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Abstract
Introduction: Positron emission tomography/computed tomography  (PET/CT) is routinely used for 
staging, response assessment, and surveillance in esophageal carcinoma patients. The aim of this 
study was to investigate whether textural features of pretreatment 18F‑fluorodeoxyglucose (18F‑FDG) 
PET/CT images can contribute to prognosis prediction in carcinoma oesophagus patients. 
Materials and Methods: This is a retrospective study of 30 diagnosed carcinoma esophagus 
patients. These patients underwent pretreatment 18F‑FDG PET/CT for staging. The images were 
processed in a commercially available textural analysis software. Region of interest was drawn over 
primary tumor with a 40% threshold and was processed further to derive 92 textural and radiomic 
parameters. These parameters were then compared between progression group and nonprogression 
group. The original dataset was subject separately to receiver operating curve analysis. Receiver 
operating characteristic (ROC) curves were used to identify the cutoff values for textural features with 
a P < 0.05 for statistical significance. Feature selection was done with principal component analysis. 
The selected features of each evaluator were subject to 4 machine-learning algorithms. The highest 
area under the curve (AUC) values was selected for 10 features. Results: A retrospective study of 30 
primary carcinoma esophagus patients was done. Patients were followed up after chemo‑radiotherapy 
and they underwent follow‑up PET/CT. On the basis of their response, patients were divided into 
progression group and nonprogression group. Among them, 15 patients showed disease progression 
and 15  patients were in the nonprogression group. Ten textural analysis parameters turned out to 
be significant in the prediction of disease progression. Cutoff values were calculated for these 
parameters according to the ROC curves, GLZLM_long zone emphasis (Gray Level Zone Length 
Matrix)_long zone emphasis  (44.9), GLZLM_low gray level zone emphasis  (0.006), GLZLM_
short zone low gray level emphasis  (0.0032), GLZLM_long zone low gray level emphasis  (0.185), 
GLRLM_long run emphasis (Gray Level Run Length Matrix)  (1.31), GLRLM_low gray level run 
emphasis  (0.0058), GLRLM_short run low gray level emphasis  (0.005496), GLRLM_long run 
low gray level emphasis  (0.00727), NGLDM_Busyness (Neighborhood Gray Level Difference 
Matrix)  (0.75), and gray level co‑occurrence matrix_homogeneity  (0.37). Feature selection by 
principal components analysis and feature classification by the K‑nearest neighbor machine-learning 
model using independent training and test samples yielded the overall highest AUC. Conclusions: 
Textural analysis parameters could provide prognostic information in carcinoma esophagus patients. 
Larger multicenter studies are needed for better clinical prognostication of these parameters.
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Introduction
The global burden of cancer is increasing 
day by day. The reason could be the 
growing population and cancer‑causing 
habits.[1] Esophageal cancer is among the 
top ten cancers in the world.[2] Esophageal 
cancer is usually associated with high 
mortality. The outcome is usually 
dependent on the extent of the disease on 
presentation.[3]

Esophageal cancers could be localized or 
metastatic. Localized disease is limited 
to mucosa and submucosa. The localized 
disease could be best treated surgically.[4] 
When the tumor crosses the submucosa, there 
is an increase in the risk of spread to the 
lymph nodes. This leads to a decrease in the 
survival rate. The patients who present with 
a tumor that has penetrated the submucosa 
have a 5‑year survival rate of 20%–30%.[3]
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In the case of advanced esophageal cancers, neoadjuvant 
chemotherapy and/or radiotherapy is performed. The main 
goal is to downsize the tumor, so as to decrease the tumor 
burden.[5] Most of the patients have locally advanced 
esophageal cancer or distant metastases at presentation. In 
locally advanced esophageal cancer, adjuvant chemotherapy 
or chemoradiotherapy will improve survival in patients 
responding to therapy. However, the patients who do not 
respond to therapy may be unnecessarily affected by the 
toxicity of therapy.[6] Therefore, it could be beneficial to 
noninvasively predict the response to therapy early in 
the course of treatment to allow the personalization of 
treatment.
18F‑fluorodeoxyglucose positron emission tomography/
computed tomography  (18F‑FDG PET/CT) is known to 
have better sensitivity and specificity in detecting distant 
metastasis. It is used in the initial staging of esophageal 
cancer.[7] It is also used in therapy response assessment and 
assessing the prognosis of patients.[8]

