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Abstract: Cancer is one of the leading causes of death worldwide and remains a major public
health challenge. The introduction of more sensitive and powerful technologies has permitted the
appearance of new tumor-specific molecular aberrations with a significant cancer management
improvement. Therefore, molecular pathology profiling has become fundamental not only to guide
tumor diagnosis and prognosis but also to assist with therapeutic decisions in daily practice. Although
tumor biopsies continue to be mandatory in cancer diagnosis and classification, several studies have
demonstrated that liquid biopsies could be used as a potential tool for the detection of cancer-
specific biomarkers. One of the main advantages is that circulating free DNA (cfDNA) provides
information about intra-tumoral heterogeneity, reflecting dynamic changes in tumor burden. This
minimally invasive tool has become an accurate and reliable instrument for monitoring cancer
genetics. However, implementing liquid biopsies across the clinical practice is still ongoing. The
main challenge is to detect genomic alterations at low allele fractions. Droplet digital PCR (ddPCR)
is a powerful approach that can overcome this issue due to its high sensitivity and specificity. Here
we explore the real-world clinical utility of the liquid biopsy ddPCR assays in the most diagnosed
cancer subtypes.

Keywords: liquid biopsy; ddPCR; cancer biomarkers; lung cancer; breast cancer; colorectal cancer;
pancreatic cancer

1. Introduction
1.1. Background

Despite many advances in the field, cancer remains one of the primary causes of
death worldwide. In fact, estimations point to a total of 19.3 million new cases and
almost 10 million deaths per year with no distinction between developed and undeveloped
countries [1]. The most diagnosed cancer type worldwide is breast cancer followed by
prostate cancer. On the other hand, lung cancer shows the highest mortality with an
estimated 1,796,144 deaths worldwide in 2020 [2]. According to these statistics, it is not
surprising that cancer has become the mainstay of research all over the world. In the last few
years, many efforts in this field have been made, majorly in the diagnosis and prognosis of
the different types of cancer, to assist clinicians to make more effective treatment selections
through novel technologies. Nowadays, tumor tissue is the main source of information for
diagnosis, stratification, prognosis, and treatment decision, discriminating between cancer
or non-cancer lesions and providing significant information of different clinically relevant
biomarkers [3–5].

Biomedicines 2021, 9, 906. https://doi.org/10.3390/biomedicines9080906 https://www.mdpi.com/journal/biomedicines

https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0001-7744-8848
https://orcid.org/0000-0002-2764-4768
https://orcid.org/0000-0001-6661-1240
https://doi.org/10.3390/biomedicines9080906
https://doi.org/10.3390/biomedicines9080906
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biomedicines9080906
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines9080906?type=check_update&version=2


Biomedicines 2021, 9, 906 2 of 20

Although tissue biopsies are crucial in the current evaluation and classification of
cancer types, they present many limitations. Some of these relate to the highly invasive
techniques required to obtain the biopsies and the risk to the patient associated with these
procedures, as some tumors are hardly accessible due to their anatomical location and/or
their infiltrative nature [5]. Also, tissue biopsies fail to represent the intra-tumoral hetero-
geneity since only a small fraction of the tumor obtained will be evaluated by physicians.
To overcome this issue, liquid biopsies are present as a new minimally invasive tool for
intra-tumoral monitoring which represents more accurately the tumoral status. Samples
are collected from different biofluids, mostly from blood (serum and plasma) but also from
saliva, breast milk, cerebrospinal fluid, stool, semen, urine, etc. [6]. Several biomarkers rep-
resented in Figure 1 could be isolated from different sources such as circulating tumor cells
(CTCs), extracellular vesicles (EVs), cell-free DNA (cfDNA), and micro-RNA (miRNA).

Figure 1. Schematic of the liquid biopsy composition. Liquid biopsy obtained from peripheral blood is composed of
different tumoral components such as circulating tumor cells (CTCs), circulating cell-free DNA (cfDNA), extracellular
vesicles (EVs), and micro-RNA (miRNA). These elements can be isolated for the identification of various tumor-specific
genomic aberrations including point mutations, copy number variations, structural rearrangements, or epigenetic patterns.

The circulating DNA found in all biofluids is referred to as cfDNA, which includes
tumor-derived fraction called circulating tumor DNA (ctDNA) [7]. Nevertheless, cfDNA
has been proven to be a powerful tool since all tumor cells, indistinctly of their phenotype,
secrete DNA into the biofluids, providing information of the whole tumor, and revealing a
snapshot of the intra-tumoral heterogeneity state at the moment of sample collection [8].
The mostly minimal-invasive nature of liquid biopsies allows clinicians to be informed
about the molecular evolution of the tumor genetics, permitting disease monitoring, and
avoiding the classical biopsies that could endanger the patient. The amount and length of
ctDNA has been investigated due to its potential capacity for early detection and prognosis
of some tumors. Also, in the current state of the art, ctDNA techniques are capable of
detecting the genomic aberrations represented in Figure 1, such as copy number variations
(CNVs), methylation changes in DNA promoters, and single-nucleotide variations (SNVs)
in a biofluidic sample [9], giving remarkable information about treatment response, tumoral
staging, prognosis, minimal residual disease, and actionable mutations, enhancing more
precise clinical decisions.
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1.2. Droplet Digital PCR (ddPCR)

Nowadays, there are many technologies that allow for the detection of the ctDNA
fraction [10]. Although the traditional PCR-based assays are the cheapest ones, they have
limited sensitivity and specificity [11]. Due to the novel mutational status information
provided in one single assay by the next-generation sequencing (NGS) technique, their sen-
sitivity and specificity have increased to 0.1% [11,12]. On the downside, NGS is expensive,
highly time-consuming, and requires well-experienced bioinformaticians to discriminate
between actionable tumoral mutations and normal tissue background [13]. In this context,
droplet digital PCR (ddPCR) has newly emerged as a powerful and cost-effective tool [14],
capable of the detection and absolute quantification of point mutations up to 0.01% with
no need for specific bioinformatic interpretation (Table 1) [15,16].

