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Abstract: Au-doped ZnO–samarium nitrate (Sm) nanoparticles with fixed concentrations of Sm
(1 wt %) and various concentrations of Au (0.0, 0.5, 1.0 and 1.5 wt %) were prepared and used as
photoelectrodes to enhance the photovoltaic efficiency of dye-sensitized solar cells (DSSCs). The cell
fabricated with 1.5 wt % of Au-doped ZnO–Sm nanoparticles film achieved an optimal efficiency
of 4.35%, which is about 76% higher than that of 0.0 wt % of Au-doped ZnO–Sm-based cell (2.47%).
This increase might be due to the formation of a blocking layer at the ZnO–Sm/Au interface, which
inhibits the recombination of electrons. This increase may also be attributed to the addition of rare-
earth ions in ZnO to enhance the non-absorbable wavelength region of light via up/down-conversion
of near-infrared and ultraviolet radiations to visible emission and reduce the recombination loss of
electron in the cell. The efficiency of cells may be increased by the blocking layer and up/down-
conversion process and thus promote the overall performance of the cells. This work indicates that
Au-doped ZnO–Sm nanoparticle films have the potential to increase the performance of DSSCs.

Keywords: Au-doped ZnO–Sm nanoparticles; optical properties; dye-sensitized solar cells;
I–V measurements

1. Introduction

Nanoparticles are relatively vital due to their higher optical, physical and chemical
properties. Their optical properties are narrated to be suspended on the size, which
transmits exclusive shade due to absorption in visible vicinity [1]. Furthermore, the
fluorescence, dimension tune capacity and excessive extinction coefficient make them
fairly traumatic in many fields, such as digital devices, nanomedicine and dye-sensitized
solar cells [2]. Dye-sensitized solar cells (DSSCs) are fabricated by nanoparticles of ZnO,
TiO2, CdSe and PbSe as electrode materials because of a large internal surface area for dye
adsorption [3,4]. Among these, ZnO is prominent due to its large bandgap (3.37 eV) and
large free excitation-binding energy (60 meV) [5]. Currently, researchers are fabricating
ZnO-based DSSCs by manipulating the constructions of photoanodes to allow quick
electron transport, tremendous light-harvesting, and excessive dye-loading [6–9]. ZnO
is considered a well-known photovoltaic material; however, there are few challenges to
upgrade its photovoltaic properties [10]. First, the recombination of photo-generated
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electrons seems to occur more frequently in ZnO electrodes, which deteriorates the cell
performance [11–13]. Second, conventionally N719 dye-loaded photoanode of ZnO is
functional under visible light. It is well-known that ruthenium dyes, such as N719, N749
have a bandgap of 1.8 eV and can absorb only a visible portion of light. Nevertheless,
the greater part of the electromagnetic spectrum consists of ultraviolet (UV) and near-
infrared (NIR) light [14]. It means 50% of solar irradiation in the UV and NIR regions is
not utilized by ZnO-based DSSCs. An effective way to control these drawbacks of ZnO
is doping with other materials. Doping of splendid elements in ZnO is a tremendous
way to alter their electrical and optical properties [15]. In current years, rare-earth (RE)-
doped nanoparticles have attracted researchers because of their intra 4f transition optical
characteristics [16]. Doping of RE ions into ZnO lattice solves the problem of the non-
absorbable wavelength region of light by DSSC through the up/down-conversion process.
Moreover, the conversion of NIR and UV radiation to visible emission also increases
electron transport [17–22]. The doping of Au ions modifies the optical absorption and
makes a blocking layer for the electron, and reduces the recombination rate [23–26].

In the recent work, the effect of samarium nitrate (Sm) and Au doping on ZnO is
studied with a fixed concentration of Sm (1 wt %) and different concentrations of Au
(0.0, 0.5, 1.0 and 1.5 wt %). ZnO is used as a host material, Au and Sm are the dopant
materials. The optical, structural, and photovoltaic characteristics of Au-doped ZnO–Sm
are discussed the very first time to increase the efficiency of DSSCs. In this regard, many
publications have been published [27–30] showing doping of Au/Sm/Eu/Ce in ZnO/TiO2
separately. The doping of these materials indicates the fast transfer of charge, increased
charge separation and utilization of non-absorbable wavelength regions of UV and NIR
radiations through the up/down-conversion process. However, none of these reports
explain the combined effect of Au and Sm doping in ZnO (Au-doped ZnO–Sm)-based
DSSCs. It is seen that the doping of Au and Sm solves the aforementioned problems of
ZnO-based DSSCs and improves the overall performance of the device.