In FDG PET/CT, F‑18 fluorodeoxyglucose, a glucose 
analog is used as a tracer. It represents the lesion glycolytic 
activity. The most widely used parameter is the maximum 
standardized uptake value  (SUVmax). It is valuable in the 
prognosis and response prediction of therapy in esophageal 
cancer patients.[9] The parameters such as metabolic tumor 
value  (MTV) and total lesion glycolysis  (TLG) have been 
shown to provide a better assessment of tumor burden. 
They have higher predictive values for tumor response.[10]

The role of 18F‑FDG PET/CT has been well established 
in staging of the esophageal carcinoma patients. It is 
associated with a better sensitivity and specificity than 
combined use of CT and echoendoscopy, especially 
regarding the detection of distant metastasis. 18F‑FDG 
PET has been also used to assess response to therapy 
and patient outcome prognosis. Within this context, few 
studies have explored the potential prognostic value of 
pretreatment 18F‑FDG PET, demonstrating that the level 
of activity concentration on preoperative PET, although 
not statistically significant, tends to predict overall 
survival.

The FDG uptake in the tumors is not homogeneous. The 
FDG uptake is variable at places due to necrosis, hypoxia, 
cell proliferation, and microvessel density.[11] The tumor 
heterogeneity is shown to be associated with disease 
progression and aggressive behavior of the tumor.[12]

Intratumor heterogeneity is also identified as a potential 
source of treatment failure.[13]

The conventional parameters such as SUVmax, TLG, and 
MTV, even though they are valuable in predicting tumor 
response and prognosis of patients, they don’t take into 
account the spatial distribution of the radiotracer and the 
heterogeneity of the tumor. This leads to limitations in 
characterizing the biological behavior of the tumor.

The concept of textural analysis is based on the spatial 
arrangement and distribution of voxels in a region of 
interest  (ROI).[14] Textural analysis characterizes tumor 
heterogeneity in the form of PET image‑derived quantitative 
indices. These indices could be used in predicting therapy 
response or as prognostic factors. There have been several 
studies demonstrating the predictive value of the textural 
indices in cases of lung cancer,[15] breast cancer,[16] 
sarcoma,[17] lymphoma,[18] and rectal cancer.[19]

This study was performed to assess the role of textural 
analysis indices in predicting the tumor response to therapy 
in patients with esophageal cancer.

Materials and Methods
Patients

Thirty patients with newly diagnosed esophageal cancer 
were retrospectively analyzed who underwent 18F‑FDG 
PET/CT for staging and response assessment. Written 
and informed consents were taken from the patients at 
the time of scanning. These patients were treated with 
chemotherapy  (with alkylating agents) and external‑beam 
radiotherapy from October 2019 to June 2022. These 
patients underwent 18F‑FDG PET/CT as a part of the 
staging procedure before CRT. The mean age of the 
patients at the time of diagnosis was 52.8  years  (median 
50  years, range 26–71  years) and 73% of the patients 
were male. Most of the tumors were squamous cell 
carcinoma  (18  patients). These tumors originated from the 
middle and lower esophagus. All patients were treated with 
external‑beam radiotherapy and chemotherapy. One month 
after the completion of treatment, patients were assessed 
with follow‑up PET/CT using PERCIST criteria. Depending 
on the response, patients were classified as progressive 
disease, complete responders, partial responders, and stable 
disease. The institutional review board has approved this 
retrospective study and the requirement to obtain informed 
consent was waived.

