosynthesis pathways

suggest that the overexpression of the related genes (Lg07G2961 and Lg12G971 in TPS-b; Lg03G2346 and

Lg08G140 in TPS-a) may enhance the production of the principal components in terpene, D-germacrene,

and b-ocimene (Figure 5). Terpenoid accumulation in L. glauca is probably owing to TPS family size and regu-

lation of gene expression. The variations of terpene production and concentration among individual species

are mainly the result of gene regulation divergence, functional differentiation, and cluster formation in the

TPS family (Chen et al., 2020a). In addition, considering a severe male/female ratio imbalance in wild popula-

tions throughout East Asia (Xiong et al., 2018), unlike in Lauraceae species (Dupont, 2002), the newly replicated

TPS genes in L. glaucamay be related to the newly evolved terpenoids that protect plants from biological and

abiotic stresses (Pichersky and Raguso, 2018).

In conclusion, the current assembly of the L. glauca genome and the analysis of Lauraceae species with

available genome sequences provide insights into the underlying genetic diversity following WGD events

responsible for the expansion and contraction of the TPS gene family. We analyzed the biological

processes related to major single components of terpenoid biosynthesis in L. glauca fruits and leaves

and identified four associated TPS-b and TPS-b genes.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

The total DNA and RNA of Lindera glauca

leaves and fruits

This study NA

Critical commercial assays

DNAsecure Plant Kit TIANGEN DP320-03

RNAprep Pure Plant Kit TIANGEN DP432

Deposited data

Assembly genome This paper GenBank: PRJNA733927

Software and algorithms

Jellyfish Marçais and Kingsford, 2011 http://www.genome.umd.edu/jellyfish.html

CANU v.1.7 Koren et al., 2017 https://github.com/marbl/canu

SMARTdenovo NA https://github.com/ruanjue/smartdenovo

RACON v.1.4.12 Vaser et al., 2017 https://github.com/lbcb-sci/racon

PILON v.1.22 Walker et al., 2014 https://github.com/broadinstitute/pilon

BUSCO v.4.1.2 NA https://busco.ezlab.org/

Hi-C Pro Servant et al., 2015 https://github.com/nservant/HiC-Pro

SAMtools Li et al., 2009 https://github.com/samtools/samtools

LACHESIS Burton et al., 2013 https://github.com/shendurelab/LACHESIS

SLR Luo et al., 2019 https://github.com/luojunwei/SLR

RepeatModelers NA http://www.repeatmasker.org/

RepeatModeler/

GenomeTools Gremme et al., 2013 https://github.com/genometools/

genometools

TransposonPSI NA http://transposonpsi.sourceforge.net/

RepeatMasker v.4.0.5 NA http://www.repeatmasker.org/cgi-bin/

RepeatProteinMaskRequest

BRAKER Hoff et al., 2015 https://github.com/Gaius-Augustus/BRAKER

Rfam Nawrocki and Eddy, 2013 https://github.com/thaines/rfam

BLASTP NA https://blast.ncbi.nlm.nih.gov/Blast.cgi

OrthoMCL v.2.0.9 Kramer and Irish, 1999 https://github.com/stajichlab/OrthoMCL

MUSCLE v.3.8.31 Edgar, 2004 https://github.com/rcedgar/muscle

TRIMAL v.1.4.rev22 NA http://trimal.cgenomics.org/introduction

RAxML v.8.2.10 Stamatakis, 2014 https://github.com/stamatak/standard-

RAxML

CAFE v4.2 De Bie et al., 2006 https://github.com/hahnlab/CAFE

MCScanX Wang et al., 2012 https://github.com/wyp1125/MCScanX

PAML v.4.9 Yang, 2007 https://github.com/abacus-gene/paml

WGDI Sun et al., 2021 https://github.com/SunPengChuan/wgdi

Other

Nanopore sequencing Oxford Nanopore Technologies Oxford Nanopore platform

Illumina sequencing Illumina Technologies Illumina NovaSeq 6000 / HiSeq X platform

GC-MS analysis Santa Clara, CA, USA Agilent 5975B
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Biao Xiong (bxiong@gzu.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d The accession number for the genome assembly and raw reads reported in this paper is GenBank:

PRJNA733927 with BioSample accessions SAMN19468007, including Illumina RNA-Seq data.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study does not include experiments model or subjects.

METHOD DETAILS

Plant materials and genome sequencing

A wild-type elite female L. glauca plant (2n = 24), which was transplanted from a nursery (31.8�N, 114.1�E)
established at Jigongshan National Nature Reserve (Henan, China) to the laboratory, was used for

sequencing (Supplementary 1). Genomic DNA and total RNA were extracted from fresh leaves by using

the DNAsecure Plant Kit and RNAprep Pure Plant Kit (TIANGEN, Germany), respectively. For genome sur-

vey analysis and genome polishing, a short paired-end Illumina DNA library with a 350-bp insert size was

sequenced on the NovaSeq 6000/HiSeq X Ten platform, according to the manufacturer’s instructions (Illu-

mina, San Diego, CA, USA). For long-read DNA sequencing, high-quality genomic DNA fragments (>20 kb)

were used to construct long-read libraries on the ONT platform (https://nanoporetech.com) and were

sequenced using ONT long reads.