Table 1. Comprehensive comparison of liquid biopsy analysis techniques.

Technique Sensitivity Specificity LoD Advantages Limitations Price References

PCR-based
techniques
(qRT-PCR,

COLD-PCR)

29–95.7% 69.2–100% 0.1%
Rapid.

No bioinformatic analysis
required.

Screening of a few
known mutations

at a time.
Low [6,11,17,18]

Drop-digital
PCR 66.7–90% 100% 0.01%

Rapid.
High sensitivity.

Applicable for the detection of
specific point mutations,

copy-number variations, short
indels, and gene fusions.

No bioinformatic analysis required.
Cost-effective.

Screening of a few
known mutations

at a time.
Medium [6,11,15,19]

NGS-based
approaches 50.9–100% 70–100% 0.1%

Molecular alteration knowledge
not required

Analysis of several alterations in
several genes at the same time.

Expensive.
Limited

sensitivity.
Highly

time-consuming.
Experienced

bioinformaticians

High [6,11,15,20,21]

LoD = limit of detection. COLD-PCR, co-amplification at lower denaturation temperature PCR. NGS = next-generation sequencing.

As shown in Figure 2, ddPCR divides the nucleic acids into thousands of individual
end-point PCR reactions permitting their single analysis via oil sphere microfluidics. In
oncology, ddPCR is further being used not only for point mutations detection and ab-
solute quantification but is also currently employed for rare mutation detection, CNVs,
DNA methylation, and gene rearrangements screening in different sources of clinical
samples [14,22].

The near future of cancer diagnosis, prognosis, and treatment is expected to explore
liquid biopsy biomarkers as an additional test to guide clinicians in every step of disease
management. In this sense, an increasing number of cancer-derived biomarkers are being
identified. In this review, we unify and classify different acknowledged and potentially
actionable mutations that are relevant in lung, breast, colorectal, and pancreatic tumors, for
further detection by ddPCR in clinical laboratories, in order to ease the way for clinicians
in every step of disease management, striving to advance efforts in cancer diagnosis,
prognosis, and treatment. To the best of our knowledge, this is the first report that presents
a compendium of all the ongoing liquid biopsy-ddPCR clinical trials.
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Figure 2. Summary of the ddPCR alterations screening process. The purified cfDNA is divided
into thousands of oil droplets together with specific primers and probes. The ddPCR currently has
several applications such as cancer diagnosis, prognosis, personalized treatment administration, and
disease monitoring.

2. Lung Cancer

Despite all the advances made in the past years, lung cancer remains the leading
cause of neoplastic death worldwide [1]. The gold standard for non-small cell lung cancer
(NSCLC) genotyping is the analysis of different driver genes such as EGFR, BRAF, HER2,
KRAS, and MET, as well as rearrangements in ALK, ROS1, RET, and NTRK1/2/3 [23,24],
typically analyzed by PCR-based assays, immunohistochemistry (IHC), and fluorescent in
situ hybridization assays (FISH) [25]. The introduction of genetic studies has significantly
improved targeted therapies and subsequently patient’s progression-free survival (PFS)
and overall survival (OS). Some of the successful treatments involve immunotherapies,
such as the inhibition of the PD-1/PD-L1 axis [26]. ddPCR was also used for these immune
targeted markers in solid [27] and liquid biopsies [28].

Routinely, the testing for molecular tumor alterations is performed on resected tissue
biopsies. However, in some situations, when there is insufficient material for molecular
analysis or the patient is unfit for invasive tissue sampling, the analysis of cfDNA has
already been introduced [29].

2.1. EGFR

The epidermal growth factor receptor, known as EGFR, is one of the most character-
ized genes in lung cancer and appears in around 10–35% of NSCLC patients [30]. EGFR
mutations (exon 21 L858R and L861Q or EGFR exon 19 deletions) represent 85% of EGFR
mutations [24,30,31], which confer sensitivity to EGFR tyrosine kinase inhibitors (TKIs) [23],
and could be detected by multiplexed ddPCR assays with a sensitivity of at least 0.20% [32].
The most common TKIs used in clinical practice are erlotinib, gefitinib, and neratinib [33].
Guidelines recommend EGFR mutation genotyping to guide personal therapy by identify-
ing NSCLC patients that may benefit EGFR-TKIs [34]. Unfortunately, after 8–14 months
of first-line TKIs treatment, most of the patients acquired therapy resistance resulting in
disease progression or relapse. This acquired resistance is caused mainly by the appearance
of the T790M mutation in 60% of the NSCLC patients [30,31]. Therefore, its detection by
ddPCR has been implemented in several hospitals and a wide set of studies highlights
its importance. In a large cohort of 343 NSCLC patients, EGFR T790M was detected in
24% of patients by ddPCR [35]. These data were further corroborated in a smaller cohort
of patients in progression, in which they detected 52% of positive samples with a cfDNA
frequency of 0.5% [36].