Imaging technique

All the PET/CT scans were performed using GE 
DISCOVERY MIDR PET/CT scanner (GE Healthcare, 
Milwaukee, USA) for staging. All the patients were 
instructed to fast for  >6  h before the scan. The fasting 
blood glucose was checked before the scan. If the glucose 
levels were in the normal fasting range, patients were 
injected with an 18F‑FDG injection. The injections were 
done according to the weight of the patients. At 18F‑FDG 
injection, the mean plasma glucose level was 100  mg/dl. 
CT from the brain to mid‑thigh was performed before the 
PET scan using a 16‑slice CT scanner. Whole body PET 
was performed covering an identical area to that covered 
by CT. Acquisition time was 1–2  min per bed position, 
with 7–8 bed positions. Images were reconstructed with 
the three‑dimensional (3D) row‑action maximum‑likelihood 
algorithm using standard clinical protocol parameters  (2 
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iterations, relaxation parameter of 0.05, and 3D Gaussian 
postfiltering of 5 mm in full width at half maximum). The 
obtained images were then exported to LIFEx software.[20]

Image analysis

The focal FDG uptake in the primary lesion was 
visually interpreted in consensus by two board‑certified 
nuclear medicine physicians. They were blinded to 
clinical, pathological, and other imaging information. 
The tumors were delineated manually and ROI were 
drawn over the tumors. The ROI was then delineated 
with 40% thresholding. Forty percent threshold was used 
conventionally. Then, the ROI was processed to obtain the 
textural indices. All the parameters were extracted from the 
delineated tumor. Only primary tumors were considered, 
as textural analysis cannot be reliably performed on small 
lesions as the number of voxels involved would be less. 
Hence, the lymph nodes and distant metastasis were not 
involved in the ROI.

Standardized uptake value analysis

Activity in a lesion is reported in terms of the SUVmax. 
SUVmax is the value of the most intense pixel in the ROI. 
This allows the exclusion of low counts from the areas 
of necrosis adjacent to normal structures. SUVmean is 
an average of all counts in the ROI, which may be more 
representative because a spurious single hot area will 
not cause incorrect data to be recorded. SUV peak is the 
average of the counts from a circular volume surrounding 
the hottest pixel. The SUV peak may more accurately 
represent maximal tumor metabolism with a higher degree 
of statistical significance than the SUVmax. MTV refers 
to the metabolically active volume of the tumor. TLG is 
the product of MTV and SUV mean. All these values are 
provided by the software automatically.

Textural analysis

Once the images are processed, the software provides 
different types of textual indices and matrices. There are 
three different types of textural features‑first order, second 
order, and higher order textural features. First‑order 
textural features are statistics based on the gray level 
distribution of the image but do not consider relative 
positions of gray levels. They quantify intensity variations 
between each voxel and its immediate neighbors. Second 
and higher order textural features do consider relative 
positions of gray levels and therefore allow quantification 
of heterogeneity.

First‑order parameters

First‑order parameters quantify intensity variations 
between each voxel and its immediate neighbors. These 
are intensity‑based and histogram‑based parameters. 
They include parameters such as entropy, skewness, and 
energy.

Entropy reflects irregularity in the gray level. A completely 
random distribution would have very high entropy.

Energy reflects the uniformity of the distribution.

Skewness reflects on the asymmetry of the gray‑level 
distribution.

Kurtosis reflects the shape of the gray level distribution 
relative to normal distribution.

Second‑order parameters

These are regional heterogeneity parameters. They are 
calculated through analysis at the level of groups of boxes 
and areas of various sizes and intensities. They include:

Gray level zone length matrix

It provides information on the size of homogeneous zones 
for each gray level in three dimensions. From this matrix, 
11 textural indices can be computed. They depend on the 
size of the zone if it is a long zone or short zone and the 
level of intensity; if it is a low gray level or a high gray 
level.

