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Abstract

Allosteric RNA devices are increasingly viewed as important tools capable of monitoring enzyme 

evolution, optimizing engineered metabolic pathways, facilitating gene discovery and regulators of 

nucleic acid-based therapeutics. A key bottleneck in the development of these platforms is the 

availability of small molecule binding RNA aptamers that robustly function in the cellular 

environment. While aptamers can be raised against nearly any desired target by in vitro selection, 

many cannot be easily integrated into devices or do not reliably function in a cellular context. 

Here, we describe a new approach using secondary and tertiary structural scaffolds derived from 

biologically active riboswitches and small ribozymes. Applied to neurotransmitter precursors 5-

hydroxytryptophan and 3,4-dihydroxyphenylalanine, this approach yields easily identifiable and 

characterizable aptamers predisposed for coupling to readout domains to engineer nucleic acid 

sensory devices that function in vitro and in the cellular context.

The means to generate synthetic RNA elements with new regulatory and sensing abilities is 

powerfully enabled by in vitro selection1 and the pool of available synthetic aptamers is 

currently large2. However, only a few small molecule binding RNA aptamers have 

transitioned into effective and widely used intracellular biosensors or other devices3–5. This 

discrepancy between in vitro binding and intracellular activity is problematic, suggesting 

current selection strategies cannot easily access small molecule binding RNA aptamers 

capable of functioning robustly in the cellular environment6. While in vivo selection 
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strategies for small molecule binding RNAs could generate cell-capable sensors, current 

methods have proven to be limited in diversity and application6. Thus, engineering of RNA 

devices responsive to small molecules continues to rely upon a protracted workflow 

incorporating traditional in vitro selection with tandem, application-specific selections for 

enhanced function7.

Unlike synthetic aptamers, small molecule binding domains of natural riboswitches have 

evolved in the context of the cell and incorporate additional features extending beyond the 

ligand binding site that include high fidelity folding and an ability to communicate with 

downstream regulatory switches to elicit their required function8. These aptamers are highly 

modular and robust, observed in a broad spectrum of bacterial species9 and interface with 

diverse regulatory domains acting on transcription, translation, alternative splicing and 

mRNA stability. Thus, they are highly flexible with regards to mechanisms of 

communication with adjacent domains or sequences that elicit an output (e.g., gene 

regulation). Not surprisingly, these aptamers are highly successful in synthetic applications 

and the current validation workhorse of novel synthetic RNA tools10–12.

Here, we propose that recurrent structural folds found in natural RNA aptamers and small 

nucleolytic ribozymes can be reprogrammed using in vitro selection to host a broad 

spectrum of small molecule binding sites while preserving the robust folding and highly 

stable architectural properties of the parent. The logic of this approach is analogous to that 

applied in directed protein evolution where biologically recurrent “privileged” scaffolds such 

as the (βα)8 or immunoglobulin fold are used as starting points for the evolution of novel 

enzymes13. Using partially structured RNA libraries in the selection of small molecule 

binding aptamers has been previously employed5,14, but these simple hairpins and helices do 

not have the potential to form higher-order structure akin to natural aptamers.

Using scaffolds derived from two different riboswitch aptamer domains and a ribozyme, we 

have obtained a diverse set of aptamers that selectively bind two precursor molecules of the 

neurotransmitters serotonin and dopamine: 5-hydroxytryptophan and 3,4-

dihydroxyphenylalanine, respectively. Biochemical characterization of a subset of 5-

hydroxytryptophan binding aptamers reveals that while each of the scaffolds provides 

unique solutions for molecular recognition, they converge on similar binding affinities and 

discriminate against chemically related molecules. These aptamers are predisposed by the 

structural scaffold for coupling to widely used “Spinach” fluorogenic modules15 to create 

biosensors that function in vitro and bacterial cells. The diversity of aptamers readily 

achieved using this approach enables more flexible strategies with less in vitro 
characterization required to implement practical RNA devices.

RESULTS

Libraries with information from biological RNAs

Examination of small biological RNAs with multi-helix packing suggests two recurrent 

architectures that are privileged scaffolds. The first is the H-type pseudoknot, which is 

broadly found in biological RNAs as well as in vitro selected aptamers16 but from a design 

perspective is difficult to engineer. The other is the three-way junction (3WJ) supported by a 
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remote tertiary interaction that organizes helical arrangement around the junction17. This 

fold is more suitable for development of RNA devices as it positions a designable helical 

element (called the P1 helix) proximal to the functional site typically housed in the junction. 

Practical RNA biosensors using both natural and synthetic aptamers employing the 3WJ fold 

have already been developed10,18,19. Thus, the 3WJ fold is an ideal scaffold for selection of 

small molecule binding aptamers.

Within the 3WJ fold group, there is a large selection of potential candidates that can be used 

to scaffold an initial library of sequences for in vitro selection. For this study, we chose 

three: the aptamer domain of the Bacillus subtilis xpt-pbuX guanine riboswitch (referred to 

as “GR”)20, the aptamer domain of the Vibrio cholerae Vc2 cyclic di-GMP riboswitch 

(“CG”)21, and the Schistosoma mansoni hammerhead ribozyme (“HR”)22 (Fig. 1). In each 

of these parental RNA scaffolds, the junction hosts the key biological activity proximal to 

the P1 helix that will serve as the secondary structural bridge to a readout domain.

Starting libraries were designed based on available crystal structures to preserve the overall 

secondary and tertiary structure of the scaffold while randomizing a sufficient number of 

nucleotides in the junction to ensure adequate pool diversity such that winners emerge23. All 

nucleotides in the joining strands of the junction were randomized as well as at least one 

base pair in each helix proximal to the junction (Fig. 1). For the GR scaffold this yielded an 

initial library of 23 randomized nucleotide positions equating to a library size of ~7×1013 

sequences; the CG and HR libraries contained similar levels of diversity. This number of 

sequences is theoretically fully represented in the initial pool of RNA with at least 5-fold 

redundancy. While this is substantially lower diversity than what is recommended for deep 

selection24, aptamers have been attained from starting pools with an even more limited 

sampling of sequence space25.