For the treatment of those patients who acquired first-generation resistance, a third-
generation TKI therapy, osimertinib, has been developed. Different studies quantified the
mutation allele frequency (MAF) of the T790M mutation before and during the course of
osimertinib treatment [34,37]. A retrospective study observed how patients with partial
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response or stable disease to second-line therapy with osimertinib had higher T790M
mutant frequency in plasma cfDNA than those with progressive disease. Although higher
T790M MAF levels were associated with longer PFS and OS [38], Li et al. didn’t report
differences in response rate or PFS and OS [39]. Additional studies are needed for the
standardization of the MAF quantification cutoff value and to assess whether the quan-
titative measurements of plasma cfDNA T790M mutation could be used to predict TKIs
therapy response.

Inevitably, novel acquired EGFR mutations conferring third-generation TKI osimer-
tinib resistance have been observed. Approximately 20–40% of these cases are caused
by the C797S mutation, which avoids drug covalent binding [40]. Via ddPCR, EGFR
T790M and C797S mutations have been longitudinally assessed in plasma cfDNA dur-
ing and after treatment [41]. A recent report showed three molecular patterns based on
the presence/absence of T790M, C797S, and Ex19Del mutations, which could help in
clinical decisions [40]. Serial evaluation of different EGFR mutations in plasma cfDNA
during osimertinib treatment may be useful as a prognostic factor for disease progression.
More importantly, those patients with T790M mutation clearance and detectable levels of
C797S resistance mutation together with a sensitizing EGFR mutation may benefit from
first-generation TKIs re-treatment [42,43].

Apart from the most scrutinized mutations in EGFR, some researchers are focused on
the development of ddPCR assays for less common mutations, such as G719S and L851Q,
in advanced NSCLC patients [44].

The detection of EGFR mutations has been explored in other liquid biopsies as the
bronchial washing fluid (BWF) [45,46], the fine-needle aspiration (FNA) supernatants,
sputum, and urine [47–49]. Lastly, for lung cancer patients that develop metastases to the
central nervous system (CNS), detection of EGFR mutations in the cerebrospinal fluid (CSF)
has been proven to be more efficient than plasma to evaluate PFS [50].

2.2. KRAS

KRAS is an oncogenic driver gene that appears to be mutated in 25–30% of NSCLC
patients [51]. Mutations in codons 12 and 13 of this gene are the most frequent alterations
and stand as the principal cause of the development and progression of several cancer
types [52]. Despite all clinical advances in personalized therapies and their proven impact
on patient’s clinical outcome, there is only one effective drug (sotorasib) [53] approved by
the Food and Drug Administration (FDA) for KRAS G12C NSCLC patients [54,55].

It has been suggested that KRAS mutations decrease EGFR-TKIs sensitivity through
the MAPK/ERK pathway activation in NSCLC patients [53,56]. Moreover, the presence of
KRAS mutations is also related to high PD-L1 levels, suggesting that those patients could
be good responders to immune checkpoint inhibitors [57]. In contrast, KRAS mutations
appear to decrease the anti-angiogenic bevacizumab effects [58].

The design of ddPCR multiplex assays to detect the most frequent G12/G13 KRAS
mutations has allowed for rapid and accurate genotyping of plasma cfDNA with a LOD
of at least 0.2% [51,52,59,60]. As a result of these assays, an association between KRAS
mutated concentration and disease stage has been observed. Patients with advanced
lung cancer stages present greater amounts of detectable KRAS mutations in plasma
cfDNA samples, being 8% in stage I, 30% in stage II, 71% in stage III, and 73% in stage
IV [51]. Furthermore, it has been observed that patients with stable disease presented lower
KRAS mutations levels than patients who had progressed [52]. Also, several studies have
associated plasma ctDNA KRAS mutations with shorter PFS and OS [51,52,59,60], and
chemotherapy treatment efficacy has been longitudinally monitored, showing a connection
between ctDNA KRAS concentration changes and therapy response [51,61,62].

Despite being a limited druggable target mutation, the analysis of ctDNA KRAS
mutations could be used as a prognostic and predictive tool and may guide alternative
therapy approaches such as chemotherapy or immunotherapy.
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2.3. ALK

The tyrosine kinase receptor ALK is found rearranged, mostly with Echinoderm
Microtubule-Associated Protein-like 4 (EMLA4), in approximately 5% of NSCLC patients,
causing inappropriate signaling which induces an activated state in cancer cells [63].
The gold standard, with a LOD of 15%, is its direct visualization by FISH or IHC [64].
Conversely, NGS has been recently recommended for the identification of different NSCLC
rearrangements, including ALK [65]. As a more sensitive technique, a ddPCR assay has
been designed to detect ALK-EMLA4 gene translocations with a LOD of 0.25% in formalin-
fixed paraffin-embedded (FFPE) samples [64].

