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KEY WORDS Abstract The development of nanomedicine has recently achieved several breakthroughs in the field of
cancer treatment; however, biocompatibility and targeted penetration of these nanomaterials remain as
limitations, which lead to serious side effects and significantly narrow the scope of their application.
The self-assembly of intermediate filaments with arginine—glycine—aspartate (RGD) peptide (RGD-
IFP) was triggered by the hydrophobic cationic molecule 7-amino actinomycin D (7-AAD) to synthesize

Nanoprobe;
7-Amino actinomycin D;
Intermediate filament

protein;
Tumor image; a bifunctional nanoparticle that could serve as a fluorescent imaging probe to visualize tumor treatment.
Antitumor therapy; The designed RGD-IFP peptide possessed the ability to encapsulate 7-AAD molecules through the for-
Integrin avf33 mation of hydrogen bonds and hydrophobic interactions by a one-step method. This fluorescent nanop-

robe with RGD peptide could be targeted for delivery into tumor cells and released in acidic environments
such as endosomes/lysosomes, ultimately inducing cytotoxicity by arresting tumor cell cycling with in-
serted DNA. It is noteworthy that the RGD-IFP/7-AAD nanoprobe tail-vein injection approach demon-
strated not only high tumor-targeted imaging potential, but also potent antitumor therapeutic effects
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in vivo. The proposed strategy may be used in peptide-driven bifunctional nanoparticles for precise im-

aging and cancer therapy.

© 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical
Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Cancer is a disease characterized by abnormal cell proliferation.
As a leading cause of human death, it has attracted significant
attention from clinical researchers worldwide'*>. Furthermore,
precise imaging and diagnosis of cancer are essential for effective
therapeutic intervention. Currently, drug loaded nanoprobes tar-
geted to exact sites have been extensively studied to develop more
effective approaches to tumor diagnosis and treatment™. A
plausible strategy may include the direct delivery of chemother-
apeutic drugs to tumors by fluorescent nanoprobes with the sub-
sequent enrichment of tumor tissues through prolonged drug half-
life or increased solubility of hydrophobic drugs™°. Conventional
nanocarriers tend to burst or cause premature and uncontrollable
drug release, and the majority have low drug loading and exhibit
non-specific drug leakage, while their limited biocompatibility
may stimulate immunogenic responses in humans’~°. Therefore,
an ideal nanoprobe composed of biocompatible vectors should not
merely have the capacity to accurately detect tumors, but also be
able to improve the specificity of its antitumor action through
structural modifications.

Actinomycin D (ACTD) is a cytotoxic chemotherapeutic re-
agent whose 2-cyclic peptide structure facilitates its embedment
into the minor groove of DNA, suppresses the function of RNA
polymerase, and inhibits mRNA synthesis'®''. 7-amino actino-
mycin D (7-AAD) acts as a homologous analogue of ACTD with a
2-cyclic peptide structure in which the seventh hydrogen atom in
the connection chain is replaced with an amidogen so as to emit
red fluorescence through an intramolecular charge transfer ef-
fects'”. The maximum excitation/emission wavelength of 7-AAD
is 546/647 nm, and its Stokes shift is approximately 100 nm,
which is much higher than those of commercially available
organic dyes. These parameters can help effectively decrease dye
self-quenching, while reducing non-specific background fluores-
cence, making 7-AAD potentially suitable for tumor diagnosis and
treatment' %, However, both ACTD and 7-AAD cannot enter
living cells due to their inability to penetrate cell membranes and,
therefore, have a narrow antitumor spectrum.

Non-immunogenic peptides self-assembled from natural amino
acids with good biocompatibility and their further modification
may solve the problem of limited tissue penetration'>'°. Human
vimentin intermediate filaments (IFs) are the basic component of
the cellular cytoskeleton, which realize cross-linking with visible
components such as microfilaments and microtubules in the form
of homologous dimers'’. Hence, an extremely conserved o-helical
motif containing 36 amino acids (EKVELQELNDRFA-
NYIDKVRFLEQQNKILLAELEQL) of IFs was selected for the
self-assembled peptides employed in this study due to its ability to
form a polymeric shape via their parallel coiled-coil “rod” do-
mains. This structure may induce self-assembly of nanoparticles
(NPs) through the formation of hydrophobic, ionic, or hydrogen
bonds within and between different chains under certain

conditions'®'". av@3 is a member of the integrin family of

transmembrane glycoprotein molecules and is mainly overex-
pressed in activated tumor angiogenic endothelial cells and certain
tumor cells, while it has little or no expression in normal or mature
endothelial cells’'. In addition, av3 is an important target for
tumor diagnosis and therapy, and usually participates in regulating
the proliferation and metastasis of tumor cells. RGD (arginine-
glycine-aspartic acid)-containing polypeptides can recognize
avfB3 integrin and bind it with highly affinity and specificity.
Based on these properties, a large number of studies have
employed RGD sequences in various methods to enhance onco-
therapeutic targeting strategies for imaging tracers or treatment™”.