The three scaffolds were integrated into a library cassette with specific design features. The 

P1 helix of each scaffold containing the initial and terminal bases of the scaffold sequences 

was replaced in all libraries with a designed helix containing structured amplification 

cassettes based upon those developed for "SHAPE" chemical probing26 (Supplementary 

Results, Supplementary Fig. 1). This ensured that the constant regions necessary for 

replication are structured and less likely to be incorporated as a necessary element for the 

selected aptamer. To further minimize the potential for the constant regions to participate in 

formation of the ligand-binding site, the P1 helix was extended to at least ten base pairs. Full 

sequences of DNA templates encoding the initial starting libraries are given in 

Supplementary Table 1.

A further complicating issue for scaffolded selection is the low fidelity of viral reverse 

transcriptases (RTs). Mutations in conserved sequences of the scaffold that disrupt 

secondary and/or tertiary structure yield RNAs that are amplified more efficiently by RT in 

the replication step, likely contributing to the "tyranny of small motifs" phenomenon 

observed in selection27. To address this, we adopted a recently characterized RT derived 

from a mobile group II intron from the thermophile Geobacillus stearothermophilus, GsI-

IIC, that is more thermostable and has inherently higher fidelity than MMLV-derived RTs28. 

For comparison, the GR scaffold selection was performed with a commonly used RT derived 
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from MMLV (SuperScript III or “SSIII”) along with GsI-IIC (see Online Methods for 

complete details).

Scaffolded selection against two aromatic amino acids

The targets for selection were 5-hydroxy-L-tryptophan (5HTP) and 3,4-dihydroxy-L-

phenylalanine (L-DOPA), the immediate biosynthetic precursors of serotonin and dopamine, 

respectively (chemical structures of all key compounds are given in Supplementary Fig. 2). 

The amino acids were immobilized on a solid matrix via the carboxylate group and seven 

rounds of selection with each library were carried out with increasingly stringent washing 

procedures in later rounds. Counterselection against L-tryptophan or L-tyrosine was 

performed to ensure selectivity of the final aptamers against related amino acids that are 

abundant in the cell. In the SSIII selection with 5HTP a conventional SELEX protocol was 

adopted in which the affinity column was extensively washed in early rounds prior to 

competitive elution to remove nonbinding RNAs24. Competitive elution was initially 

observed in round 4 and peaked at >50% of total input RNA in round 6. In order to 

encourage sequence diversity in the GsI-IIC selections with 5HTP and L-DOPA, the 

concentration of MgCl2 was lowered to 2.5 mM from 10 mM and a less stringent washing 

protocol was adopted where the final ~10% of total RNA left on the column under 

competitive elution was collected for amplification in the initial 4 rounds to preserve 

sequence diversity in the pool before increasing wash stringency27,29. Details of selections 

are given in the Online Methods and Supplementary Table 2.

In preserving sequence diversity and minimizing early stochastic events, we relied on a 

combination of next generation sequencing (NGS) and downstream bioinformatic analysis to 

reveal potential aptamers and elucidate key features of the selection. For each selection, 

>200,000 reads were obtained from the final round and resultant sequences were clustered 

and maximum-likelihood trees generated. Comparison of the SSIII and GsI-IIC selections 

using the GR scaffold revealed several important features. A distance matrix of the GR/SSIII 

selection clearly showed only a few isolated clusters, and within each cluster the sequences 

had a high degree of internal relatedness (Fig. 2a). The majority (>80%) of sequences 

clustered into three distinct sequence-related families, referred to as 5GR-I, -II, and –III, 

with the remaining clustering into small, difficult to interpret populations. This is typical of a 

traditional selection experiment where single isolates are often identified and further 

mutagenesis and selection are necessary to obtain covariation information. In contrast, the 

GR/GsI-IIC selection yielded more diverse clusters with a higher sampling of the sequences 

populating regions between major clusters (Fig. 2b). Consensus secondary structures of six 

major clusters from the two selections against 5HTP are shown in Fig. 2c. The CG and HR 

scaffolded selections with GsI-IIC were similarly diverse in their sequence space with many 

potential aptamers (Supplementary Fig. 3). While traditional selection approaches often rely 

upon overselection to facilitate finding an aptamer with limited sequence information, 

preservation of the diversity of winners and sequence analysis by NGS allows for a more 

thorough analysis of conservation and covariation patterns, aiding in determining consensus 

aptamer sequences30,31. Similar results were observed in the GR-scaffolded L-DOPA 

selection (Supplementary Fig. 4), indicating that these results are not idiosyncratic to 5HTP. 
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A subset of 250 sequences from each of the clusters that yielded validated 5HTP and L-

DOPA aptamers is given as Supplementary Data.

In addition to the limited sequence diversity of the SSIII selection, a heavy accumulation of 

deletions and point mutations was observed such that no sequences retaining the full identity 

of the constant regions of the scaffold were recovered in the final round. Two of the clusters, 

5GR-I and 5GR-III, have deletions in L2 or L3 of the scaffold essential for tertiary structure. 

In addition, 5GR-III members acquired several point deletions resulting in an alternative 

minimal free energy (MFE) secondary structure, and covariation analysis of this cluster 

indicates a consensus sequence consistent with the L-tryptophan aptamer32. 5GR-II is the 

only major cluster maintaining sequence requirements necessary for the tertiary structure 

designed into the library and was the only abundant sequence shared between the SSIII and 

GsI-IIC selections. In contrast to the selection using SSIII, the GsI-IIC selections exhibited 

low amounts of mutations accruing in the scaffold’s constant region (Supplementary Fig. 5).

To identify sequences with high aptamer potential, the ten most populous clusters from each 

pool were individually aligned, MFE structures predicted and covariation models 

generated33,34. This allowed for an information-rich view of the major consensus sequences 

presented by the selections. Since the GR/SSIII experiment was highly overselected, the 

most abundant sequence from each of the three major clusters was chosen for further 

validation. For the GsI-IIC selections, the dominant sequences from one or more clusters 

whose consensus MFE structure is consistent with the parent scaffold were selected.