Patients presenting ALK-EML4 rearrangements appear to be sensitive to the ALK-TKIs
crizotinib, ceritinib, alectinib, brigatinib, and lorlatinib [29,66,67]. Approximately 20%
of patients with ALK rearrangements treated with first-generation ALK-TKI crizotinib
develop resistance due to mutations in the kinase domain [68]. Although the most common
and relevant ALK resistance mutations are the G1202R and F1174C/L, there are more
than 10 mutations described which confer resistance to first-generation ALK-TKIs, such
as L1196M, G1269A, C1156Y, 1151Tins, L1152R, S1206Y, I1171T, D1203N, and V1180L
(Table 2) [67,69]. For those patients who develop resistance, second-generation ALK-
TKIs ceritinib, alectinib, and brigatinib have been developed [68]. Unfortunately, G1202R
mutation confers resistance to second-generation ALK-TKIs in some of the patients [70],
which could be treated with lorlatinib (a third-generation ALK-TKI inhibitor). Three ddPCR
multiplexed assays are available to specifically detect the 10 previously detailed ALK
mutations. In a small cohort of 7 ALK-positive NSCLC, the monitoring of the different ALK
resistance mutations status during the course of the disease was successfully performed [71]
but further and wider studies are required to assess the ddPCR clinical utility to detect
ALK secondary mutations and their implication in patients PFS and OS. In any case, these
assays offer a fast and sensitive technique for the monitoring of newly discovered resistance
mutations by minimally invasive cfDNA liquid biopsies.

Table 2. The most relevant molecular alterations detected via ctDNA ddPCR assays and their clinical significance in NSCLC.

Disease Oncogene Alteration Clinical Significance References

NSCLC

EGFR

Exon 19 del
L858R
L861Q

Sensitivity to first-generation EGFR-TKIs [23,24,30–32]

T790M
Resistance to first- and second-generation

EGFR-TKIs and
sensitivity to third-generation EGFR-TKIs

[30,31,34–39]

C797S Resistance to third-generation EGFR-TKIs [40–43]

KRAS
G12/G13 Poor prognosis and decreased EGFR-TKIs sensitivity [51–53,56–60,62]

G12C Sensitivity to sotorasib [54,55]

ALK Mutations in the
tyrosine kinase domain

G1202R, F1174C/L L1196M, G1269A, C1156Y,
1151Tins, L1152R, S1206Y, I1171T, D1203N, and

V1180L mutations may confer resistance or
sensitivity to the different ALK-TKIs

therapies available

[67–71]

3. Breast Cancer

Breast cancer (BC) has recently surpassed lung cancer as the most lethal and diagnosed
neoplasm in women [1]. Routinely for clinical practice, BC is classified into five subtypes
based on histological and molecular characteristics [72]. Tumors expressing estrogen
receptor (ER) and/or progesterone receptor (PR) are considered hormone receptor (HR)-
positive BC and those expressing the human epidermal growth factor receptor 2 (HER2 or
ERBB2) are diagnosed as HER2-positive BC. Samples with no ER, PR, nor HER2 expression,
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are classified as triple-negative breast cancer (TNBC) [72]. These markers are used to
guide personalized treatment administration and to predict responses to endocrine and
immune therapy.

Novel agents, which effectiveness depends on specific genomic aberrations, are being
developed. The most common targets are PIK3CA, HER2, androgen receptor (AR), AKT1,
ESR1, and PD-L1 [73]. The evaluation of the tumor genomic alterations in plasma cfDNA
has been largely evaluated especially in metastatic BC (mBC) patients due to the high levels
of ctDNA released into the bloodstream. The appearance of more sensitive technology
than Sanger sequencing such as ddPCR has confirmed the presence of ctDNA before and
after surgery in early-stage BC patients [74], in which it can predict tumor recurrence even
11 months earlier than traditional methods [75,76]. The assessment of cfDNA has great
benefits for therapy guidance and a prognostic value in all BC disease stages.

3.1. BRCA

A 10% of BC cases are hereditary and associated with family clinical history [72]. The
BRCA family genes are the most frequently mutated in BC, whose aberrations increase the
risk of developing BC up to 70% [72]. Patients harboring BRCA alterations may benefit of
poly (ADP-ribose) polymerase (PARP) inhibitors increasing PFS, OS and their quality of
life [72].

A wide spread of BRCA gene alterations have been described, such as point muta-
tions, large genomic rearrangements or CNVs. Sanger sequencing and Multiplex ligation-
dependent probe amplification (MLPA) were thought to be the most reliable methods [77].
Despite excellent concordance rate between MLPA and ddPCR in the detection of BRCA1
genomic rearrangements [78], it is six times more expensive and requires at least one
separate reaction for each gene exon. In this sense, a more cost-effective ddPCR based on
an amplitude multiplex has been developed covering all coding and non-coding exons,
together with two reference genes (RPP30 and ALB) [79].

Even though ddPCR can be useful for genotyping BRCA genes in liquid biopsies,
further optimization and standardization in larger cohorts is needed to clarify its clinical
application and significance.

3.2. PIK3CA

Hormonal therapies have greatly improved ER-positive mBC patient outcomes. Un-
fortunately, PIK3CA exon 9 E545K and E542K, and PIK3CA exon 20 H1047R, and H1047L
mutations are frequently associated with resistance to hormonal therapies, such as fulves-
trant [72,80]. For this reason, the identification of those biomarkers in plasma ctDNA could
be used to predict BC treatment. In fact, a relationship has been shown between these
mutations and a good response to anti-PI3K and anti-CDK4/6 targeted therapies together
with fulvestrant in HR-positive HER2-negative advanced BC [81,82].

ddPCR was used to analyze PIK3CA ctDNA mutations in the PALOMA-3 (NCT01942135),
MIRHO (NCT01612871), and BOLERO-2 (NCT00863655) clinical trials. Although PALOMA-
3 and MIRHO trials did not report an association between PIK3CA baseline status and
PFS, it has been shown that BC PIK3CA-mutated patients treated with a combination of
palbociclib and fulvestrant improves PFS [80,82]. In contrast, the mutational analysis from
patients enrolled in the BOLERO-2 trial receiving second-line treatment with everolimus,
an mTOR1 inhibitor, showed that PIK3CA mutations had no effect on its effectiveness and
that they are not a predictive determinant for everolimus benefit [83].