Gray level run length matrix

It gives the size of homogeneous runs for each gray level. 
The matrix is computed for the 13 different directions in 
3D and for each of the 11 textural indices derived from the 
matrix. They depend on the size of the run if it is a long 
run or short run and the level of intensity; if it is a low 
gray level or a high gray level.

Higher order parameters

These parameters tell us about spatial interrelationships and 
frequency distributions of the gray levels. They include 
matrices like‑neighborhood gray level difference matrix 
and gray level co‑occurrence matrix.

Neighborhood gray level difference matrix

It corresponds to the difference of gray level between 1 
voxel and its 26 neighbors in three dimensions. Three 
textural indices are computed from this matrix.
a.	 NGLDM_Coarsness: Is the level of spatial rate of 

change in intensity
b.	 NGLDM_Contrast: Is the intensity difference between 

neighboring regions
c.	 NGLDM_Busyness: This is the spatial frequency of 

changes in intensity.

Gray level co‑occurrence matrix

It takes into account the arrangements of pairs of voxels to 
calculate textural indices. Six textural indices are computed 
from this matrix.
a.	 Gray level co‑occurrence matrix (GLCM)_homogeneity: 

Is the homogeneity of gray level voxel pairs
b.	 GLCM_Energy: Is the uniformity of gray‑level voxel 

pairs
c.	 GLCM_Contrast: Is the local variations in the GLCM
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d.	 GLCM_correlation: Is the linear dependency of gray 
levels in GLCM

e.	 GLCM_Entropy: Is the randomness of gray‑level voxel 
pairs

f.	 GLCM_Dissimiliarity: This is the variation of gray‑level 
voxel pairs.

Response evaluation

Response to chemoradiotherapy was assessed after 1 month 
of completion of treatment. Follow PET/CT was used 
to assess tumor response. Tumor response was classified 
as complete response, partial response, stable disease, or 
progressive disease according to the response evaluation 
criteria in solid tumors. Patients with a complete response 
and partial response were considered responders and 
patients with stable disease or progressive disease were 
considered nonresponders.

Statistical analysis

This is a retrospective study of 30 diagnosed carcinoma 
esophagus patients. These patients underwent pretreatment 
18F‑FDG PET/CT on GE DISCOVERY MIDR PET/
CT scanner for staging. The images were processed 
in LIFEx software. ROI was drawn over the primary 
tumor with a 40% threshold and was processed further 
to derive 92 textural and radiomic parameters. These 
parameters were then compared between the progression 
group and the nonprogression group. Receiver operating 
characteristic  (ROC) curves were used to identify the 
optimal cut‑off values for the textural features with a 
P  <  0.05 for statistical significance using SPSS version 
22.0 (IBM Corporation in Armonk, New York). software. 
Specificity and sensitivity  (including 95% confidence 
intervals) for each of the studied parameters were derived 
using ROCs curves measuring associated areas under 
the ROC curves  (area under the curve  [AUC]). Feature 
selection was done with principal component analysis. 
The selected features of each evaluator were subject to 4 
machine-learning algorithms. The highest AUC values were 
selected for 10 features. Textural results were compared 
with those of SUVmax and SUV mean for their ability to 
distinguish between responders and nonresponders.

Results
Patients were evaluated 1  month after the completion 
of combined radiochemotherapy. There were a total of 
30 patients who were eligible for analysis. All the patients’ 
characteristics are described in Table 1. Among them, there 
were 15 responders and 15 nonresponders. Responders 
constituted patients who had a partial response or complete 
response. Nonresponders constituted patients who had a 
stable metabolic disease or disease progression.

ROC analysis revealed 10 parameters which were 
significantly correlated to outcome  (P  <  0.05). Most 
features in the original dataset were redundant due to 

multicollinearity and were removed while preferentially 
preserving the parameters with P  <  0.05 in the ROC 
analysis. This resulted in a feature set of 10 parameters.