Scaffolded aptamers bind 5HTP with high selectivity

The structural scaffold greatly facilitates validation of the structural and interaction features 

of resultant 5HTP aptamers. Chemical probing of RNA structure using N-methylisatoic 

anhydride (NMIA, a technique referred to as "SHAPE"35) reveals whether the secondary and 

tertiary architecture of the parental scaffolds were preserved as well as ligand-dependent 

structural changes in the aptamer. In the GR/SSIII selection, the 5GR-I and 5GR-II aptamers 

had localized changes in the NMIA reactivity patterns in the presence of ligand within the 

3WJ elements, consistent with this being the ligand-binding site (Fig. 3a; Supplementary 

Fig. 6). 5GR-III, however, showed changes outside of J2/3 in the constant regions, consistent 

with the predicted structure and tryptophan binding site of a previously described aptamer32. 

Preservation of the GR scaffold was assessed using a unique, ligand-independent NMIA 

reactivity signature in L3 that is only present when it interacts with L236. 5GR-II is the only 

sequence from the three clusters of the SSIII selection exhibiting this feature; conversely, all 

tested sequences from the GR/GsI-IIC selection had this tertiary structure signature 

(Supplementary Fig. 7). These data strongly indicated that the GR/SSIII selection yielded 

three distinct aptamers with only 5GR-II preserving the structural scaffold, whereas the GR/

GsI-IIC selection produced multiple solutions maintaining the scaffold. While the 5HTP-

dependent signatures for the GR/GsI-IIC isolates were weaker than those of 5GR-II and the 

parental aptamer, quantification revealed that they localized to the junction in an analogous 

manner (Fig. 3b). SHAPE characterization of a representative sequence from the most 

populous cluster from the CG/GsI-IIC and HR/GsI-IIC selections (5CG-I and 5HR-I, 
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respectively) showed ligand-dependent changes for the new classes of aptamers and an 

overall reactivity pattern resembling the parental scaffold (Supplementary Figs. 8, 9).

The affinity and selectivity of these aptamers for 5HTP and a set of chemically similar 

compounds was assessed by isothermal titration calorimetry (ITC). Importantly, for all of the 

tested aptamers, the 5’- and 3’-cassette sequences were not required for 5HTP binding, 

indicating the successful design of neutral sequences (Supplementary Fig. 10). Several 

trends emerged from this analysis. First, both aptamers that do not preserve the parent 

scaffold (5GR-I, -III) do not discriminate between 5HTP and L-tryptophan (Table 1), a 

crucial requirement for cell-based applications. Second, the majority of the aptamers 

preserving the GR scaffold had higher affinities for 5HTP than the aptamers with disrupted 

scaffolds and all strongly discriminated against L-tryptophan. This suggested that the 

architecture of the scaffold was important for creating a selective binding pocket and was 

able to maintain affinities comparable to other synthetic and natural aptamers that bind 

amino acids23,37. In addition to binding the positively charged α-methyl-5-hydroxy-L-

tryptophan (Me-5HTP), which serves as a close approximation to the column due to the α-

ester, they also bound serotonin, the decarboxylation product of 5HTP. This suggested a 

lesser requirement for the main chain atoms in binding. Most striking from the GsI-IIC 

selections was that the dominant aptamers from each selection, despite having different 

scaffold architectures, converged on highly similar binding affinities and selectivity profiles, 

revealing that 3WJs were a robust fold for hosting 5HTP binding pockets. Together, these 

data show that distinct 3WJ architectural variants were able to find robust solutions for 

5HTP recognition and yielded comparable affinities to more simplistic selection strategies 

that are encumbered by low complexity.

A recurrent RNA motif is used for 5HTP binding

To further demonstrate that the scaffolded selection strategy preserved the fold of the 

parental RNA and to elucidate how RNA recognized 5HTP, the structure of 5GR-II 

complexed with 5HTP was determined at 2.0 Å resolution (Fig. 3c; representative electron 

density maps are shown in Supplementary Fig. 11 and crystallographic statistics are given in 

Supplementary Table 3). This structure globally superimposed with the parental guanine 

riboswitch aptamer38 with an r.m.s.d. of 6.5 Å over all backbone atoms in residues 19–77, 

with the main sources of deviation produced by a different angle for P1 in relation to the 

binding pocket and the varied junction region (Supplementary Fig. 12). Within the L2-L3 

tertiary interaction the pattern of base-base interactions and backbone geometry was almost 

identical between the two RNAs (r.m.s.d. 0.96 Å over all atoms in residues 31–39, 61–67). 

Thus, the GR scaffold remained intact, both globally and locally, during the selection 

process.

The ligand binding pocket of 5GR-II resides within the 3WJ and has a radically different 

local structure from the parent RNA. Direct ligand contacts were primarily mediated by 

nucleotides in J2/3 using a common RNA structural module, the T-loop (Fig. 3d). The first 

five nucleotides of J2/3 formed a canonical T-loop structure superimposing almost perfectly 

with a tRNAPhe T-loop (r.m.s.d. 0.49 Å for backbone residues). Stabilization of position 3 in 

the tRNA T-loop by long range Watson-Crick pairing with the D-loop is critical for 
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activity39; 5GR-II possessed a similar interaction between G47 of the T-loop and C75 of 

J3/1. The 5GR-II T-loop hosted 5HTP stacked between positions 4 and 5 in a manner 

analogous to how the tRNA T-loop hosts an intercalating purine from the D-loop. Similarly, 

thiamine pyrophosphate (TPP) is recognized by its cognate riboswitch using the T-loop 

motif40,41 (Fig. 3e). While the T-loop was directly responsible for recognition of 5HTP, 

nucleotides from all three randomized regions were involved in local structure aiding in the 

formation of a compact junction that stabilized the T-loop.