It has been widely proven that early identification of the mBC ctDNA PIK3CA muta-
tion status, could allow future evaluation of disease response or progression and eventually,
better treatment administration.

3.3. ESR1

Another interesting gene to point out is the ESR1 ligand-binding domain (LBD),
which is mutated in 30–40% of ER-positive mBC patients [84,85]. Importantly, a significant
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number of mBC patients treated with first-line aromatase inhibitors (AIs) acquire ESR1
LBD mutations during the treatment developing endocrine treatment resistance [84,86,87].
Through ddPCR, several researchers have analyzed the ESR1 mutational status in periph-
eral blood [86,88,89]. The presence of ESR1 Y537S and D538G mutations in ER-positive
mBC has been observed prior to treatment administration [90]. A significant increase in
mutation prevalence was observed in patients who already received first-line AI therapy
compared with those patients who only received adjuvant AI therapy [90]. Further analysis
demonstrated the association of Y537S and D538G ESR1 mutations with worse OS.

The clinical significance of monitoring ESR1 LBD mutations Y537S, Y537N, Y537C,
and D538G has been assessed in a cohort of sequential plasma samples from mBC and
ER-positive primary BC treated with different endocrine therapies [91]. ddPCR data pre-
sented the ctDNA ESR1 mutation fluctuation as a consequence of treatment and showed
that increasing amounts of ESR1 mutation post-therapy resulted in a poor response to
treatment [91].

Various multiplexed assays have been developed to easily and simultaneously moni-
tor different hotspot mutations in the ESR1 LBD gene. The decrease of ESR1 Y537S, Y537N,
and D538G plasma detection in ER-positive BC women increase PFS and therapy effec-
tiveness [84]. This impact has also been observed using another multiplex assay, in which
eight different mutations; E380Q, L536H, L536R, Y537C, Y537N (T > A), Y537N (delinsTA),
Y537S, and D538G were studied with high sensitivity and a LOD of 0.07–0.19% [92].

Even though ESR1 mutations have been principally detected in mBC, the ddPCR
implementation allows detection of ESR1 mutations in approximately 2.5–7% of primary
BC [93]. Furthermore, it has been observed that ESR1 mutations can be more frequently
detected in cfDNA than in tissue biopsies [88].

3.4. HER2

HER2 is amplified in approximately 20–30% of invasive BC patients. HER2 overexpres-
sion causes tumor cell proliferation, aggressiveness, and subsequently, poor prognosis [72].
Nowadays, the combination of monoclonal antibodies trastuzumab or pertuzumab with
chemotherapy has improved the PFS and OS in patients with early-stage and metastatic BC
(Table 3) [94]. Despite the benefit of this combined therapy, some patients do not respond
to treatment administration, resulting in poor survival.

Table 3. Most relevant molecular alterations detected via ctDNA ddPCR assays and their clinical significance in BC.

Disease Oncogene Alteration Clinical Significance References

BC, advanced BC,
and mBC

BRCA1/BRCA2 Point mutations, large genomic
rearrangements or CNVs Response to PARP inhibitors [72,78,79]

PIK3CA E545K, E542K, H1047R
and H1047L Hormonal therapies resistance [80–83]

ESR1
E380Q, L536H, L536R, Y537C,

Y537N (T > A), Y537N (delinsTA),
Y537S and D538G

Endocrine treatment resistance [84,86–92]

HER2 CNV

Response to
trastuzumab, pertuzumab,

lapatinib, or
trastuzumab emtansine

[95–97]

The gold standard approach to assess HER2 amplification in tissue samples is IHC
or FISH [72]. Although little is known about the HER2 amplification detection in liquid
biopsies, a ddPCR assay has been optimized to detect its CNVs in plasma [95]. To ensure
proper detection, the gene EFTUD2 (elongation factor Tu GTP-binding domain 2) was used
as a reference. The designed HER2:EFTUD2 ddPCR assay showed a high concordance of
90% with matched tumor biopsies [95], 100% sensitivity, and 98% specificity in a cohort
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of 76 BC patients [96]. Even though the protocol has been principally developed for the
detection of plasma-derived cfDNA it can be adapted for FFPE or fresh frozen tissue
samples [97].

These minimally invasive tests that identify HER2 amplification would be a clinical
turnaround. Additionally, this approach could be modified for the evaluation of any ampli-
fied gene in cancer. Especially, it might be a beneficial approach for unusual acquisition
events in response to therapy. Future prospective studies with larger cohorts should be
conducted to evaluate these potential biomarkers and to optimize the ddPCR assays.

3.5. ddPCR Assays for Multiplex Genes

ddPCR multiplexed assays have been introduced as procedures to reduce the number
of reactions and the sample volume employed. A prospective study developed eight
optimized multiplexed ddPCR assays for 20 targetable hotspot mutations in the PIK3CA
(E545K, H1047L, H1047R, and E542K), ESR1 (Y537C, Y537N, Y537S, V534E, S463P, L536Q,
E380Q, D538G, and L536R), AKT1 (E17K), and HER2 (L869R, L755S, V777L, S310F, D769H,
and L755_759del). Data were compared with NGS results, revealing an excellent concor-
dance of 79.5%. Since the NGS technique is not as sensitive as ddPCR, the major reason for
the discordant cases were mutations detected by ddPCR and undetectable with NGS [73].