These parameters were then separately passed through a 
principal component analysis algorithm and a standard 
scaling algorithm. Four different algorithms for a creating 
a machine learning model were tested on the previous 
mentioned interactions of the data including one unchanged 
set as well. The best and most consistent combination 
was the Standard scaled data with a logistic regression 
model with an accuracy of 83%  (κ =0.666, mean squared 
error  [MSE] = 0.16, MSE error  =  0.408, f  =  0.857, 
Matthews correlation co‑efficient  =  0.707 and perirhinal 
cortex = 0.958). Similar results were found with K‑nearest 
neighbor model and least accuracy was given by the 
adaboost model.

Neither SUVmax nor SUV mean was significantly different 
between responders and nonresponders. MTV and TLG 
were also not significant in predicting therapy response. 
Nonresponders show significantly higher MTV and TLG 
than responders. By textural analysis, the area under the 
ROC curves  (AUC) values were calculated for all the 
different parameters.

In the case of first‑order parameters, none of the parameters 
were significant in predicting response to the therapy. The 
AUC values for these parameters were below 0.7. Among 
the first‑order parameters, SUVkutosis and SUV_Excess 
kurtosis have a max AUC value of 0.68.

Among the second‑order parameters, four parameters from 
the GLRLM matrix and four parameters from the GLZLM 
matrix were significant in predicting the response. They 
were GLZLM_long zone emphasis  (LZE), GLZLM_
low gray level zone emphasis  (LGZE), GLZLM_short 
zone low gray level emphasis  (SZLGE), GLZLM_long 
zone low gray level emphasis  (LZLGE), GLRLM_

Table 1: Characteristics of patients
Characteristics Number of patients
Sex

Males 22
Females 8

Location of the tumor
Upper 1/3rd esophagus 4
Middle 1/3rd esophagus 11
Lower 1/3rd esophagus 15

Type of carcinoma
Squamous cell carcinoma 18
Adenocarcinoma 12

Metastases
Present 12
Absent 18

Response to therapy
Responders 15
Nonresponders 15
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long run emphasis  (LRE), GLRLM_low gray level run 
emphasis  (LGRE), GLRLM_long run low gray level 
emphasis  (LRLGE), and GLRLM_short run low gray level 
emphasis  (SRLGE). The cutoffs were calculated for these 
parameters. The cutoffs are given in Table  2 and the AUC 
values are described in Table 3.

These parameters tell about the distribution of the size of 
homogeneous zones for each gray level in three dimensions.

In the case of higher‑order parameters  [Figure  1], GLCM 
homogeneity and NGLDM_Busyness were significant 
in predicting the tumor response. GLCM homogeneity 
represents the homogeneity of the tumor. NGLDM_Busyness 
represents the spatial frequency of changes in intensity.

Other higher parameters like contrast, coarseness, etc., 
in the NGLDM and GLCM matrix were not statistically 
significant predictive factors of response.

The AUC for GLCM_homogeneity is 0.729 and the cut‑off 
was calculated to be 0.37. NGLDM_Busyness was also 

significant in predicting the tumor response in carcinoma 
esophagus patients. The AUC value for NGLDM_Busyness 
is 0.75. The cut‑off was calculated to be 0.309.

Based on ROC analysis of textural parameters, textural 
parameters can identify the nonresponders group of patients 
better than the SUV‑based measurements. This could be 
demonstrated by their respective AUC values. For example, 
SUVmax has an AUC of 0.258.

It allowed the identification of the nonresponders with a 
maximum sensitivity of 43% and 14% specificity. The 
threshold used was 5.4. On the other hand, the textural 
parameter GLCM_homogeneity has an AUC of 0.72. It 
allowed the identification of the nonresponders with a 
sensitivity of 80% and specificity of 60%.

In the case of SUVmean, it has an AUC of 0.22. It allowed 
the identification of the nonresponders with a maximum 
sensitivity of 50% and 6% specificity. The threshold 
used was 3.5. On the other hand, the textural parameter 
GLRLM_LRE has an AUC of 0.702. It allowed the 
identification of the nonresponders with a sensitivity of 
73% and specificity of 66%.