Herein, owing to knowledge regarding the intriguing properties
of polypeptide self-assembly and 7-AAD, a sensitive bifunctional
nanoprobe with peptide-driven self-assembling NPs for tumor site
imaging and therapeutic applications has been designed and
synthesized (Fig. 1). The nanostructure, optical properties, in vitro
and in vivo efficacy, and biosafety properties of self-assembled
RGD-IFP/7-AAD nanoprobes were determined using various
techniques. First, the RGD-IFP peptide self-assembled with 7-
AAD into a stable polymeric nano-spherical structure by elec-
trostatic interactions and w—m stacking between the cationic drug
and peptide molecules under natural conditions. 7-AAD mole-
cules become proximal to each other through the help of the RGD-
IFP peptide and generate resonant energy transfer by mutual ab-
sorption of light, which leads to fluorescence weakening. The
resulting NPs were able to penetrate the cell membrane and thus to
enter living cells. Second, RGD peptide moieties that could bind
to overexpressed av(3 integrin subunits were added to the N-
terminal of the IFP peptide to promote the localization of tumor
cells and enhance tumor ablation in vivo. Third, after intracellular
uptake, 7-AAD was released by lysosomes into the acidic envi-
ronment thereby increasing antitumor efficacy and fluorescence
intensity. These processes could reduce both the systemic toxicity
of 7-AAD and the fluorescent background noise of normal tissues
or blood circulation. The obtained results indicate that the pro-
posed nanoprobe considerably broadens the applied spectrum of
fluorescence imaging and may be used to develop new nano-
medicines for precision therapy.

2. Materials and methods
2.1.  Materials and reagents

All chemical reagents were purchased from Sigma—Aldrich (St.
Louis, MO, USA) unless otherwise mentioned. RGD-IFP and IFP
peptides were synthesized by a solid-phase method with 95 %
purity (China Peptides Co., Ltd., Shanghai, China). 7-
Aminoactinomycin D was purchased from J&K Scientific Ltd.
(Beijing, China). Trypsin, Dulbecco’s Modifed Eagle’s Medium
(DMEM) and fetal bovine serum (FBS) were obtained from
GIBCO, Invitrogen Corp. (Carlsbad, USA). Lyso-Tracker Green
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fluorescence probe was purchased from Invitrogen (Carlsbad, CA,
USA). DAPI and EdU Cell Proliferation Kit with Alexa Fluor 488
were purchased from Beyotime Biotechnology (Shanghai, China).
CCK-8 cell proliferation kit was purchased from Dojindo Mo-
lecular Technologies (USA). All buffer solutions were prepared in
ultrapure water (Millipore, Billerica, MA, USA).

2.2.  DNA hypochromic effect

Calf thymus DNA solution was prepared at concentration gradi-
ents of 0, 0.1, and 0.5 mg/mL, and the 7-AAD drug solution was
dissolved in 45 mmol/L Tris buffers at a final concentration of
2 umol/L for the drug buffer. After that, 0.16 mL of the DNA
solution was thoroughly mixed with 1.84 mL of the drug buffer
adequately and incubated for 10 min. Ultraviolet (UV)— Visible
spectra were recorded in the wavelength range of 350—600 nm.
2.3.  Conjugated reaction of 7-AAD with DNA

Calf thymus DNA was purchased from Sigma—Aldrich. Its
aqueous solution was mixed with 7-AAD aqueous solution at an
equal ratio followed by incubation for 10 min at room tempera-
ture. The equal amounts of 7-AAD, calf thymus DNA, and the
mixture of 7-AAD with calf thymus DNA were mixed with the
loading buffer, and the resulting samples were loaded with 1 %
agarose gel. Agarose gel electrophoresis was performed at a
voltage of 100 V for 45 min, and images were taken under UV
irradiation.

2.4.  Design and preparation of RGD-IFP peptide

In order to ensure the successful NP self-assembly, tumor cell tar-
geting, and controlled drug release in vivo, the amino acid sequences
of designed peptides must satisfy certain requirements. In this study,
RGD-IFP peptides (RGDSEEKVELQELNDRFANYIDKVR-
FLEQQNKILLAELEQL) that could self-assemble into a stable
homodimer of the human proteome were designed. Molecular
weights of RGD-IFP peptides were measured by electrospray mass
spectrometry (Perkin Elmer SCIEX) and 1 mg/mL peptides were
added to an oxidation buffer (100 mmol/L. ammonium acetate,
pH = 8.5), stirred at room temperature for 3 days, purified by
reversed-phase high-performance liquid chromatography, and
stored at —20 °C. Their tertiary structure was obtained from the
SWISS-MODEL server (https://swissmodel.expasy.org/). Net
charge and hydrophilicity analyses were performed by the Novopro
online tools (https://www.novopro.cn/tools/).

2.5.  Self-assembly and molecular docking of RGD-IFP/7-AAD
nanoprobes

Fresh stock solutions of designed RGD-IFP peptides were ob-
tained by dissolving the lyophilized peptides in ultrapure water at
a concentration of 8 mg/mL. To avoid pre-aggregation, fresh stock
solutions were prepared for each experiment. RGD-IFP/7-AAD
NPs were obtained through the reaction of the RGD-IFP solutions
with 7-AAD mixed at a concentration ratio of 4:1 followed by
shaking for 1 min. To ensure their sufficient interaction, the
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Figure 1

Schematic illustration of the synthesis of RGD-IFP/7-AAD nanoprobes with antitumor properties and their antitumor mechanism. (A)

Self-assembly of RGD-IFP/7-AAD nanoprobes through the cooperative coordination of small peptides and 7-AAD by one-step method. (B) After

the tail intravenous injection, RGD-IFP/7-AAD nanoprobes can be used in

tumor-targeted imaging and chemotherapy due to the enhancement of

their cell penetration ability and accumulation via circulation. (C) RGD-IFP/7-AAD nanoprobes target tumor cells through av33 integrin subunits
and become internalized by endocytosis. The acidic pH values of endosomes/lysosomes stimulate the rapid drug release at the tumor sites and

killing tumor cells by blocking the cell cycle.
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resulting solutions were placed into an ultrasonication bath and
microwaved at a power of 40 W and temperature of 37 °C for 1 h.
After that, the solutions were centrifuged at 3,000 g for 5 min,
transferred through a dialysis film, and soaked in ultrapure water
for 24 h to purify the prepared RGD-IFP/7-AAD NPs.