A similar multiplexed assay has been used for the evaluation of the possible effects of
delayed plasma processing. For that, paired blood samples were processed immediately
for 48–72 h after collection, in which the agreement in mutation screening was as high as
94.8% [98].

3.6. Other

BC cancer stem cells (BCSCs) are being investigated as a novel therapeutic approach
to identify early genetic alterations in tumor evolution [99]. In a prospective study, plasma
cfDNA from patients with early-stage and advanced BC were used to detect, through
ddPCR, previously studied BCSC gene mutations [100]. BCSC ribosomal protein L39
(RPL39), A14V, and myeloid leukemia factor 2 (MLF2) R158W mutations were detected
in 29% of cfDNA samples from early-stage BC patients and in 40% of mBC. The presence
of any of the mutations was associated with significantly worse OS and interestingly, the
increasing BCSCs gene mutation detection in the patients’ plasma cfDNA highly correlated
with the disease stage.

4. Colon and Rectal Cancers

Colorectal Cancer (CRC) follows lung and breast cancers as the third neoplasm cause
of death [1]. Due to the delayed start of symptoms, less than 40% of the patients are
diagnosed with early-stage or localized disease. Consequently, the majority of patients are
diagnosed with advanced localized disease and/or distant metastases, both with a high
risk of recurrence after surgical resection [101].

CRC is known to be initiated by an accumulation of several mutations in a subset of
crucial genes involved in the regulatory pathways. These genes, such as APC, KRAS, BRAF,
PIK3CA, and SMAD4, are highly implicated in cellular replication, proliferation, and inva-
siveness [101]. Since CRC release elevated quantities of DNA into the bloodstream, several
studies have described the potential use of plasma cfDNA in the diagnosis, management
of patients, and as a tumor recurrence marker (Table 4) [102].
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Table 4. The most relevant molecular alterations detected via ctDNA ddPCR assays and their clinical significance in CRC
and PC.

Disease Oncogene Alteration Clinical Significance References

Colorectal Cancer

KRAS G12/G13 Non-responsiveness to anti-EGFR monoclonal
antibodies therapy such as panitumumab [102–114]

BRAF V600E

Anti-EGFR monoclonal antibodies therapy such
as cetuximab and panitumumab are not
recommended unless given with a BRAF

inhibitor such as vemurafenib or MEK and
PI3K inhibitors

[105,106,109,115–118]

MSI dMMR
and MSI-H Predict response to immunotherapy [119]

Pancreatic cancer KRAS G12/G13 Associated with poor prognosis and OS [120–129]

4.1. KRAS and BRAF

Over the last decade, most therapies have been designed to target aberrant signal-
ing or activation of the MAPK pathway, such as the overexpression of EGFR found in
50–80% of patients [113,117,130]. Unfortunately, KRAS or BRAF mutations trigger non-
responsiveness to anti-EGFR monoclonal antibody therapies [115–117]. KRAS mutations
G12/G13 are observed in about 35–45% of CRC patients [111,117] and the first-line of
treatment relies on a combination of chemotherapy of fluoropyrimidine with oxaliplatin
or irinotecan [111]. BRAF shows lower mutation rates and appears in about 8–12% of
metastatic CRC (mCRC), with V600E being the most common [118]. Although, the use of
BRAF inhibitors alone such as vemurafenib did not reach the expected effectiveness, the
combination with anti-EGFR monoclonal antibodies, MEK, and/or PI3K inhibitors have
shown promising outcomes [118].

Different PCR-based platforms (Bio-Rad ddPCR, BioCartis Idylla, Roche COBAS
z480, and Sysmex BEAMing) have been tested for the detection of plasma ctDNA KRAS
mutations. Among the four platforms, ddPCR and BEAMing resulted to be the most
sensitive techniques. In addition, ddPCR and COBAS were the ones that allowed the
analysis of a higher number of samples per reaction [103]. Another retrospective study
used mCRC plasma ctDNA to compare COLD-PCR, a microarray-based approach, and
ddPCR. As expected, ddPCR showed the highest concordance in the identification of
ctDNA mutations previously genotyped on tissue samples [107]. Furthermore, ddPCR
was demonstrated to be the faster protocol, the most cost-effective method with the higher
sample throughput setup, and the most suitable and replicable technology to assess the
tumor genotype using liquid biopsies [107,108].

The DECALIB study was one of the first prospective studies to use the ddPCR tech-
nique to evaluate and compare the early detection of KRAS and BRAF mutations present in
plasma cfDNA and tissue [109]. Afterwards, many other studies have also evaluated the
concordance between tissue and plasma KRAS mutations obtaining elevated specificity
and sensitivity rates [102,110]. Even though many different manuscripts have observed
better correlations between cfDNA concentrations and the tumor mutation burden in
mCRC [107,110,131], the cfDNA analysis could be also performed in patients at earlier
cancer stages [102,110].