Genome assembly and assessment

After the genome size was estimated, the heterozygosity and repeat rate of L. glauca were determined

using the K-mer method with Jellyfish software (http://www.genome.umd.edu/jellyfish.html), and the

assembly of the genome was sequenced using ONT long reads and 103 Genomics linked-reads technol-

ogy. The ONT reads were corrected and trimmed using CANU (v.1.7) (Koren et al., 2017). The corrected

ONT reads were directly assembled using SMARTdenovo (https://github.com/ruanjue/smartdenovo)

(Liu et al., 2021). The contigs for assembly were polished twice with the Illumina short reads by using the

RACON (v.1.4.12) (Vaser et al., 2017) and PILON (v.1.22) (Walker et al., 2014) software packages. To evaluate

the consistency and completeness of the genome assembly, multiply analyses were performed, including

the determination of the map rate and average depth of the Illumina short reads, BUSCO (v.4.1.2)

alignment, core eukaryotic genes alignment, and RNA-Seq read mapping.

Hi-C library construction and chromosome assembly

For Hi-C library construction, L. glauca seedlings were fixed with 2% formaldehyde solution at room tem-

perature for 40 min in vacuum and then fixed for the crosslinking reaction. The fixed tissue was ground with

liquid nitrogen for the primary library preparation. Thereafter, extracted nuclei were resuspended in 0.5%

Sodium dodecyl sulfate (SDS) and incubated at 60 �C for 10 min, and the SDS was subsequently quenched

with 10% Triton X-100 (Chen et al., 2020b). The DNA was digested with the DpnII restriction enzyme.

The cohesive DNA ends were filled and marked with biotin-labeled dCTP and dCAP, dTTP, and dGTP by

using Klenow, and the filled-in DpnII sites were ligated to construct proximal chromatin DNA. After these

complexes were purified and sheared, biotinylated Hi-C ligation products were extracted and used to

construct Illumina sequencing libraries, according to the standard Illumina library preparation protocol.

The libraries were sequenced on HiSeq X Ten DNA sequencers to obtain PE150 reads, and Hi-C Pro
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software was used to validate these reads (Servant et al., 2015). The high-quality reads were mapped to the

draft scaffolds based on fast and accurate short read alignment with Burrows–Wheeler transform (Li and

Durbin, 2011), and unmapped reads were removed using SAMtools (Li et al., 2009). The Hi-C read pairs

mapped in draft scaffolds were clustered and ordered into chromosomes in accordance with chromatin

interactions using LACHESIS software (Burton et al., 2013). Subsequently, the contigs were independently

assembled into scaffolds using the SLR program (Luo et al., 2019).
Genome annotation

The combination of the de novo repeat library and homology-based strategies were used to identify

repeat structures and trace repeat elements in the L. glauca genome by using RepeatModelers

(http://www.repeatmasker.org/RepeatModeler/), the GenomeTools suite (Gremme et al., 2013), and

TransposonPSI (http://transposonpsi.sourceforge.net/). Subsequently, RepeatMasker software (v.4.0.5)

was used to annotate repeat sequences. Coding genes were predicted using the MAKER (v.2.31.8) pipe-

line (softmask = 1, augustus_species = tomato, est2genome = 1, protein2genome = 1), integrating tran-

script sequences from the de novo assembly of the L. glauca Illumina RNA-seq data. BRAKER (Hoff et al.,

2015) (–softmasking, –downsampling_lambda 1) was performed for gene structure annotations; it inte-

grates GeneMark-ET and AUGUSTUS by combining the aligned results. Moreover, noncoding RNAs,

small RNAs, and non–protein-coding genes were annotated by aligning to Rfam using INFERNAL (Na-

wrocki and Eddy, 2013) and performing homologous searching and deep-learning analyses across the

assembled genome sequence. BUSCO software (version: 4.1.2) was used to examine the completeness

of genomic annotations.
Comparative genomics for phylogenomic analysis and gene family

To investigate the evolutionary history of the L. glauca genome, the relationships of its protein-coding

genes with those of 14 other angiosperms (L. cubeba, Cinnamomum camphora, Phoebe bournei, Persea

americana, Piper nigrum, Armeniaca mume, Cercidiphyllum japonicum, Jatropha curcas, Xanthoceras sor-

bifolium,Aquilegia viridiflora, Populus trichocarpa, Liriodendron chinense,Nymphaea colorate,Amborella

trichopoda, and Juglans regia) were analyzed. All amino acid sequences of selected plants were compared

using BLASTP (v.2.6.0) (E-value cutoff: 1 3 10�5, -outfmt 6), and the OrthoMCL (v.2.0.9) program (percent

match cutoff = 30, e-value exponent cutoff = 1e�5, expansion cutoff = 1.5) (Kramer and Irish, 1999) was then

applied to group the BLASTP results into orthologous and paralogous clusters.