Molecular docking analysis of the RGD-IFP/7-AAD coordi-
nation environment was performed by the Molecular Operating
Environment (MOE) software containing the Schrodinger Glide
package with the default parameters. The RGD-IFP crystal
structure and its three-dimensional (3D) model were downloaded
from the website https://www.swissmodel.expasy.org/interactive
(3ssu).

2.6.  Characterization of RGD-IFP/7-AAD NPs

Particle size distribution and zeta potential of prepared RGD-IFP/
7-AAD NPs were measured by dynamic light scattering (DLS;
Zetasizer Nano ZS ZEN3600, Malvern Instruments Ltd., Wor-
cestershire, UK). Transmission electron microscopy (TEM) im-
ages of the NPs were obtained on air-dried carbon-coated copper
grids using a JEM 2100 transmission electron microscope (JEOL,
Japan). Fourier-transform infrared (FTIR) spectra of RGD-IFP/7-
AAD NPs were recorded by a Nicolet IS 10 FTIR spectrometer
(Thermo, USA). The fluorescence resonance energy transfer
(FRET) was determined by a FluoroMax-4 spectrofluorometer
(HORIBA Jobin Yvon, France) with an excitation wavelength of
546 nm and emission wavelength of 647 nm.

2.7.  7-AAD release profile from nanoprobes were measured by
dialysis method

An aqueous solution of the RGD-IFP/7-AAD nanoprobes with an
equivalent concentration of 7-AAD was pipetted into a dialysis
membrane (Mw cutoff = 5,500 Da) and then introduced into
20 mL of phosphate-buffered saline (PBS) solution with a pH
value of 5.5, 6.5, or 7.4. The resulting mixture was shaken gently
in a water bath at 37 °C. During this procedure, 1 mL of the
medium was removed, and 1 mL of the fresh buffer was added
every 30 min. The 7-AAD concentration of the buffer was
determined by fluorescence spectroscopy at an excitation wave-
length of 546 nm and emission wavelength of 647 nm.

2.8.  Live cells for cellular uptake imaging and flow cytometry
analysis

All cell lines were purchased from the National Laboratory Cell
Resource (China). A549 (human lung cancer cells) and 293T
(human embryonic kidney cells) were cultured in DMEM sup-
plemented with 10 % FBS and 1 % penicillin—streptomycin so-
Iution at 37 °C under a 5 % CO, atmosphere according to the
standard cell culture protocols.

The uptakes of RGD-IFP/7-AAD nanoprobes in cells were
assessed by confocal laser scanning microscopy (CLSM, Olympus
FV1000, Japan) and flow cytometry (BD Accuri C6, USA). Cells
were seeded at a density of 5 x 10% per well for 24 h. After replacing
the old medium with a fresh one containing RGD-IFP/7-AAD, IFP/
7-AAD and free 7-AAD (with a concentration of 1 ng/mL 7-AAD),
the cells were further incubated for 3hat 37 °C. After incubation, the
cells were washed three times with PBS, fixed with 4 %

paraformaldehyde. To determine the intracellular locations of 7-
AAD species, the cell nuclei were stained with 4’,6-diamidino-2-
phenylindole (DAPI). 7-AAD and DAPI were excited at wave-
lengths of 546 and 405 nm, respectively. For flow cytometry anal-
ysis, cells were incubated in a fresh medium containing RGD-IFP/7-
AAD, IFP/7-AAD and free 7-AAD with a concentration of 1 pg/mL
for 3 h. Subsequently, the cells were harvested and subjected to flow
cytometry analysis at an excitation wavelength of 546 nm. The mean
fluorescence intensity corresponding to 1 x 10* cells was recorded
for each sample.

2.9.  Endocytosis and colocalization of cell lysosomes with
RGD-IFP/7-AAD nanoprobes in vitro

A549 cells were seeded in the 35 mm glass-based dish overnight,
treated with RGD-IFP/7-AAD nanoprobes (the concentration of 7-
AAD was 1 pg/mL) in the complete medium at 37 °C for 3 h.
After washing three times with PBS, the cell lysosomes were
stained with 50 nmol/L Lyso-Tracker Green fluorescence probe
for 30 min. Finally, the cells were washed three more times, and
their CLSM images were obtained at excitation wavelengths of
488 and 546 nm, respectively (Olympus FV1000, Japan).

2.10.  Cytotoxicity assay

Cell viability was measured by Cell Counting Kit-8 (CCK-8)
according to the manufacturer’s instructions (Dojindo Molecular
Technologies). Cells were seeded into 96-well plates at a density
of 1 x 10* per well and maintained for 24 h. In the next step, they
were incubated with IFP, free 7-AAD, IFP/7-AAD and RGD-IFP/
7-AAD for 24 h at different concentrations, respectively. Then, the
incubation medium was replaced with a fresh one, and cells
continued to be cultured for 4 h before conducting cell viability
analysis using CCK-8. Cell viability was evaluated at an absorp-
tion wavelength of 450 nm by a microplate absorbance reader
(Bio-rad iMark, USA). Each experiment was repeated at least
three times.