2. Experimental Details
2.1. Preparation of Au-Doped ZnO–Sm Nanoparticles

All the regents, zinc acetate, samarium nitrate and silver nitrate, were taken as starting
materials and were purchased from Sigma-Aldrich (purity 99.5%) and used as it received.
The synthesis detailed for the preparation of Au-doped ZnO–Sm was as follows: 100 wt %
of zinc acetate, 1 wt % of samarium nitrate (Sm (NO3)3 and (0.0, 0.5, 1.0 and 1.5 wt %) of
silver nitrate Au (NO3)3 as given in Table 1. These materials were dissolved in deionized
water in a 500 mL beaker under vigorous stirring for 4 h. Then, ammonia (NH3) solution
was mixed drop-by-dop under constant stirring until the pH of the solution became 8 and
continued stirring at 80 ◦C for another 1 h. After being stirred for 1 h, the well-mixed
solution was converted into a thick gel form, and the obtained gel was set aside overnight
to age. The gel was dried at 150 ◦C for 12 h and finally calcine at 450 ◦C for 3 h. Following
the procedure shown in Figure 1, the experiment was repeated three times by changing the
concentration of Au.

Table 1. Parameters specifying fabrication of Au (0.0, 0.5, 1.0 and 1.5 wt %)-doped ZnO–Sm nanoparticles.

Samples Content of ZnO (wt %) Content of Sm (wt %) Content of Au (wt %)

a 100 1 0.0
b 100 1 0.5
c 100 1 1.0
d 100 1 1.5
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Figure 1. Schematic preparation of Au (0.0, 0.5, 1.0 and 1.5 wt %)-doped ZnO–Sm nanoparticles.

2.2. Characterization

The structural analysis of the prepared nanoparticles was checked using X-ray diffrac-
tion of Philips (PAN-alytical X’Pert PRO MRD PW3040, Oberkochen, Germany) diffraction
meter from 20–80 degrees. The morphology of the as-grown nanoparticles was imaged
with a field emission scanning electron microscope (FE-SEM, JEOL, JSM-6700F, München,
Germany). UV-vis spectrophotometer (Lambda-750, Perkin Elmer, Waltham, MA, USA)
was employed for the measurement of both absorption and transmittance spectra of the
nanoparticles. Photocurrent–voltage (J–V) characteristic of the assembled DSSCs was
measured by a Keithley 2400 source meter (Photo Emission Tech Inc., Moorpark, CA, USA)
under 1 sun illumination (AM 1.5 G), and the output power was 100 mW/cm2, with a PC
controlled system. Electrochemical impedance spectroscopy (EIS) was done by an AutoLab
electrochemical workstation (Metrohm Autolab PGSTAT302N, Utrecht, The Netherlands)
at the open-circuit condition in the dark. The magnitude of the alternate signal was 10 mV.