The crystal structure of 5GR-II yielded additional insights into 5HTP recognition by other 

scaffolded aptamers. The most abundant cluster in the GR/GsI-IIC selection, 5GR-IV, also 

contained the UUGAA signature of the T-loop. The motif was 3'-shifted by a single 

nucleotide, likely leading to an alternative orientation within the 3WJ as suggested by 

significant differences in the composition of J1/2 and J3/1 between 5GR-II and 5GR-IV. In 

the HR selection, the most abundant sequence of the most populous cluster (5HR-I) also 

contained the conserved UUGAA sequence of the T-loop in J2/3. Sequence variation 

analysis of this region of the 5HR-I aptamer revealed a pattern of conservation matching that 

of the biological T-loops39,42 with only slight deviations (Supplementary Fig. 13).

Scaffolded aptamers yield robust small molecule sensors

To create functional synthetic RNA biosensors from scaffolded aptamers a conceptually 

simple and established strategy of linking a small molecule binding aptamer to a 

fluorophore-binding module via a short helical element referred to as the communication 

module (CM) was employed (Fig. 4a)5,43. This fusion employed the biologically active 

fluorogenic RNA aptamer, “Broccoli”15, and was further coupled to a tRNA scaffold to 

stabilize the biosensor for cell-based applications44. Four different GR-scaffolded 5HTP 

aptamers were coupled to four communication modules of differing lengths (Fig 4a) and 

each biosensor tested for the ability to fluoresce in a ligand-dependent fashion. Each sensor 

was assessed for their ligand-dependent fold change in fluorescence and maximal brightness 

relative to the isolated Broccoli aptamer both in vitro (Fig. 4b; Supplementary Tables 4 and 

5) and in Escherichia coli (Figure 4c; Supplementary Tables 6 and 7). These data revealed 

three sensors (5GR-II, -IV, and -V) that can detect 5HTP and/or serotonin both in vitro and 

in the cellular context, with 5GR-II demonstrating the best performance with respect to 

combined fold increase in fluorescence and maximal brightness.

The above 5HTP biosensors were designed with knowledge from biochemical and 

biophysical analysis of select aptamers. However, an optimal workflow for rapid 

development of biosensors would be able to use information derived only from the 

computational analysis of the selection to design candidate RNAs. To demonstrate that 

scaffolded aptamers incorporate design principles that enable biosensor engineering in the 

absence of experimental characterization, the above biosensor strategy was employed for 

four aptamers derived from the L-DOPA selection. None of these aptamers were validated in 

any fashion prior to their incorporation into allosteric fluorogeneic sensors. Screening of the 

resultant biosensors with L-DOPA and dopamine in vitro (Fig. 4d; Supplementary Tables 4 

and 5) and in E. coli (Fig. 4e; Supplementary Tables 6 and 7) revealed two aptamers (DG-I 

and DG–II) that function in both contexts.
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To further demonstrate the potential of scaffolded aptamers, live cell imaging was used to 

visualize the uptake of 5HTP by E. coli using the 5GR-II/CM-4 biosensor. Imaging of single 

cells revealed a rapid induction of fluorescence upon addition of 2 mM 5HTP to E. coli 
growing in a rich chemically defined medium, with ~80% of bacteria displaying an 

observable response within 20 minutes (Fig. 5a, b). The fluorescence signal was completely 

dependent upon the RNA device binding 5HTP; no detectable signal gain was observed 

when L-tryptophan is included in the media (Supplementary Fig. 14) or when the sensor 

contained a point mutation (A48U) in the T-loop module that ablates ligand binding to the 

isolated aptamer (Fig. 5c, d). The observed increase in relative fluorescence in the presence 

of 5HTP is comparable to robust cyclic dinucleotide sensors based upon natural riboswitch 

aptamer domains in live cells10,45.

Discussion

A strategy has been presented that exploits the secondary and tertiary structural architecture 

of naturally evolved riboswitches and ribozymes to scaffold small molecule binding pockets 

raised through in vitro selection. One key strength of the described approach is the use of 

multiple scaffolds in parallel selections to obtain a suite of aptamers. This differs 

significantly from traditional selections where the same subset of solutions is reproducibly 

generated from a simple randomized pool which significantly constrains sensor diversity and 

development23. While the aptamers derived from different scaffolds have similar affinities 

for 5HTP and selectivity against L-tryptophan, they clearly have distinct characteristics with 

respect to their ability to communicate with a readout domain via the P1 helix. We 

hypothesize that differences in sensor performance across different aptamers is in part due to 

variation in the spatial relationship between the ligand and the interdomain (P1) helix, a 

feature that cannot be fully controlled in the selection. However, unlike deep selections, the 

scaffolded selection approach strongly biases selections towards a favorable ligand/P1 

orientation by constraining the possible ligand position.

With a suite of aptamers, combinatorial approaches can be employed to rapidly screen for 

sensors without extensive aptamer characterization or device optimization as exemplified by 

the dopamine sensor development herein. Development of an RNA device from aptamers 

derived from deep selections requires thorough characterization along with broad screening 

of communication modules while leaving the sensory aptamer as a fixed, unalterable node 

due to the lack of diversity. With the scaffolded selection approach, a set of distinct aptamers 

can be combinatorially coupled to a set of communication modules and rapidly screened for 

variants with the desired activity, as demonstrated with the L-DOPA selection. In this 

fashion, our approach should facilitate the expedient development of RNA devices and 

sensors by easing a key bottleneck. Notably, while we focused upon only the most populous 

clusters in each selection for characterization and/or sensor design, within each selection 

there are many clusters containing alternative sequences that could further enrich the initial 

pool of aptamers for developing downstream applications.