2.11.  EdU cell proliferation assay

Cell proliferation was detected by EdU cell proliferation kit ac-
cording to the manufacturer’s instructions (Beyotime Biotech-
nology). Cells were seeded at a density of 5 x 10* per well
overnight, after which a fresh medium containing free 7-AAD,
IFP/7-AAD and RGD-IFP/7-AAD NPs replaced the old one fol-
lowed by further incubation for 3 h using PBS buffer as a control.
EdU (5-ethynyl-2’-deoxyuridine) was added in the amount of
10 umol/L to every detecting well, and cells were further cultured
for 2 h. After labeling S-phase cells, the culture solutions were
replaced with fixation solutions followed by its removal and
washing three times. Using the liquids of enhancing membrane
penetrability for 10—15 min and abandoned, then washing three
times, EAU colored substrate solution (containing 488 azide) was
incubated for 30 min and kept in a dark place. After the EdU
labeling and DAPI counterstaining steps, the cells were analyzed
by CLSM imaging. All results were obtained by conducting at
least three independent experiments.
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2.12.  Flow cytometry analysis of the cell cycle

Cells were seeded at a density of 1 x 10° per well and incubated
overnight. The cellular incomplete medium for serum removal
replaced the old medium after 12 h to synchronize the cell cycle.
Subsequently, the cells were washed thrice with PBS and incu-
bated in a new growth medium containing free 7-AAD, IFP/7-
AAD and RGD-IFP/7-AAD for 3 h. Subsequently, cells were
washed and fixed in 70 % ethanol overnight at 4 °C under dark
conditions. Ethanol-fixed cells were centrifuged at 300 xg for
5 min, washed thrice with cold PBS, and incubated in PBS with
100 mg/mL DNase-free RNase A for 30 min on ice. Next, the cell
pellet was suspended in 1 mL of DAPI staining solution for
10 min in the dark. Finally, the cells were analyzed in a flow
cytometer (BD FACSAria™ III, USA). DAPI fluorescence was
detected using UV laser light, and the raw data were processed by
the FlowJo10.0 software.

2.13.  Biodistribution and pharmacokinetic study of RGD-1FP/7-
AAD nanoprobes in vivo

Briefly, 6-week-old female athymic nude mice were subcutane-
ously injected with 1 x 107 A549 cells into the right hips to
establish a xenograft model. Tumor-bearing mice with tumor
volumes of 100 mm® were injected with free 7-AAD, IFP/7-AAD
and RGD-IFP/7-AAD nanoprobes through their caudal veins at a
7-AAD concentration of 120 png/kg. In vivo real-time images of
the anesthetized mice and their sacrificed organs were obtained by
an IVIS Spectrum imaging system (Perkin Elmer). Acquisition
and analysis of the raw data were performed by the Living Image
4.2 Software.

To determine pharmacokinetics study of nanoprobes, 8-week-
old Sprague—Dawley rats (n = 9) were randomly divided into
three groups: free 7-AAD, IFP/7-AAD and RGD-IFP/7-AAD
nanoprobes. Pharmacokinetics was determined by drawing
0.2 mL blood samples from the rats at 0.5, 1, 2, 4, 6, 8 and 24 h
after injection. The concentration of 7-AAD were determined by
high performance liquid chromatography (HPLC) assay and non-
compartmental pharmacokinetic parameters were analyzed by
DAS2.0 software.

2.14.  Invivo antitumor efficacy of RGD-1FP/7-AAD nanoprobes

A549 nude mice were randomly divided into three groups (n = 5
per group) and injected intravenously with saline (control), free 7-
AAD, IFP/7-AAD and RGD-IFP/7-AAD with a 7-AAD concen-
tration of 60 pg/kg every 6 d after the tumor size reached an
approximate value of 50 mm’. Tumor sizes (tumor
volume = length x width?2) and mice weight were recorded
daily. After 24 d of treatment, mice were sacrificed, and their
tumors and major organs were collected into a 4 % formaldehyde
solution. All procedures and experimental protocols were
reviewed and approved by the Animal Experimental Ethical In-
spection Form of Southeast University (Jiangsu, China).

2.15.  Immunohistochemistry and histological analysis

At the end of the experiment, the sacrificed tumor tissues were cut
into 10 um slices and incubated with rabbit anti-mouse Ki67
antibodies at 4 °C overnight. After washing thrice with cold PBS
buffer, horseradish peroxidase-conjugated secondary antibody
(1:1000) was added to tissues, which were subsequently incubated

for 2 h at room temperature. The results of terminal deoxy-
nucleotidyl transferase dUTP nick end labeling (TUNEL) exper-
iments were analyzed according to the standard protocols. The
major mouse organs including hearts, livers, spleens, lungs, and
kidneys were embedded in paraffin for hematoxylin—eosin (H&E)
histological analysis.

2.16.  Statistical analysis

All values are expressed as mean + standard deviation (SD). All
statistical analysis was performed by student’s t tests or one-way
ANOVA test and the nominal P value for each comparison without
adjusting for multiple testing. A P value < 0.05 was considered
statistically significant.