2.3. Preparation of Photo Anode and DSSC Fabrication

Prior to the fabrication of Au-doped ZnO–Sm films, FTO glass (3 cm × 3 cm) pieces
were washed by sonication in detergent, acetone and deionized water each for 12 min
and dried in hot air with the help of a hairdryer. The colloidal paste was used for the
preparation of working electrodes by using the doctor blade method. The paste was
prepared by grinding 4 g of the as-prepared powder in 0.8 mL ethanol using a mortar
and pestle. Ethanol was added dropwise in the powder, and surfactant triton X100 was
mixed to facilitate the spreading of paste on FTO substrates. The paste area of the working
electrode was 1.6 cm × 1.6 cm = 2.56 cm2, which dried in air for 35 min under ambient
conditions. In this way, four sets of working electrodes for each type of concentration were
prepared with a compact layer of Au-doped ZnO–Sm nanoparticles. Sintered the films
at 400 ◦C for 35 min, and then the oven was shut off. When the temperature of the oven
approached 80 ◦C, the working electrodes were taken out from the oven and soaked for
sensitization in 0.5 mM solution of N719 dye in acetonitrile/tert-butanol (1:1, v/v) for 12 h.
The sensitized photoelectrode films were removed from the dye solution and then air-dried
at room temperature. Platinum-coated FTO glasses were used as counter electrodes. The
cells were sealed by using laboratory parafilm, and the electrolyte (0.6 M 1-methyl propyl
imidazolium iodide, 0.1 M lithium iodide, 0.05 M iodine and 0.5 M tert-butyl pyridine in
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acetonitrile) was injected through one of the holes made in counter electrode with a table
drill machine. The hole then sealed with small squares of the microscopic slide to prevent
the electrolyte leakage, as shown in Figure 2.
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Figure 2. Schematic illustration of Au (0.0, 0.5, 1.0 and 1.5 wt %)-doped ZnO–Sm solar cells.

3. Results and Discussions
3.1. Structural Properties of Au-Doped ZnO–Sm Nanoparticles Films

XRD pattern of Au-doped ZnO–Sm nanoparticle films confirmed the wurtzite hexag-
onal single phase of ZnO with standard JCPDS card no-36–1451 in Figure 3A. As can
be seen from Figure 3A (samples a–d), no extra diffraction peak as a result of doping of
samarium and different concentration of gold up to 1.5 wt % was detected. The absence of
characteristics peaks relating to Sm and Au in the XRD pattern may be due to the small
quantity and appropriate incorporation of Sm3+/Au+ ions in the ZnO lattice [31]. This
indicates the uniform substitution of Sm3+/Au+ ion either in the place of Zn2+ ion or on
incorporation into the non-crystalline regions inside the lattice of ZnO. To explore the effect
of doping materials on the crystallinity of ZnO film, the intensity of Bragg peaks (100),
(002) and (101) were monitored. The intensity of peaks is decreased with the increased
concentration of Au. Moreover, the intense Bragg Peaks slightly shift towards higher 2θ
values, and their full width at half maximum (FWHM) was also increased for all Au-doped
ZnO–Sm samples, as shown in Figure 3B. As the ionic radii of Au+ (1.37 Å) and Sm3+

(0.964 Å) are greater than Zn2+ (0.74 Å), therefore, peaks are shifted towards higher 2θ
values. It means internal stresses are produced by this doping. Furthermore, this slight
shift towards higher angle advocates that Sm3+/Au+ has been doped in ZnO in accordance
with Vegard’s law [32]. In the previous literature: [33–35] have reported similar effects
for Gd, Al and doped ZnO nanoparticles, respectively. However, [36,37] has observed
that the Bragg peak is shifted towards a lower 2θ value by La-doping in ZnO. It also has
been explained in the literature [38] that the deterioration in the crystalline quality of ZnO
(as shown in Figure 4) may be due to the decreases in the intensity of Bragg peaks with
the increase of Au concentration. This deterioration in crystal quality is attributed to the
development of Zn-Au/Sm defects or the segregation of Sm/Au at the grain boundary.
In [39] proposed that these changes in the crystallinity of ZnO may be due to the changes
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in the atomic environment with various concentrations of Au-doping or Sm doping. In [40]
suggested that as ZnO has a closed packed hexagonal structure, there are empty octahedral
sites, while Zn occupied half the tetrahedral sites. Therefore, sites are available in the ZnO
structure in which both intrinsic Zn interstitials (Zni) and dopant atoms Sm/Au may occur.
Moreover, the sharp diffraction peaks in the XRD pattern depict structural refinement and
high crystallinity of the prepared samples.
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3.2. Morphological Properties of Au-Doped ZnO–Sm Nanoparticles Films