A second powerful advantage of this selection strategy is the potential for robust folding in 

the cellular context provided by the tertiary interaction of the 3WJ architecture. Each of 

these aptamers has a fold that has undergone extensive biological evolution. Further, distal 
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tertiary interactions that organize the 3WJ core can be highly stable; both the L2-L3 

interaction of the purine riboswitch and the tetraloop-tetraloop receptor of the cyclic di-GMP 

riboswitch scaffold stably form outside the context of other RNA structure46,47. The 

presence of robust secondary and tertiary structure in the scaffold enables these elements to 

potentially guide the folding of all members of the initial library. In contrast, RNA 

misfolding during selection and or the presence of multiple MFE structures in the final 

aptamers is often a significant problem for traditional deep selection. Since there is no 

significant selection pressure for high fidelity folding in a typical selection protocol, 

providing this information in the starting library can be a path towards robust folding RNAs.

While 3WJ scaffolds were chosen as the focus of this study, the diversity of natural 

riboswitches and ribozymes can provide further feedstock for this approach. Within the 3WJ 

family, there is a broad array of sequences that vary the orientation of the three helices, size 

of the joining regions, and the nature of the distal tertiary interaction that may provide 

superior scaffolds for a particular ligand or sensor17. Furthermore, other folds may be 

predisposed to bind a target small molecule based on the nature of the cognate ligand. For 

example, larger ligands may be more easily recognized by flavin mononucleotide or 

cobalamin riboswitch-derived scaffolds, while dinucleotides such as NADH may be readily 

accommodated by one of the di-cyclic nucleotide aptamers. As natural RNA aptamers have 

been discovered to recognize chemically diverse small molecules, exploiting their 

architectures towards the selection of novel aptamers has the potential to facilitate the 

development of powerful new tools for monitoring and responding to small molecules in the 

cellular environment across a broad range of applications.

Online Methods

Library construction

For each scaffold, nucleotides within an 8 Å shell surrounding the ligand binding site or 

active site of the parent RNA were identified from their crystal structure (GR, PDB ID 

4FE5; CG, PDB ID 3IWN; HR, PDB ID 3ZD5). The corresponding positions were 

randomized in a DNA ultramer that spanned the entire aptamer domain with conserved 

flanking sequences for reverse transcription and amplification (Integrated DNA 

Technologies; sequences of all nucleic acids used in this study are provided in 

Supplementary Table 1). ssDNA was converted into dsDNA templates for transcription 

using standard Taq PCR conditions in which ~2×10−12 mol DNA (corresponding to ~1012 

individual sequences) was used in each 100 µL PCR reaction and amplified for 15 cycles. 

Approximately 1×1014 sequences were transcribed in a 12.5 mL transcription reaction 

containing 40 mM Tris-HCl, pH 8.0, 25 mM DTT, 2 mM spermidine, 0.01% Triton X-100, 4 

mM each rNTP pH 8.0, 0.08 units inorganic phosphatase (Sigma-Aldrich, lyophilized 

powder), and 0.25 mg/mL T7 RNA polymerase and incubated at 37 °C for 4 hours. 

Transcription samples were then precipitated in 75% ethanol at −20 °C, pelleted, and 

reconstituted in a solution of 300 µL formamide, 3 mL 8 M Urea, and 300 µL 0.5 M EDTA 

pH 8.0. Full length RNA was purified with a denaturing 8%, 29:1 acrylamide:bisacrylamide 

gel. Product RNA was excised from the gel after visualizing by UV shadowing and eluted in 

0.3 M NaOAc pH 5.0 before exchange and storage in 0.5× TE.
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Synthesis of 5HTP affinity column matrix

For the derivatized columns, 3 mL bed volume of EAH Sepharose 4B (GE Healthcare) was 

dehydrated with dimethylformamide (DMF). 10 µmoles of Fmoc-5-hydroxy-L-tryptophan 

and 10 µmoles of benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate 

(PyBOP) were dissolved in 1 mL of DMF and added to the dehydrated column with 20 

µmoles N,N-diisopropylethylamine (DIPEA) and incubated with agitation for 2 hours at 

room temperature. The column matrix was then drained and washed extensively with DMF. 

Unreacted sepharose amines were acetylated by adding 1 mmole of acetic anhydride and 1 

mmole DIPEA in approximately 1 mL DMF and mixed at room temperature for 1 hour. The 

column was drained of the acetylating mixture and washed with DMF prior to Fmoc 

deprotection using 20% v/v piperidine/DMF. Amino acid concentration on the column was 

determined by measuring the concentration of Fmoc in the deprotection fractions (A301 nm = 

8000 M−1 cm−1). This method generated approximately 0.5–1 mM deprotected amino acid 

per mL resin. For counter selection, EAH sepharose was prepared exactly the same except 

omitting the ligand coupling step resulting in acetylated sepharose.

In vitro selection

For the GR scaffold selection using the SuperScript III reverse transcriptase (GR/SSIII), 350 

µL acetylated sepharose was equilibrated in selection buffer (10 mM Na-HEPES, pH 7.0, 

250 mM NaCl, 50 mM KCl, 10 mM MgCl2, 0.1 mg/mL tRNA) and 1 nmol of library RNA 

in 350 µL of selection buffer was incubated at room temperature for 30 minutes with 

agitation. The applied solution was removed and the column matrix washed once with 350 

µL of selection buffer. The pooled flow through and wash (750 µL total) was added to pre-

equilibrated 5HTP-derivatized sepharose 4B column and incubated for 45 minutes. The 

column was then drained and washed three times with selection buffer before elution with 

10 mM 5HTP in selection buffer (two 1 hour incubations in 350 µL; total 700 µL eluted 

volume). The eluted fractions were then concentrated to 50 µL in a 0.5 mL Ultracel 10kD 

MWCO filter (Millipore) and ethanol precipitated in 0.3 M sodium acetate (pH 5.0), 5 µg 

glycogen, and brought to a final concentration of 75% ethanol before storage at −70 °C for 

30 minutes. Details of the conditions of each cycle are provided in Supporting Table 2.