3. Results and discussion

3.1.  Characteristics and molecular docking of 7-AAD and RGD-
IFP

The synthetic procedures for 7-AAD are shown in Fig. 2A. The
seventh hydrogen bond of ACTD is substituted by amidogen and
carries a positive charge. Protons present on the amidogen enable
7-AAD to emit fluorescence through intramolecular charge
transfer effects, whereas ACTD does not emit fluorescence, as
shown in Fig. 2B. Whether 7-AAD also can insert into the DNA
double helix to bind and affect its function remains to be deter-
mined”**. To evaluate its effects on DNA function, 7-AAD was
mixed with specified DNA concentrations, and their conjugated
reaction was studied by UV—Visible spectroscopy and agarose gel
electrophoresis. The degree of intercalation between small mole-
cules and DNA can be determined from the red shift of the ab-
sorption peak obtained for the chromophore group in the visible
spectrum and decreases in its absorption intensity are due to hy-
pochromic effects®”. The results presented in Fig. 2C show that
after the addition of calf thymus DNA, the UV—Visible absorption
intensity decreased significantly due to the hypochromic effect,
and the A, value moved towards longer wavelengths (i.e. red-
shifted). The observed trends became more pronounced as the
DNA concentration increased. DNA is negatively charged and 7-
AAD is positively charged; their corresponding molecules migrate
to opposite electrodes during electrophoresis>®. A binding reaction
occurred after 7-AAD was inserted into the larger molecule of calf
thymus DNA, and they get together slowly migrated to the posi-
tively charged side, as shown in lane 3 of Fig. 2D.

Molecular dynamics docking procedures can identify two mol-
ecules with a stable configuration and desired energy. It determines
not only their possible physical interactions, but also feasible
complex configurations”’. The RGD-IFP peptide is composed of
three functional sequences, and its tertiary structure is a dimer
consisting of a-helices (Fig. 3B). The designed main sequence
included 36 amino acids with an o-helix that formed self-assembled
nanospheres. The SEE sequence zone with a negative charge (Iso-
electric point = 3.79) tends to attract many positively charged
molecules through electrostatic interactions, while the RGD tar-
geted sequence can bind to integrin av33 subunits overexpressed in
various tumor cells****?°, A dimer model of RGD-IFP peptide
constructed via SWISS-MODEL is shown in Fig. S1, and the net
charge and hydrophilicity are presented in Fig. S2. The binding free
energy reflecting interactions between the ligand and receptor

included torsional free energy and intermolecular energy’’>'.
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Figure 4  Preparation and characterization of RGD-IFP/7-AAD nanoprobes. (A) Schematic illustration of the self-assembly of RGD-IFP/7-
AAD nanoprobes performed by a one-step method. (B) TEM images of RGD-IFP/7-AAD NPs. (C) A photographic image of RGD-IFP/7-
AAD NPs and their size distribution obtained from the DLS profiles. (D) Zeta potentials, (E) FTIR spectra, and (F) fluorescence spectra of 7-

AAD and RGD-IFP/7-AAD NPs before and after self-assembly.

groups interact hydrophobically with the opposite sides of 7-AAD
molecules. In addition, the lowest torsional potential energies of
7-AAD and the RGD-IFP dimer (Fig. 3A and B) were calculated by
MOE??, and the configuration with the lowest binding energy cor-
responded to the most stable 3D docking structure (assuming that
the majority of all possible combinations of 7-AAD with IFP peptide
are presented in Fig. 3C).

3.2.  Synthesis and characterization of RGD-IFP/7-AAD
nanoprobes

RGD-IFP/7-AAD nanoprobes were synthesized by a one-step
method (details of this procedure are provided in the Materials and
Methods section). Fig. 4A shows the hydrophobic 7-AAD species
coated with amphiphilic RGD-IFP peptides and the turbid solution
containing successfully self-assembled suspended nanospheres.
Representative TEM images of the as-synthesized NPs revealed
that the latter formed spherical structures with sizes of approxi-
mately 92.5 £ 26.7 nm (Fig. 4B), which was consistent with the
DLS data presented in Fig. 4C. The size of NPs is less than
120 nm, indicating that these regular aggregates may be suitable
for intravenous (i.v.) injection and accumulation in tumors owing
to their enhanced permeability and retention properties™ .
The amino groups located on NP surfaces may contribute to
positive electrical potential, and such electropositivity can protect

NPs from being adsorbed by positively charged proteins in the
blood after intravenous injection’®. Fig. 4D shows that the Zeta (%)
potential of RGD-IFP/7-AAD NPs is 23.20 &+ 2.35 mV at pH 7.4,
which helps them maintain a fixed shape. The size distribution and
¢ potential of RGD-IFP/7-AAD NPs remained unchanged within
15 days, confirming their stability at pH 7.4 in PBS and 10 % FBS
(Fig. S3). Because FRET can be used for studying intermolecular
functional groups and characteristic structures’’, RGD-IFP pep-
tide, 7-AAD, and the purified RGD-IFP/7-AAD NPs were
analyzed using this method. The FTIR spectra depicted in Fig. 4E
have two characteristic bands centered at 1620 and 3410 cm ™.
Compared with the corresponding FTIR band of the RGD-IFP
spectrum, the RGD-IFP/7-AAD band was shifted to lower wave-
numbers, which indicated that RGD-IFP and 7-AAD peaks were
detected for RGD-IFP/7-AAD NPs and that RGD-IFP was suc-
cessfully coordinated with 7-AAD. In addition, fluorescence
decrease was clearly observed for RGD-IFP/7-AAD nanoprobes
by FRET, which is of great significance for high sensitivity fluo-
rescence detection in vivo (Fig. 4F).