Longitudinal analysis of circulating KRAS concentrations in mCRC has great prognos-
tic value since it has the ability of outcome prediction and treatment monitoring. In a KRAS-
positive mCRC cohort from the prospective multicenter AIO KRK0207 trial (NCT00973609),
ctDNA KRAS mutations were quantified via ddPCR before and 2–3 weeks after first-line
chemotherapy initiation with fluoropyrimidine, oxaliplatin, and bevacizumab. Individ-
uals with ctDNA KRAS mutations detected at baseline and in follow-up measurements
presented worse OS and PFS. Remarkably, KRAS mutations identified at baseline in 15%
of the patients were not detectable at follow-up measurements after treatment initiation.
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Those patients with KRAS mutation clearance at follow-up had better disease control and
most notably better OS and PFS [111]. The same results have been observed by Holm et al.
in patients included in the AXOAXI trial (NCT01531595 and EudraCT 2011-003137-33),
treated with bevacizumab in combination with altering capecitabine and oxaliplatin or
irinotecan [132], or by Kelin-Scory et al. where KRAS mutations cleared precipitously
independently of type and intensity of chemotherapy and regardless of bevacizumab
anti-VEGF treatment [112]. KRAS mutations have been detected 10 months earlier than
radiographic confirmation of disease progression [113]. More remarkably, these ctDNA
KRAS fluctuations and final disappearance open the possibility and potential treatment
effectiveness of anti-EGFR therapies in those CRC patients [112,114].

Alternative sources of DNA such as EVs and fluids in the surrounding area of the
tumoral tissue have been shown to provide information about disease evolution [104,133].
Fluids in the surrounding tumoral area such as the peritoneal fluid have been shown to be
useful liquid biopsy sources of cfDNA [104]. In CRC patients with peritoneal metastases, a
significantly higher amount of KRAS or BRAF ctDNA has been observed in peritoneal fluid
than in plasma [105]. Since urine collection can be easily and repeatedly self-performed
at any location with minimal effort, it has also been presented as an alternative source
of cancer biomarkers for disease progression and drug response monitoring. In a proof-
of-concept study with a KRAS-positive mCRC cohort, KRAS or BRAF mutations were
screened from urine and matched plasma samples. Even though the concordance achieved
was low, they showed the feasibility of using urine samples for non-urogenital tract tumor
mutation screening [106].

4.2. Microsatellite Instability (MSI)

The DNA mismatch repair deficiency (dMMR) causes the accumulation of a high
number of DNA replication errors in DNA microsatellites. This phenome is termed as
microsatellite instability (MSI) [119,134]. The frequency of dMMR/MSI-High (MSI-H) in
CRC patients is 15% in early stages and 4–2% in mCRC [134]. Over the last few years,
dMMR/High-MSI (MSI-H) testing has become key for all advanced CRC cancers since it is
a predictive pan-tumor biomarker of immunotherapy treatment efficacy [135].

Minimally invasive detection of MSI-H from ctDNA is a promising diagnostic and
treatment monitoring tool. A ddPCR assay has been developed to assess the microsatel-
lite markers BAT-26, activin A receptor type 2A (ACVR2A), and defensin beta 105A/B
(DEFB105A/B). The MSI-ddPCR assays were validated in tissue and blood samples achiev-
ing a sensitive detection of <0.1 MAF and a 100% of concordance with the most commonly
used commercial kit, the pentaplex-PCR assay [119].

The new MSI-ddPCR assay promises to be a cost-effective, simple, and fast diagnostic
tool for the detection of MSI with high clinical sensitivity. Additionally, the assay is equally
compatible with solid and liquid biopsies, also including samples of cancers with low
MSI frequency.

5. Pancreatic Cancers

Although pancreatic cancer (PC), is not very frequent, its aggressiveness implies
that the ratio of cases per number of deaths is close to 1. Nowadays, it is the seventh
leading cause of cancer death worldwide and it has been estimated that it will surpass
breast cancer in approximately 5 years [1]. Similar to CRC, the majority of patients are
diagnosed with advanced stages and only 10–15% of PC patients have localized disease
at the time of diagnosis [136]. Despite different genetic mutations identified in KRAS,
CDKN2A, SMAD4, and TP53 genes, nearly all of them have failed to facilitate a treatment
approach and patients continue receiving chemotherapy and radiotherapy depending on
tumor stage [120,137].

Recently, the FDA approved olaparib, the first targeted therapy to increase PFS in
metastatic PC patients with BRCA germline mutations [138].
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5.1. KRAS

KRAS represents an important biomarker for PC since it appears to be mutated up
to 90%. Alterations in this gene tend to be associated with reduced OS, regardless of the
PC stage [139]. Several studies have evaluated the role of plasma ctDNA KRAS in the
diagnosis, prognosis, and treatment of PC.

It has been observed how KRAS hotspot mutations G12A, G12C, G12D, G12R, G12S,
G12V, and G13D detected via multiplex ddPCR were more represented in samples from
metastatic PC patients than in locally advanced disease [120–123]. The amount of KRAS
mutated ctDNA increases in advanced disease stages and has been significantly associated
with the presence of distant organ metastasis [120]. Additionally, plasma ctDNA KRAS
mutation incidence has been significantly associated with poor prognosis and OS [124–127].
In a locally advanced unresectable PC cohort, ctDNA KRAS mutation concentration was
significantly lower after treatment [140]. In a similar study, researchers observed a better
response to therapy in patients with whom KRAS ctDNA was not detectable or had
disappeared within 6 months of treatment [128]. These results are in concordance with
another study in which a multiplex ddPCR assay was used to detect 16 KRAS mutations
(G12A, G12C, G12D, G12F, G12G, G12L, G12R, G12S, G12V and G13A, G13C, G13D, G13G,
G13R, G13S, and G13V) (Table 4) and 7 NRAS mutations (Q61R, Q61K, Q61L, Q61H, Q61P,
Q61E, and E62K) [123]. Sugimori et al. noted how KRAS mutations were detected at disease
progression in some patients, whereas in some of them, the mutations disappeared after
chemotherapy treatment. Importantly, in those patients, the mutations appeared at the
same time as disease recurrence or even earlier. These findings highlight the predictive
value of plasma longitudinal ctDNA monitoring for disease progression and response to
treatment in PC patients [123].