To convert the competitively eluted RNA into a new population of RNA, the elution 

fractions were ethanol precipitated, pelleted at 13000 × g at 4 °C, decanted, and dried under 

vacuum. The dried pellet was reconstituted with 0.7 mM each dNTP, 7 µM RT-PCR primer, 

and brought to a total volume of 14 µL before heating to 65 °C for 5 minutes and incubation 

on ice for 10 minutes. The solution was then brought up to 1× SuperScript III first-strand 

buffer (5×: 250 mM Tris-HCl, pH 8.3, 375 mM KCL, 15 mM MgCl2) with 5 mM DTT and 

200 units SuperScript III (Life Technologies) in a total volume of 20 µL before a 15 minute 

extension at 54 °C. The entire 20 µL reverse transcription solution was PCR amplified in a 

total volume of 500 µL using standard Taq DNA polymerase conditions. The amplified pool 

was then transcribed by adding 100 µL of the PCR reaction to a 1 mL transcription reaction 

containing 40 mM Tris-HCl, pH 8.0, 25 mM DTT, 2 mM spermidine, 0.01% Triton X-100, 4 

mM each rNTP pH 8.0, 0.08 units inorganic phosphatase, and 0.25 mg/mL T7 RNA 

polymerase and incubated at 37 °C for 2 hours. A 100 µL transcription reaction for 32P 

labeled RNA was performed under similar condition with the exception that the rNTPs were 
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lowered to 2 mM for UTP, CTP, and GTP while ATP was reduced to 200 µM and ~100 

µCi 32P-ATP. Transcription samples were gel purified as described above with the gel 

loading conditions scaled accordingly.

Selections using the GsI-IIC reverse transcriptase were performed as described above with 

the following changes. The buffer for selection contained a reduced magnesium 

concentration and more physiologically relevant monovalent cations: 25 mM Na-HEPES, 

pH 7.0, 150 mM KCl, 50 mM NaCl, 3 mM MgCl2). GsI-IIC reverse transcriptase was used 

in place of SuperScript III. GsI-IIC reverse transcriptase was expressed in E. coli and 

purified as described by Mohr et al.28. The precipitated RNA pellet was brought up in 1.25 

mM dNTPs and 20 µM RT-PCR primer prior to denaturation at 65 °C, annealing at 4 °C, and 

equilibration at 60 °C. The solution was then brought up to 1× GsI-IIC buffer conditions (10 

mM NaCl, 1 mM MgCl2, 20 mM TrisCl, pH 7.5, 1 mM DTT) in 20 µL total volume and 

sufficient enzyme was added for extension at 60 °C. PCR was as performed as described 

above.

High throughput sequencing and bioinformatic analysis

Standard PCR was conducted to append the Illumina hybridization sequences necessary for 

annealing to the flow cell. Each library was amplified with the forward sequencing primer 

and a unique reverse primer containing a distinguishing 12 nucleotide barcode (sequences 

are given in Supplemental Table 1). The samples were sequenced using a v3 reagents kit for 

150 cycles on a MiSeq (Illumina) with custom read and indexing primers.

The resulting sequences were demultiplexed, trimmed, and quality filtered using scripts from 

QIIME48. All sequence information outside of the P1 stem was trimmed and only sequences 

containing a Phred score ≥ 20 for each nucleotide were used in the analysis. The resulting 

fasta format files for each library were then subjected to clustering by USEARCH49, which 

generated seed sequences that were clustered at 90% identity; any clusters containing a 

single sequence were discarded. The top ten populous clusters were then mapped back to 

their original sequence file, and 250 individual sequences were randomly taken as a 

representative sample of each cluster for further analysis. Sequences in each cluster were 

aligned using MUSCLE50 and the resultant alignment analyzed using CMfinder33. R2R34 

was run at its default settings to generate figures of the sequence conservation mapped onto 

the minimum free energy (MFE) secondary structure.

NMIA chemical probing

RNA was prepared as described previously51. Structure cassettes flanking the 5' and 3' ends 

of the RNA were added to facilitate reverse transcription and NMIA modification was 

performed using the established protocols26 at 25 °C. RNA was probed at 100 nM in 100 

mM Na-HEPES, pH 8.0, 100 mM NaCl, and 6 mM MgCl2. Ligand concentration was 500 

µM where indicated. Gel images were analyzed by SAFA52 and ImageJ (NIH).

Isothermal Titration Calorimetry (ITC)

All RNAs tested were exchanged into the SSIII selection buffer (10 mM Na-HEPES, pH 7.0, 

250 mM NaCl; 50 mM KCl; 10 mM MgCl2) and washed three times in 10 kD MWCO filter 
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(EMD Millipore). The ligand was brought up from a dry solid directly into the binding 

buffer and concentration established on a NanoDrop 2000 (Thermo Scientific) using an 

extinction coefficient at 275 nm of 8000 M−1 cm−1 for the 5-hydroxyindole moiety. The 

RNA was diluted to between 50–100 µM and the ligand was titrated at roughly 10 times the 

concentration of RNA. Titrations were performed at 25 °C using a MicroCal iTC200 

microcalorimeter (GE Healthcare) using established protocols53. Data was analyzed and 

fitting was performed with the Origin 5.0 software suite (Origin Laboratories).

Structure determination of the 5GR-II/5HTP complex

RNA for crystallization was prepared as previously described51. The RNA was concentrated 

in an Amicon Ultra 15 10k MWCO filter (EMD Millipore, Inc.) and exchanged into 0.5× 

T.E. buffer. Diffraction quality crystals were obtained by mixing 2 µL RNA:ligand complex 

(1:1) and 3.5 µL mother liquor (8–14% 2-methyl-2,4-pentanediol, 40 mM sodium 

cacodylate pH 5.5, 4 mM MgCl2, 12 mM NaCl, 80 mM KCl, and 4–9 mM cobalt 

hexamine), micro-seeding, and incubation at 22 °C for 1–3 days. The crystals needed no 

further cryoprotection and were flash frozen in liquid nitrogen before data collection. Data 

was collected with a Rigaku R-Axis IV image plate system using CuKα radiation (1.5418 

Å) at 100 K, and was indexed and scaled using D*TREK54. Data on a heavy atom derivative 

made by replacing cobalt hexamine with 1–11 mM iridium hexamine was also collected on 

the home x-ray source. Phases were determined using the single isomorphous replacement 

with anomalous scattering (SIRAS) method. AutoSol55 was used to find 12 iridium atoms 

that were then used to calculate phases. The resulting experimental density map displayed 

unambiguous features of the RNA backbone and helices and was used for building the 

model.