3.3.  Living cell uptake and efficient targeting of avf33-
expressing cells in vitro

7-AAD is a fluorescent derivative of ACTD, which cannot enter
living cells, and is commonly used to stain dead or apoptotic cells,
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determined by the CLSM imaging of the (A) A549 and (B) 293T cell lines incubated with these nanoprobes and free 7-AAD for 3 h. Flow
cytometry analyses of the (C) A549 cells incubated with IFP/7-AAD, RGD-IFP/7-AAD nanoprobes and free 7-AAD for 3 h to measure the cell
uptake efficiency, and (D) A549/293T cell lines incubated with RGD-IFP/7-AAD nanoprobes for 3 h to detect integrin av@3 units. Scale

bar = 20 pm.

50 as to distinguish them from living cells by flow cytometry®>**.

Once RGD-IFP/7-AAD NPs that could penetrate cell membranes
were successfully fabricated, human A549 cells were used to
evaluate their degree of internalization and cellular targeting ef-
ficiency. Fig. 5SA shows that after incubation with IFP/7-AAD,
RGD-IFP/7-AAD nanoprobes and free 7-AAD for 3 h, red fluo-
rescence was mainly localized in A549 nuclei with RGD-IFP/7-
AAD nanoprobes, while IFP/7-AAD nanoprobes were partially
detected and free 7-AAD groups were not detectable. Further-
more, flow cytometric analysis was performed to compare the
cellular uptake of RGD-IFP/7-AAD nanoprobes with that of IFP/
7-AAD and free 7-AAD. The fluorescence signals obtained for
RGD-IFP/7-AAD groups in A549 cells were clearly shifted to the
furthest right of the fluorescence enhancement zone (Fig. 5C).
Hence, we conclude that RGD-IFP peptides promote cellular
uptake and that RGD-IFP/7-AAD NPs can be delivered directly
into living tumor cells. Meanwhile, red fluorescence was detected
for both groups containing IFP/7-AAD and RGD-IFP/7-AAD
nanoprobes or free 7-AAD co-incubated for 12 h (Fig. S4). Ac-
cording to Fig. S4, cellular morphology was substantially changed
due to apoptosis or necroptosis resulting from the long-term ef-
fects of 7-AAD groups; therefore free 7-AAD stained apoptotic
and/or dead cells.

The RGD peptide that binds to av(3 integrin is overexpressed
in A549 cells, while it is poorly expressed in 293T cells’. As

shown in Fig. 5D, the signals generated by RGD-IFP/7-AAD
nanoprobes in A549 cells were significantly shifted to the right
of the fluorescence enhancement zone as compared with their
position for 293T cells (similar results were obtained by CLSM
imaging; see Fig. 5A and B). Thus, RGD peptide enabled delivery
of a greater number of RGD-IFP/7-AAD NPs into A549 cells with
higher integrin av33 expression levels than those of 293T cells.
DAPI is a fluorescent dye that has binding affinity for the adenine-
and thymine-rich DNA regions™”. The high fluorescence intensity
of RGD-IFP/7-AAD combined with the nuclei of A549 cells may
prevent DAPI from binding to DNA molecules (Fig. 5A), owing to
the released 7-AAD competing with DAPI for nuclear DNA
staining sites.

3.4. Release and cytotoxicity of RGD-IFP/7-AAD nanoprobes

Previous research studies have shown that the NPs with sizes of
50—200 nm can be uptake by cells via endocytosis*'**>. A sche-
matic diagram of the transport and pH-controlled release of NPs is
shown in Fig. 6A. NPs are ingested in the intracellular endocytosis
pathway and stimulated by the acidic environments of endosomes
(pH 6.5—7.0) and lysosomes (pH 4.5—5.5) to release 7-AAD from
the NPs**, Furthermore, co-localization of RGD-IFP/7-AAD
nanoprobes (red fluorescence) and the specific probe related to
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lysosomes (green fluorescence) is depicted in Fig. 6B. Here, ar-
rows pointing to the yellow merged fluorescence indicate that
RGD-IFP/7-AAD nanoprobes can be delivered to lysosomes
through endocytosis with the simultaneous release of drugs into
nuclei.

As mentioned earlier, pH values of 7.4, 6.5, and 5.5 were
utilized to simulate the intracellular pH conditions for drug
release in vitro. According to Fig. 6C, in PBS and 10 % FBS, the
synthesized RGD-IFP/7-AAD NPs were stable at pH 7.4 (<25 %
drug release), while approximately 50 % or 70 % of the drugs
were released when the pH decreased to 6.5 or 5.5, respectively.
With the decrease of pH (from 7.4 to 5.5) of medium solution, the
TEM images of nanoparticles were degraded gradually and the
drug release response increasingly (Fig. S5). The viability of
A549 cells treated with IFP, 7-AAD, IFP/7-AAD and RGD-IFP/7-
AAD NPs at different concentrations were compared by using the
CCK-8 assays. In Fig. 6D, 7-AAD, IFP/7-AAD and RGD-IFP/7-
AAD NPs demonstrated significant dose-dependent cell killing
effects on A549 cells after 24 h of treatment, while IFP alone had
a negligible impact on cell viability. Owing to RGD targeting, the
cell killing effect of RGD-IFP/7-AAD NPs was much stronger
than that of free 7-AAD and IFP/7-AAD in A549 cells at low
doses; however, after 4 h of treatment, 7-AAD, IFP/7-AAD and
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Figure 6

Cell viability (%)

RGD-IFP/7-AAD produced little effects on cell activity (Fig. S6),
suggesting that the nanoprobes depicted in Fig. 4A were not
caused by cell necrosis, killing the tumor cells required some
time.