Thephylogenetic tree for theL. glaucagenomeandother chosenplantgenomeswas constructedusingmutual

single-copyorthologousgenes. First,MUSCLE (v.3.8.31) software (Edgar, 2004) was used to align thepredicted

proteins of single-copy genes, and the TRIMAL (v.1.4.rev22) program (http://trimal.cgenomics.org/

introduction) was used to filter the comparison results (-gt 0.2). Subsequently, a maximum-likelihood phyloge-

netic tree of single-copy genes was obtained by combining the filtered results using RAxML (v.8.2.10) (model:

PROTGAMMAWAG) software (Stamatakis, 2014).

The expansion and contraction of gene families were examined using CAFE (v4.2) software (De Bie et al.,

2006) by clustering all homologs in the 15 species, as inferred from the OrthoMCL analysis; this software

employed a random birth and death model to estimate the size of each gene family.
Whole-genome duplication and colinearity analyses

TheMCScanX package (Wang et al., 2012) with parameters (-a -e 1e-5 -s 5) was used to analyze the syntenic

blocks of the genome of four plants after the BLAST (v.2.6.0) alignment (E-value cutoff: 13 10�5, -outfmt 6)

of protein-coding sequences from these species. For each duplication node in the resulting phylogenetic

trees, the program yn00 in the PAML (v.4.9) (Yang, 2007) package was used to calculate nonsynonymous

substitution rates (Ka), synonymous substitution rates (Ks), and their ratio (Ka/Ks) of colinear orthologous

gene pairs. Thereafter, the program mcmctree (nsample = 1,000,000, burnin = 200000, seqtype = 0,

model = 4) in the same package was used to estimate the divergence time of the 15 species based on

the phylogenetic tree of these species. In addition, MCScanX was used to identify synteny or colinear seg-

ments between the genomes of L. glauca and V. vinifera and L. cubeba and V. vinifera, respectively. These

results are presented using the ggplot2 (v.2.2.1) program.
16 iScience 25, 104761, August 19, 2022
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TPS gene identification

The proteome dataset of six species were used: L. cubeba (Chen et al., 2020c), Cinnamomum micranthum

(Chaw et al., 2019), Phoebe bournei (Chen et al., 2020a), Persea americana (Rendón-Anaya et al., 2019),

L. glauca, and V. vinifera (Martin et al., 2010). For L. glauca, predicted protein-coding genes were aligned

against annotated terpenoid biosynthesis pathway genes in the KEGG database using BLASTP (v.2.6.0)

(E-value cutoff: 1 3 10�5, identity > 50%, alignment coverageR50%). For the other five species, all orthol-

ogous TPS gene sequences were retrieved from the results of comparative genomics analyses. Branching

nodes with bootstrap values of <80% were collapsed.
Metabolomic and transcriptome analysis

To investigate critical genes involved in terpenoid production in L. glauca, the content and composition of

essential oil in its fruits and leaves at different development stages (fruits: 50, 80, 110, 140, 170, and 200

DAF; leaves: 0, 20, 50, 80, and 140 DAF) were analyzed using GC-MS as described by Sun et al. (2011).

Briefly, samples were ground and incubated at 40�C for 30 min. The volatiles were further extracted using

SPME fibers with 50/30 mm divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) (Supelco,

Bellefonte, PA, USA). GC-MS analysis was conducted on an Agilent 6890N gas chromatograph coupled

to a mass spectrometer (Agilent 5975B, Santa Clara, CA, USA) with a fused silica capillary column

(DB-5MS) coated with polydimethylsiloxane (19091 S-433) (internal diameter of 60 m3 0.25 mm, film thick-

ness of 0.25 mm). We selected the samples of fruits (50, 80, and 140 DAF) and leaves (0, 50, and 140 DAF) at

three stages (as mentioned parenthetically) for transcriptome sequencing using the Illumina NovaSeq 6000

platform. Transcriptomic data processing was the same as above ‘Plant materials and genome sequencing’

section.
QUANTIFICATION AND STATISTICAL ANALYSIS

The quantitative analysis of metabolites used multiple reaction monitoring (Chen et al., 2013), which was

determined by total ion chromatogram (m/z). The chromatographic peak area is proportional to the

content of the corresponding component. For RNA-Seq data, TPM (Transcripts Per Kilobase of exonmodel

per Million mapped reads) (https://github.com/lucynwosu/TPM-Transcripts-Per-Million-Normalization-

Python) was used to standardize the count of reads for differential expression of unigenes.
ADDITIONAL RESOURCES

This study does not include additional resources.
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