The initial model was iteratively built without the ligand in Coot56 between rounds of 

refinement in PHENIX55. The RNA model was brought through several rounds of 

refinement and simulated annealing before 5HTP was built into the model. At this point of 

building, there was clear ligand density in the binding pocket that allowed for the confident 

placement and orientation of the ligand. The placement of the ligand and bases was validated 

by a composite omit map (Supplementary Figure 4b). Water placement was automated in 

final rounds of refinement after ligand placement based on peak size in the Fo-Fc difference 

map. The resultant model had good geometry as judged using MolProbity57 and final model 

statistics (Rwork and Rfree are 21.9% and 26.2%, respectively). All crystallographic data and 

model statistics are given in Supplementary Table 3.

In vitro Broccoli sensor assays

Engineered sensors were synthesized as G-blocks (sequences of sensors given in 

Supplementary Table 1; Integrated DNA Technologies) and cloned between the XbaI and 

BlpI sites in pET30b using standard molecular cloning techniques; all resultant plasmids 

were sequence verified. For T7 RNA polymerase transcription reactions, a DNA template 

was generated by PCR using 1 µM outer primers (5’: 

GGCCGTAATACGACTCACTATAGGAGCCCGGATAGCTCAGTCGGTAGAGCAG, 3’: 

TGGCGCCCGAACAGGGACTTGAACCCTGGA) using a standard PCR reaction. 

Templates were directly added to an in vitro transcription reaction (see above) and RNA 
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synthesis was allowed to proceed for 2 hours at 37 °C. RNA from the above transcription 

reaction was directly used in assays without further purification.

The activity of each sensor was monitored in a 100 µL reaction containing 50 µL of in vitro 
transcription reaction, 10 µL of 10× Survey Buffer (1×: 50 mM K-HEPES, pH 7.5, 10 mM 

MgCl2, 150 mM KCl, 50 mM NaCl), 30 µM DFHBI-1T and 2 mM ligand (for plus ligand 

reactions). Reactions were incubated at room temperature for 30 minutes and DFHBI 

fluorescence was measured by placing 90 µL reaction volume in a Greiner 96-well flat 

bottom black fluorescence plate (Thermo Scientific) and reading in a Tecan Infinite M200 

PRO plate reader. Samples were excited at 460 nm and fluorescence emission measured as 

the average signal between 506 and 510 nm. For all experiments, a positive control of a 

tRNA-scaffolded Broccoli aptamer was performed in the presence and absence of ligand, 

which was also used as a reference for relative brightness. Fold induction was calculated by 

dividing the fluorescence values for the DFHBI-1T plus ligand reaction by the fluorescence 

value for the DFHBI-1T condition alone. All experiments were performed in triplicate and 

quantified data reported with the standard error of the mean (s.e.m.)

In vivo Broccoli sensor assays

E. coli One Shot® BL21 Star (DE3) cells (Thermo Fisher) were transformed with a pET30b-

derived plasmid containing a sensor under inducible control, plated onto LB agar 

supplemented with 50 µg/mL kanamycin and incubated at 37 °C for ~16 hours. Individual 

colonies were picked and grown overnight (~16 hours) in 5 mL of LB supplemented 50 

µg/mL kanamycin to allow the culture to reach saturation. For screening experiments, 5 µL 

of the saturated overnight culture was added to 5 mL of LB supplemented with 50 µg/mL 

kanamycin and grown to mid-log phase (OD600 ~0.4–0.6) at 37 °C. To induce expression of 

the broccoli aptamer alone or the broccoli/riboswitch aptamer fusion constructs, IPTG was 

added to a final concentration of 1 mM in each culture, which were then grown for an 

additional 2 hours at 37 °C. Cells were then pelleted by centrifugation and washed once with 

5 mL of 1× M9 salts supplemented with MgSO4 at a final concentration of 5 mM and 

kanamycin at a final concentration of 50 µg/mL. After washing, cells were pelleted by 

centrifugation, resuspended in 250 µL of the above M9 medium and split into two 100 µl 

aliquots. In half of the aliquots, DFHBI-1T was added to a final concentration of 50 µM in a 

final volume of 110 µL. In the other half of the aliquots, DFHBI-1T was added to a final 

concentration of 50 µM and the ligand (5HTP, 5HP or dopamine) was added to a final 

concentration of 1 mM in a final volume of 110 µL. Cells were then incubated at 37 °C for 

30 minutes to allow for uptake of each compound. Following the 30 minute incubation, 100 

µL of each aliquot was pipetted into a Greiner 96-well black microplate and chilled on ice 

for 30 minutes. For fluorescence measurements, DFHBI-1T was monitored at an excitation 

wavelength of 472 nm and a 520 nm emission wavelength. Quantified data represent the 

average fluorescence values ± standard error of the mean (s.e.m.) from three biological 

replicates, which were background corrected using a pET30b empty vector control. Fold 

induction was calculated by dividing the average fluorescence values of cells exposed to 

ligand by the average fluorescence of cells without ligand.
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Intracellular fluorescence imaging of 5HTP

DNA and cultures were prepared as previously described58. Briefly, the tRNA/Broccoli 

fusion sequence was cloned into pET30b between the XbaI and BlpI sites downstream of an 

inducible T7 promoter. The sequence verified plasmid was transformed into BL21(DE3)-

STAR cells (Invitrogen) and single colonies were grown up overnight in Luria Broth (LB) 

supplemented with 50 µg/mL kanamycin. The overnight culture was used to inoculate fresh 

LB/kanamycin medium at a 1:1000 dilution and the culture grown at 37 °C to an OD600 = 