3.5.  RGD-IFP/7-AAD nanoprobes inhibit cell proliferation via
blocking cell cycle

The results present in Fig. 2C and D suggested that similar to
ACTD, 7-AAD may bind to DNA to thereby affecting the cell
cycle, indicating its high cytotoxicity. Owing to their high tar-
geting efficacy and small nanoscale size, RGD-IFP/7-AAD
nanoprobes demonstrated a much stronger inhibition of cell pro-
liferation after interaction with A549 cells for 3 h as compared
with the effect produced by free 7-AAD and IFP/7-AAD nanop-
robes (Fig. 7A). This phenomenon was observed because IFP/7-
AAD and RGD-IFP/7-AAD NPs entered the tumor cells and
bound to nuclear DNA, which consequently blocked the early
phase of the cell replication cycle in the GO/G1 phase and effec-
tively inhibited cell proliferation (Fig. 7B-D). Remarkably, free 7-
AAD molecules mainly entered dying or late apoptotic cells and
were relatively hysteretic for cell cycle blocked which was
different from NPs. Cell cycle fitting details are shown in Fig. S7.

Lysosome

0.01 0.02 0.04 0.08 0.1

Concentration (ug/mL)

Release of RGD-IFP/7-AAD nanoprobes through endosome/lysosome pathways and their in vitro cytotoxicity. (A) Schematic rep-

resentation of the RGD-IFP/7-AAD nanoprobes transported and released in tumor cells. (B) Representative images of the lysosomes containing
RGD-IFP/7-AAD NPs. The green fluorescence denotes the lysosomes from the Lyso-Tracker probe; the red fluorescence indicates the 7-AAD
components of nanoprobes; the blue fluorescence indicates DAPI staining; and the yellow fluorescence is a merged image originated from the
colocalization of nanoprobes and lysosomes. Scale bars = 10 pm. (C) 7-AAD release profiles of RGD-IFP/7-AAD nanoprobes obtained at pH
values of 7.4, 6.5, and 5.5 in vitro. The bars represent the mean =+ standard deviation (SD) values obtained via triplicate determination (n = 3).
*P < 0.05, **P < 0.01. (D) Viability of the A549 cells treated with IFP, 7-AAD, IFP/7-AAD and RGD-IFP/7-AAD nanoprobes at different
concentrations. The bars represent the mean + standard deviation (SD) values obtained via triplicate determination (n = 3). *P < 0.05,

**P < 0.01.
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3.6.  Invivo biodistribution and antitumor efficacy of RGD-1FP/
7-AAD nanoprobes

To determine the imaging and therapeutic efficiency of RGD-IFP/
7-AAD nanoprobes in vivo, we intravenously injected saline, 7-
AAD, IFP/7-AAD and RGD-IFP/7-AAD NPs via mouse tail
veins. Fluorescence was employed to image the delivery and
accumulation of free 7-AAD and nanoprobes as well as their
in vivo biodistribution using an IVIS Lumina II imaging system.
In Fig. 8A and B, the RGD-IFP/7-AAD group generated a much
stronger fluorescence signal in the tumor region within 4 h and
24 h as compared with that of the 7-AAD group, and showed
significant tumor targeting compared to IFP/7-AAD, suggesting
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that RGD-IFP/7-AAD nanoprobes could be effectively delivered
and released into tumor tissues. For comparison, self-assembled
targeted peptide nanomaterials increased the effective loading
retention at the therapeutic site while reducing their accumulation
and toxicity toward other organs™*°. Four hours post-injection,
the mice injected with RGD-IFP/7-AAD nanoprobes exhibited
strong fluorescence at tumor sites, while fluorescence signals in
liver and kidney were apparently weaker as compared with free 7-
AAD and IFP/7-AAD group, indicating the super-sensitive effi-
ciency and selective distribution of this nanoprobe. Meanwhile,
avf3 and 7-AAD co-localized fluorescence signals were found in
tumor tissues (Fig. S8). In addition, a small quantity of red
fluorescence signals was found in the heart, liver, and kidney
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Release of 7-AAD from the RGD-IFP/7-AAD nanoprobes induced a G1 phase cell cycle arrest in A549 cells for proliferative in-

hibition. A549 cells treated with free 7-AAD, IFP/7-AAD and RGD-IFP/7-AAD nanoprobes were detected by the (A) EdU cell proliferation assay
and (B) flow cytometry analysis of the cell cycle via DAPI staining. (C) The cell cycle division scale diagram, and (D) quantitative analysis of the
percentage of the cell cycle stage based on the results of the flow cytometry studies. The bars represent the mean + standard deviation (SD) values
obtained via triplicate determination (n = 3). *P < 0.05, **P < 0.01. Scale bar = 20 pm.
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tissues. These signals were mainly distributed in abundant nanoprobes for tumor imaging and localization. Pharmacoki-

vascular sites, which may be related to the expression of avf3 or netics results (Fig. 8D) showed that the elimination half-life time
the transport and excretion of nanoprobes. Statistical analysis of of RGD-IFP/7-AAD nanoprobes was 2.43 h, distinctly longer
the measured fluorescence intensities is presented in Fig. 8C; the than the systemic circulation time of free 7-AAD. Details of