The surface morphologies of doped ZnO nanoparticle films were investigated by
FE-SEM. In this research work, Au-doped ZnO–Sm nanoparticles have exhibited average
particle size 0.11 µm for 0 wt % of Au, 0.15 µm for 0.5 wt % of Au, 0.99 µm for one
wt % of Au and 1.81 µm for 1.5 wt % of Au. The average particle size of the Au-doped
ZnO–Sm nanoparticles was estimated by Image J software((LOCI, University of Wisconsin,
Madison, WI, USA). The variation in particle size of Au-doped ZnO–Sm nanoparticles can
be explained by the agglomeration of nanoparticles. As the content of doping material
increases, the morphology of the particles was changed from nanoparticles to aggregated
particles. A similar trend in the agglomeration of Au-doped ZnO nanoparticles is obtained
by [41]. In the present work, the obtained particle size is not uniform at all places of
the samples. This is because the cluster of Sm and Au speckled from small to large
value due to agglomeration, as shown in Figure 4. The cluster of Sm and Au particles
are distributed on ZnO lattice, so the particle size is not uniform for host and dopant
materials, and the product morphology is a mixture of small and aggregated particles. Due
to the polydisperse size distribution of Au-doped ZnO–Sm aggregates, the porosity of the
morphology increased, as is clear from Figure 5, which has been thought to be beneficial
for more dye loading. This would result in an increase in the light-harvesting nature of the
photoelectrodes as well as the power conversion efficiency of the DSSCs.
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3.3. Optical Properties of Au-Doped ZnO–Sm Nanoparticle Films

Figure 6 shows the optical transmittance with different concentrations (0.0, 0.5, 1.0
and 1.5 wt %) of Au-doped ZnO–Sm nanoparticle films. The optical transmittance was
25–70% in the wavelength range of 300 to 800 nm. With the increase in Au-doping from
0 to 1.5%, the transmittance continued to decrease to 25% for 1.5% Au-doped ZnO–Sm
nanoparticle films. The decrease in transmittance was credited to the roughness and porous
surface of doped films, as is clear from FESEM images in Figure 4. Sanjay et al. proposed
that the decrease in transmittance may increase surface roughness, which was due to
cluster agglomeration of Au/Sm with ZnO [42]. As the concentration of Au increasing in
this study, more agglomeration occurs due to which larger particle size can be seen from
Figure 6, which deteriorates the transparency and hence enhance the light absorption [43].
The interesting factor observed in this work is that the addition of a fixed ratio of Sm did
not affect the transmittance. This behavior of Sm is good for solar cell efficiency with
additional benefits to having more conductivity due to metallic character.
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Figure 7 demonstrates the optical absorbance spectra with different concentrations
(0.0, 0.5, 1.0 and 1.5 wt %) of Au-doped ZnO–Sm nanoparticle films after N719 dye loading.
It is seen from Figure 7 that the absorption was increased with doping of Sm and Au
because of the doping morphology of small and large size nanoparticles in the visible
light region. This increase in absorption may be due to the transfer of charge between the
conduction or valence band of ZnO and the 4f level of Sm3+ ions. The peak of the sample
with 0.5 wt% of Au-doped ZnO–Sm is found at 521 nm, which confirms dye loading.
Although, for other concentrations of 1.0 wt % and 1.5 wt % of Au, the absorption peaks
intensities of this peak are increased. This increase in absorbance exhibited a larger particle
size. The increasing trend in absorption band from 521 nm to 530 nm confirmed that
Au had modified the ZnO–Sm nanoparticles. The bandgap energies of the films were
calculated before the N719 dye adsorption (not shown here) using the relation given [44].
The calculated values are given in Table 2. The narrowing of bandgap in semiconductors
upon doping is a well-known general phenomenon. The energy levels created near the
conduction band are due to donor impurities, and near the valence band is due to acceptor
impurities. When the dopant amount has increased, then their density of states is increased
and forms a continuum of states just like in the bands; as a result, Eg is decreased. Based
on the literature, the Eg of the Au-doped ZnO–Sm is smaller than ZnO–Sm and slightly
decreases with an increase in Au concentration. As Au is an IB-group element, its d orbital
occupied energies are high near the O p level, while in the tetrahedral environment, both
the orbits of Au d and O p have the symmetry of t2 [45,46]. When the Au atom occupies
the Zn site, the strong d-p coupling between O and Au takes place, due to which the level
of O 2p moves up and narrows the bandgap. Therefore, the Eg is decreased by Au doping.
The particle size and Au concentration of different samples are shown in Figure 8.