0.4–0.6 before induction with 1 mM IPTG and growth at 37 °C for 2–4 hours. 200 µL of the 

resultant culture was centrifuged, decanted, and resuspended in 2 mL of M9 minimal salts 

medium supplemented with 50 µg/mL kanamycin, 5 mM MgSO4, and 1 mM IPTG. 200 µL 

of the resuspended culture was transferred to 96-well poly-D-lysine coated glass bottom 

plates (MatTek) and incubated at 37 °C for one hour. The media was then removed and the 

wells washed with M9/kanamycin/1 mM IPTG medium before adding 200 µL of M9 media, 

1 mM IPTG, and 400 µM DFHBI-1T (Lucerna). The live fluorescence images were taken 

with an Andor iXon3 897 EMCCD using a 60× oil objective, an excitation filter 472/30, 

dichroic mirror 490 (long pass) and emission filter 520/40 on a Nikon Ti-E microscope and 

analyzed with FIJI59.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. RNA scaffolds used for selection
(a) The GR scaffold is derived from the aptamer domain of the B. subtilis xpt-pbuX guanine 

riboswitch. The aptamer is comprised of three paired (P) regions connected by the joining 

(J) regions of the 3WJ that contains the guanine (Gua, magenta) binding site (dashed lines 

represent direct RNA-ligand interactions). Nucleotides outlined in cyan are those that were 

randomized for selection. The terminal loops of P2 and P3 (L2 and L3, green box) 

participate in a tertiary interaction that organizes the 3WJ. Below is the three dimensional 

structure of the RNA (PDB ID 4FE5) with the same coloring scheme emphasizing the 

spatial relationship between the ligand binding site and the randomized nucleotides. (b) The 

secondary (top) and tertiary structure (bottom) of the CG scaffold derived from the aptamer 

domain V. cholera Vc2 cyclic di-GMP riboswitch (PDB ID 3IWN). (c) The secondary (top) 

and tertiary structure (bottom) of the HR scaffold derived from the S. mansoni hammerhead 

ribozyme (PDB ID 3ZP8). The labeling and coloring scheme in panels (b) and (c) are the 

same as in (a).
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Figure 2. Selection of scaffolded aptamers that selectively bind 5-hydroxytryptophan (5HTP)
(a) Unrooted phylogenetic tree representation of the distance matrix of sequences derived 

from round 7 of the GR/SSIII selection. Sequences are grouped into three main clusters, 

which are independently colored. The distance is expressed as the maximum likelihood 

estimate (MLE) of the number of substitutions occurring per site between two nodes of the 

tree (bar shown for scale). (b) Unrooted phylogenetic tree representation of the distance 

matrix of sequences derived from round 7 of the GR/GsI-IIC selection. The four clusters 

from which representative sequences were analyzed are shown in independent colors (legend 
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shown to right); black region represents unanalyzed clusters and regions of the tree. (c) 

Covariation model of six observed clusters derived from the GR selections. The dashed lines 

correspond to the regions of the scaffold that were randomized and the line connecting L2 

and L3 denote clusters where the sequences were maintained that would support the tertiary 

interaction.
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Figure 3. Analysis of potential 5HTP aptamers
(a) "SHAPE" chemical probing of three sequences (5GR-I, -II, and –III) in comparison to 

the native xpt guanine riboswitch. (full gel shown in Supplementary Fig. 5). (b) Quantitation 

of the ligand-dependent differential intensities of SHAPE probing of 5GR-II in the presence 

and absence of 5HTP demonstrates that reactivity localizes to the junctions and an 

enhancement in L3 suggests a reinforced tertiary structure upon ligand binding. (c) Crystal 

structure of the 5GR-II aptamer in complex with 5HTP (magenta) with sequence elements 

colored as in Figure 1a. (d) The 5GR-II binding pocket within the 3WJ forms a set of 
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hydrogen bonding interactions that engages every polar functional group in 5HTP with the 

exception of an α-oxygen which was presented as column-coupled amide during the 

selection. The complex is also stabilized by stacking interactions between the hydroxyindole 

ring of 5HTP and adenine bases (A48 and A49) in J2/3. (e) The core of the binding pocket 

of the 5GR-II aptamer (green) is a T-loop that superimposes almost perfectly with the T-

loops from tRNAPhe (orange) and the thiamine pyrophosphate (TPP) riboswitch (cyan). In 

each example, the space between purines T4 and T5 enables intercalation of an aromatic 

ring (T1–5 numbering indicates the nucleotide position within the T-loop motif).
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Figure 4. In vitro and intracellular performance of 5HTP and L-DOPA sensors
(a) Schematic of the secondary structure of genetically encodable biosensors of 5HTP and 

L-DOPA in which a GR-scaffolded aptamer (cyan) is coupled to a fluorogenic aptamer 

(“Broccoli”, green) via a communication module (orange, CM; sequences on bottom) and 

stabilized in vivo with the tRNA scaffold (yellow). (b, c) Heat maps depicting the fold 

change in fluorescence observed upon the addition of ligand (top) and the prospective 

sensor’s percent brightness of a tRNA/Broccoli control in the presence of ligand (bottom) 

for a series of GR-scaffolded aptamers coupled to Broccoli with CMs from 2 to 5 base pairs 

in length. (d, e) Heat maps of the performance of the same sensors in E. coli.
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Figure 5. A 5HTP aptamer-based biosensor functions in E. coli
(a, b) The wild-type 5GR-II aptamer specifically activates the fluorescence of the Broccoli 

reporter in the presence of 5HTP, but not in the presence of L-tryptophan. (c) A single point 

mutation in the 5HTP-binding pocket of the 5GR-II aptamer (A48U) also ablates 

fluorescence in the presence of the fluorophore. (d–f) Single cell traces of fluorescence 

induction for the wild type 5GR-II-Broccoli sensor in the presence of 5HTP, L-tryptophan, 

and the binding incompetent 5GR-II A48U construct in the presence of 5HTP. At t=0 

minutes, either 2 mM 5HTP or 5 mM L-tryptophan was added to the media.
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