obtained results confirmed the superiority of RGD-IFP/7-AAD pharmacokinetic parameters are shown in Table S2.
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Figure 8 Fluorescence imaging and antitumor efficacy of RGD-IFP/7-AAD nanoprobes in vivo. The xenograft model mice were divided
randomly into three groups and treated with saline (control), free 7-AAD, IFP/7-AAD and RGD-IFP/7-AAD nanoprobes via the tail intravenous
injection. (A) Fluorescence images of the A549 tumor-bearing mice showing the 7-AAD and nanoprobes signals at 4/24 h post-injection. RGD-
IFP/7-AAD nanoprobes promote the accumulation of a larger number of 7-AAD molecules at the tumor sites as compared with that produced by
free 7-AAD. (B) Fluorescence images of the relevant major organs and tumor tissues of the sacrificed mice. (C) Quantitative analysis of the
fluorescence intensities obtained for the major mouse organs and tumor tissues. (D) In vivo pharmacokinetic study after caudal vein injection. (E)
Schematic diagram of the treatment timeline and profile. (F) Body weight of the different groups of mice treated for 24 d and their (G) tumor
volumes (n = 5). (H) Photographic images of the isolated tumors at the end of experiment. The bars represent the mean & SD values obtained via
triplicate determination. *P < 0.05, **P < 0.01.
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(TUNEL) levels. Scale bar = 50 um. (B) Results of the histopathological analyses of the tumor sections and major organ sections performed by
their H&E staining after 24 days of treatment. The bars represent the mean + SD values obtained via triplicate determination. *P < 0.05. Scale
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The antitumor efficacy of the proposed nanoprobe was also
evaluated in vivo, and the required treatment was performed ac-
cording to the diagram presented in Fig. 8E. No apparent differ-
ences in body weight were observed between the RGD-IFP/7-
AAD NP-treated and the control groups, indicating that RGD-
IFP/7-AAD NPs exhibited potentially high therapeutic efficacy
and low internal toxicity, while treatment with free 7-AAD caused
a significant decrease in body weight, with poor physical condi-
tion at the end of the experiments (Fig. 8F). The average tumor
volume profiles depicted in Fig. 8G show that 7-AAD, IFP/7-AAD
and RGD-IFP/7-AAD NPs effectively inhibited tumor growth as
compared with the results obtained for the control group. Solid
tumors removed from nude mice also revealed that RGD-IFP/7-
AAD NPs inhibited tumor growth more effectively than IFP/7-
AAD or 7-AAD alone (Fig. 8H). Hence, this RGD-IFP/7-AAD
nanoprobe exhibited superior antitumor efficacy and prominent
fluorescence localization in vivo.

3.7. Histological analysis and biosafety evaluation

Immunohistochemical staining and H&E staining were performed
to identify pathological changes to the tumors after different
treatments. Tumor tissues were mostly exhibited hypercellularity
and contained pleomorphic and hyperchromatic nuclei*’**, which
was consistent with H&E staining results obtained from controls
(Fig. 9B). It is noteworthy that 7-AAD and NPs groups had
various degrees of tumor cell damage; in particular, mice treated
with RGD-IFP/7-AAD NPs exhibited the highest levels. These
findings were validated by performing Ki67 immunohistochem-
ical staining and TUNEL assays to access tumor cell proliferation
and apoptosis (Fig. 9A). Compared with the control group, 7-
AAD, IFP/7-AAD and RGD-IFP/7-AAD decreased the number
of Ki67-positive proliferating cells. Furthermore, the Ki67-
positive region of the RGD-IFP/7-AAD group was the lowest
among the three studied groups, which confirmed the higher
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efficacy of RGD-IFP/7-AAD NPs in inhibiting tumor growth.
Meanwhile, the RGD-IFP/7-AAD group demonstrated the highest
TUNEL-positive apoptotic level, indicating that RGD-IFP/7-AAD
NPs-treated tumors more effectively than 7-AAD and IFP/7-
AAD. To evaluate the biocompatibility and potential toxicity of
these nanoprobes in vivo, H&E staining of various organs was
conducted. As shown in Fig. 8B, the morphologies of mouse
hearts, livers, spleens, lungs, and kidneys in the control, IFP/7-
AAD and RGD-IFP/7-AAD groups change very little, whereas
the 7-AAD group exhibites various degrees of organic damage
including hemorrhagic necrosis, fibrosis, and swelling de-
formations. These results suggest that RGD-IFP/7-AAD nanop-
robes produced negligible side effects and possessed good
biocompatibility properties.

4. Conclusions

In summary, a super-sensitive nanoprobe composed of self-
assembled RGD-IFP peptide and 7-AAD that could generate
strong fluorescence signals and be potentially used in tumor-
targeted chemotherapy was developed in this work. The RGD-IFP
self-assembled peptide consisted of the natural amino acids pre-
sent in the human body and, therefore, possessed inherent
biocompatibility. The nanoprobes combined with RGD exhibited
enhanced tumor targeting capability both in vitro and in vivo. 7-
AAD molecules embedded into RGD-IFP peptides penetrated
live cells and the released fluorescence signal intensity from the
nanoprobes was significantly increased in the acidic environments
of endosomes/lysosomes. Then pH-released 7-AAD molecules
were quickly inserted into the double helical structure of nuclear
DNA, inducing tumor cell cycle arrest and intrinsic apoptosis.
Compared with free 7-AAD and IFP/7-AAD, RGD-IFP/7-AAD
nanoprobes produced better tumor images and inhibited tumor
growth more effectively with a significantly lower number of side
effects. Therefore, intelligently designed RGD-IFP/7-AAD
nanoprobes with excellent real-time tumor imaging and tumor-
targeting drug delivery properties represent a promising tumor
localization and treatment strategy.
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