Nanomaterials 2021, 11, x FOR PEER REVIEW 8 of 14 
 

 

Figure 7 demonstrates the optical absorbance spectra with different concentrations 
(0.0, 0.5, 1.0 and 1.5 wt %) of Au-doped ZnO–Sm nanoparticle films after N719 dye load-
ing. It is seen from Figure 7 that the absorption was increased with doping of Sm and Au 
because of the doping morphology of small and large size nanoparticles in the visible light 
region. This increase in absorption may be due to the transfer of charge between the con-
duction or valence band of ZnO and the 4f level of Sm3+ ions. The peak of the sample with 
0.5 wt% of Au-doped ZnO–Sm is found at 521 nm, which confirms dye loading. Although, 
for other concentrations of 1.0 wt % and 1.5 wt % of Au, the absorption peaks intensities 
of this peak are increased. This increase in absorbance exhibited a larger particle size. The 
increasing trend in absorption band from 521 nm to 530 nm confirmed that Au had mod-
ified the ZnO–Sm nanoparticles. The bandgap energies of the films were calculated before 
the N719 dye adsorption (not shown here) using the relation given [44]. The calculated 
values are given in Table 2. The narrowing of bandgap in semiconductors upon doping is 
a well-known general phenomenon. The energy levels created near the conduction band 
are due to donor impurities, and near the valence band is due to acceptor impurities. 
When the dopant amount has increased, then their density of states is increased and forms 
a continuum of states just like in the bands; as a result, Eg is decreased. Based on the 
literature, the Eg of the Au-doped ZnO–Sm is smaller than ZnO–Sm and slightly decreases 
with an increase in Au concentration. As Au is an IB-group element, its d orbital occupied 
energies are high near the O p level, while in the tetrahedral environment, both the orbits 
of Au d and O p have the symmetry of t2 [45,46]. When the Au atom occupies the Zn site, 
the strong d-p coupling between O and Au takes place, due to which the level of O 2p 
moves up and narrows the bandgap. Therefore, the Eg is decreased by Au doping. The 
particle size and Au concentration of different samples are shown in Figure 8. 

 
Figure 7. Absorbance spectra of Au (0.0, 0.5, 1.0 and 1.5 wt%)-doped ZnO–Sm nanoparticle films. Figure 7. Absorbance spectra of Au (0.0, 0.5, 1.0 and 1.5 wt %)-doped ZnO–Sm nanoparticle films.



Nanomaterials 2021, 11, 702 9 of 14

Table 2. Grain size and bandgap energy of Au (0.0, 0.5, 1.0 and 1.5 wt %)-doped ZnO–Sm
nanoparticle films.

Samples Content of
ZnO (wt %)

Content of
Sm (wt %)

Content of
Au (wt %)

Particle Size
(µm)

Band Gap
Eg (eV)

a 100 1 0.0 0.11 3.36
b 100 1 0.5 0.15 3.27
c 100 1 1.0 0.99 3.21
d 100 1 1.5 1.81 3.16Nanomaterials 2021, 11, x FOR PEER REVIEW 9 of 14 
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3.4. I–V Measurements of Au-Doped ZnO–Sm Films