As it has been assessed in different tumor types, bloodstream EVs represent an
alternative source of ctDNA to provide information on disease evolution. In another
study, ddPCR was used to assess KRAS hotspot mutations from EVs-derived DNA and
matched cfDNA isolated from PC patients [129]. The sensitivity and specificity were
75.4% and 92.6%, respectively. Interestingly, KRAS mutation detection in EVs was superior
to plasma cfDNA across all stages. Additionally, the observation of mutation rate in
the localized pre- and post-resection cohort showed a precipitous decrease from 66% to
5%, respectively.

5.2. Others

Recent studies confirmed the importance of genotyping different mutations in various
genes aside from KRAS [141]. ddPCR was used to screen mutations previously identified
via NGS in the KRAS, BRCA2 (S2378X), EGFR (R521K), ERBB2 (I655V, P1170A), and KRAS
genes in a cohort of metastatic PDAC patients (NCT02017015). As expected, the KRAS
mutation rate was 72.3%, whereas BRCA2, EGFR, and ERBB2 were 11.7%, 13.3%, and 6.4%,
respectively [142]. Other analyses associated the ERBB2 I655V mutation with worse OS
among metastatic PC patients. Further analyses are required to determine whether those
patients would benefit from targeted therapy using, for example, trastuzumab. These
results remark the need for target gene sequencing analysis using ctDNA-based liquid
biopsy samples to better guide individualized treatments.

6. Clinical Trials Using ddPCR

The potential utility of ddPCR technology in clinical research is shown by the large
number of clinical trials and enrolled cancer patients [143]. The growing number of
biomarkers, targeted drugs, and immunotherapies have revolutionized patient treatments.
However, there is an emerging need for identifying the driver mutations that are involved
in treatment response, which is critical for therapeutic decision-making. In Table 5 we
explore the clinical trials that are focusing on the ddPCR system to measure and quantify ac-
tionable biomarkers before, during, and after cancer treatment. Remarkably, the European
Medicines Agency (EMA) includes the use of liquid biopsies for NSCLC management [144].
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There are several active clinical trials recruiting NSCLC patients, in fact, most of them
use the ddPCR method to evaluate the EGFR mutation status, indicating its high clinical
significance. In the case of breast cancer, the only ongoing studies enrolled mBC patients
for ESR1 and HER2 analyses. Among people diagnosed with mCRC, ddPCR assesses
RAS mutations together with MGMT methylation for response to treatment. Thousands
of volunteers would be involved in a prospective study for the detection and tracking of
specific mutations in cfDNA isolated from CRC patients.

Table 5. An overview of the ongoing clinical trials in which the ddPCR technique is used for actionable biomarker detection.

Disease. Identifier Aims State Number of Patients

NSCLC

NCT04720339 cfDNA quantification Recruiting 250

NCT02418234 EGFR T790M monitoring Completed 314

NCT02778854 Driver mutation detection Recruiting 200

NCT02279004 BRAF, KRAS, and EGFR
mutation detection Recruiting 680 *

NCT03771404 Study genetic alteration during
the follow-up Recruiting 50

NCT03265496 EGFR detection in solid and
liquid biopsies Active, not recruiting 117

NCT03706625 Biomarker discovery in ctDNA
and CTCs Recruiting 170 *

NCT03865511 EGFR in ctDNA Recruiting 150

NCT04814407 Immune-methylated signature
identification Recruiting 900

NCT01930474 EGFR and ALK Unknown 200

Advanced NSCLC

NCT03309462 EGFR in tissue and plasma Completed 50

NCT02282267 EGFR in plasma cfDNA Unknown 188

NCT02511288 Genetic profile ctDNA Recruiting 900

NCT02997501 EGFR T790M comparison between
COBAS, ddPCR and NGS Completed 167

NCT04912687 EGFR mutation Not yet recruiting 580

SCC Lung NCT03938012 MET N375S, TP53 Recruiting 80

mBC

NCT02913430 ESR1 mutation Active, not recruiting 7

NCT04720729 Chemotherapy monitoring
ctDNA HER2 Recruiting 214

NCT04480814 PIK3CA in ER+/HER2 Recruiting 120

NCT03947736 ctDNA HER2 amplification Recruiting 200

NCT03829306 Mechanism of Kadcyla resistance Recruiting 50

NCT03357120 ctDNA after neoadjuvant
chemotherapy Recruiting 180

NCT02473120 ESR1 mutations Completed 104

mCRC

NCT02994888 ctDNA for cetuximab monitoring Completed 47

NCT03832621 MGMT methylation Active 135

NCT04554836 RAS mutation monitoring Recruiting 144

NCT03227926 RAS mutation monitoring Recruiting 129

CRC NCT04050345 KRAS, NRAS, BRAF, PIK3CA, TP53
and APC detection Recruiting 1000

* The study includes participants diagnosed with other cancer types.
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7. Conclusions

Liquid biopsies are considered a good alternative and complementary tool for cancer
management. The study of specific biomarkers by high throughput techniques could guide
clinicians in the monitoring of disease evolution during the administration of targeted
therapies. Although ddPCR has demonstrated its high sensitivity and specificity rates
for detecting rare actionable mutations, further studies are required to implement it in all
clinical laboratories for precision medicine.
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