I–V measurements of the DSSCs fabricated with different concentrations of Au-doped
ZnO–Sm nanoparticle films are shown in Figure 9. The short-circuit current density (JSC),
open-circuit voltage (VOC), fill factor (FF), and power conversion efficiency (η) of these
cells are given in Table 3. From the parameters, the cell fabricated with 0.5 wt % of Au-
doped ZnO–Sm has an obvious enhancement of photocurrent and efficiency (i.e., JSC = 7.02,
η = 3.26) compared with the cell fabricated with 0.0 wt % of Au-doped ZnO–Sm (i.e.,
JSC = 6.96, η = 2.47%) due to the presence of Au, which acts as blocking layer to decrease
the recombination rate and increase the transport of electrons. There is an increase of
76 % in efficiency. Furthermore, the DSSCs fabricated with 1.0 wt % and 1.5 wt % of
Au-doped ZnO–Sm have an optimal performance (i.e., increase in JSC = 38% and 43%,
and in η = 50% and 76%, respectively) as indicated in Table 3. This improvement in the
DSSCs parameters can be ascribed in two ways. One way is the up/down-conversion
process in which UV and NIR radiations can be shifted to visible light due to the doping
of RE ions in ZnO. It is known that the RE-doped ZnO absorbs two or more low-energy
photons and then emits high-energy photons locating in the main absorption region of
the dye N719 [25] because the dye N719 have strong absorption around 550 nm [24]. This
widening of the absorption region of the cell is the main reason for enhancing the light to
the power conversion efficiency of DSSCs. In addition, RE doping also acts as a blocking
layer that inhibits the charge recombination between photoelectrode and I−/I−3 , which
suppressed the dark current efficiently for DSSCs. A second way to boost the performance
of the 0.5 wt %, 1.0 wt % and 1.5 wt % of Au-doped ZnO–Sm-based DSSCs is attributed to
the presence of the ZnO–Sm/Au-blocking layer, which blocks the back electron transfer
from the conduction band of ZnO to I−/I−3 , redox electrolyte [26]. Therefore, the electrons
flow towards the oxidized dye molecules or the redox electrolyte, thereby leading to an



Nanomaterials 2021, 11, 702 10 of 14

improvement in the DSSCs parameters [24]. According to [27], blocking layers exist in
the ZnO–Sm/Au interface because of the greater work function of Au (5.1 eV) than the
electron affinity of ZnO (4.2 eV), which prevents the backward transfer of electrons and
pushes the electron towards either the excited dye molecules or the liquid electrolyte. As a
consequence, the photocurrent of the DSSCs might be increased efficiently. In addition, it
was observed that the doping of RE ions and different concentration of Au have a great
impact on the performance of DSSCs by controlling the backward transfer of electrons and
making useful UV and NIR spectrum of light by up/down-conversion process.
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Figure 9. Photocurrent–voltage (J-V) characteristics of Au (0.0, 0.5, 1.0 and 1.5 wt %)-doped ZnO–Sm
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Table 3. I–V and electrochemical impedance spectroscopy (EIS) measurements of Au (0.0, 0.5, 1.0
and 1.5 wt %)-doped ZnO–Sm nanoparticles Based DSSCs.

Cell Parameters
Samples

a b c d

JSC (mA/cm2) 6.96 ± 0.018 7.02 ± 0.056 9.63 ± 0.022 9.97 ± 0.019
VOC (V) 0.694 ± 0.003 0.699 ± 0.004 0.714 ± 0.002 0.719 ± 0.004

FF 0.52 ± 0.003 0.59 ± 0.005 0.54 ± 0.004 0.61 ± 0.003
η (%) 2.47 ± 0.002 3.26 ± 0.013 3.70 ± 0.003 4.35 ± 0.002

Rct2 (Ω) 130.62 ± 0.14 113.84 ± 0.10 96.47 ± 0.21 90.57 ± 0.16
τ (ms) 16 ± 1 21 ± 3 32 ± 1 39 ± 2

3.5. Impedance Spectroscopy Measurements of Au-Doped ZnO–Sm Films

To elucidate the dissimilarities in the charge transport phenomena of Au-doped
ZnO–Sm film-based DSSCs with different concentrations of Au (0.0, 0.5, 1.0 and 1.5 wt %),
electrochemical impedance spectroscopy (EIS) was utilized. Generally, Nyquist plots of
DSSCs show three semicircles. However, in the present work, two semicircles were ob-
served shown in Figure 10 A. These two semicircles in the Nyquist plot were attributed to
the low resistance of ion transport in the redox-electrolyte. An equivalent circuit model
was applied to analyze the charge-transport process in Au-doped ZnO–Sm photoanodes,
and the resulting impedance parameters are listed in Table 3. Wang et al. [47] suggested
that the first semicircle in high-frequency range was ascribed to charge transfer resis-
tance (Rct1) and chemical capacitance (C1) at the redox electrolyte/Pt-coated counter
electrode interface. While the second semicircle in the low-frequency range was due
to electron transfer, transport resistance (Rct2) and chemical capacitance (C2) at the Au-
doped ZnO–Sm/dye/electrolyte interface. However, Rs stands for the sheet resistance at
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the FTO/ZnO–Sm interface. DSSCs based on Au-doped ZnO–Sm photoanodes with differ-
ent concentrations of Au (0.0, 0.5, 1.0 and 1.5 wt %) display similar values of Rct1 because
of the use of the same counter electrode (Pt/FTO glass) and electrolyte. On the other hand,
Rct2 gradually decreases with the increase of concentration and has the lowest value for the
DSSC doped with 1.5 wt % of Au. The decrease in Rct2 with an increase of Au concentration
is due to the injection of more electrons in the ZnO conduction band because of making
blocking layer. This blocking layer inhibits the backward transfer of an electron from the
conduction band of ZnO to redox-electrolyte, resulting in the enhanced light-harvesting
capability. This enhancement of the photocurrent for all Au-doped ZnO–Sm phot anodes
is in good agreement with I–V data.
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The Bode phase plot of electrochemical impedance spectroscopy for Au-doped ZnO–Sm
nanoparticles photoanodes with different concentrations of Au (0.0, 0.5, 1.0 and 1.5 wt %) is
presented in Figure 10B. These spectra show the frequency (f ) peaks of the charge-transport
process at different interfaces for all the DSSCs. It is clear from Figure 10B that the fre-
quency (f ) in the region between 0.0 and 40.0 kHz is associated with the electron lifetime
(τ) through τ = 1/ω = 1/2πf [48–50]. In this equation, f and τ are related to the charge
transfer at Au-doped ZnO–Sm dye/electrolyte interface, and the calculated results for the
electron lifetimes are listed in Table 3. It can be inferred (clearly seen) from the plot that with
the increase of Au concentration, the peak positions for the photoelectrodes composed of
Au-dope ZnO–Sm nanoparticles are shifted to the low-frequency region. With the increase
of Au concentration, an increased trend of electrons lifetime (τ) was observed due to the
decrease in electron trap states in the conduction band of Au-doped ZnO–Sm nanoparticles
photoanodes. DSSC fabricated with 1.5 wt % of Au-doped ZnO–Sm has low resistance
Rct2 and long electrons lifetime (τ), could support the transport of electron through long-
distance and inhibit the backward transfer of electrons from CB of ZnO to redox electrolyte.
Therefore, from our results, we can conclude that the DSSC fabricated with Au-doped
ZnO–Sm photoanodes showed improved photo-induced current. The improvement was
gained through the up/down-conversion of RE ions and Au doping, which enhanced
charge-transport properties and prohibited the backward flow of electrons.

4. Conclusions

Au-doped ZnO–Sm nanoparticle films were successfully synthesized with different
concentrations of Au (0.0 wt % to 1.5 wt %) and fixed concentrations of Sm (1 wt %).
XRD spectra showed that prepared samples were pure and crystalline, and no impurity
peaks were observed in the samples; however, there is little shift in the peak position, i.e.,
internal stresses are produced by this doping. SEM morphologies showed that due to
agglomeration, the particle size increases with the increase of Au concentration. Due to
the increase in particle size, porosity also increases, which in turn increases dye loading
and light-harvesting. Transmission spectra showed a decreasing trend because of the
roughness and porous surface, whereas the absorbance increases due to small and large
size nanoparticles in the visible light region. These films were used as photoanodes to boost
the efficiency of DSSCs by controlling the backward transfer of electrons (enhance electron
transport) and increase the absorption spectrum of light by the up/down-conversion
process. The cell fabricated with 1.5 wt % of Au-doped ZnO–Sm photoanode showed
the highest efficiency of 4.35%, which is about 76% higher compared with their other
counterparts. EIS measurements infer that the improvement in the cell performance could
be due to the enhanced light spectrum and faster electron transport.
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