Discussion
Currently increased interest is noted in the use 
of image‑derived textural analysis parameters for 
quantification of intra‑tumor heterogeneity. In this 
study, we assessed the potential role of textural indices 
in predicting the response of patients with esophageal 
cancer undergoing concomitant chemoradiotherapy. An 
established method to predict response after neoadjuvant 
chemoradiotherapy in esophageal cancer patients has 
not yet been defined. Assessment of tumor response 
to therapy plays a central role in patient clinical 
management. Accurate response prediction will lead 
to omitting surgical treatment in complete responders 
or avoiding chemoradiotherapy in nonresponders. At 

Table 2: The cutoffs for GLZLM and gray level 
run‑length matrix parameters

Parameter Cut off
GLZLM_LZE 44.9
GLZLM_LGZE 0.006
GLZLM_SZLGE 0.0032
GLZLM_LZLGE 0.185
GLRLM_LRE 1.31
GLRLM_LGRE 0.0058
GLRLM_SRLGE 0.005496
GLRLM_LRLGE 0.00727
LZE: Long zone emphasis, LGZE: Low gray level zone emphasis, 
SZLGE: Short zone low gray level emphasis, LZLGE: Long zone 
low gray level emphasis, LRE: Long run emphasis, LGRE: Low 
gray level run emphasis, SRLGE: Short run low gray level emphasis, 
LRLGE: Long run low gray level emphasis, GLZLM: Gray level 
zone length matrix

Table 3: The area under the curve values for GLZLM 
and gray level run‑length matrix parameters

Parameter AUC values
GLZLM_LZE 0.738
GLZLM_LGZE 0.742
GLZLM_SZLGE 0.720
GLZLM_LZLGE 0.773
GLRLM_LRE 0.702
GLRLM_LGRE 0.773
GLRLM_SRLGE 0.782
GLRLM_LRLGE 0.764
LZE: Long zone emphasis, LGZE: Low gray level zone emphasis, 
SZLGE: Short zone low gray level emphasis, LZLGE: Long zone 
low gray level emphasis, LRE: Long run emphasis, LGRE: Low 
gray level run emphasis, SRLGE: Short run low gray level emphasis, 
LRLGE: Long run low gray level emphasis, AUC: Area under the 
curve, GLZLM: Gray level zone length matrix

Figure 1: ROC curves of SUV‑related parameters and first‑order parameters. 
ROC: Receiver operating characteristic, SUV: Standardized uptake value
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present, the response is mainly evaluated by measuring 
the size of the anatomical tumor and classifying the 
tumor shrinkage according to standard criteria. Since 
metabolic changes often occur before morphological 
changes, metabolic imaging seems to be a valuable tool 
for monitoring various treatments. 18F‑FDG PET/CT has 
shown promising results in assessing response to therapy 
and prognosis. In Esophageal cancer, quantitative changes 
in FDG uptake 2 weeks after startup therapy have shown 
to correlate well with subsequent tumor shrinkage and 
patient survival.

Hautzel and Müller‑Gärtner showed that even lower 
irradiation can increase tumor absorption and inflammatory 
changes can contribute to this increase; yielding inaccurate 
information about treatment response.[21] Within the same 
context, induced ulceration may also impair response 
assessment using PET.[22]

On the other hand, predicting the response prior to the start 
of treatment can be of great interest for optimal patient 
management. With similar endpoints, few authors have 
studied the predictive value of FDG uptake for therapy 
response.

Rizk et  al. reported an SUV in excess of 4.5 as a reliable 
predictor of pathological response[23] whereas Javeri et  al. 
demonstrated in a larger group of patients at the end of a higher 
response rate obtained after combined chemoradiotherapy in 
patients who have an initial SUV higher than 10.[24]

Some studies have already focused on the relationship 
between image analysis and tumor biology. Gillies et  al. 
suggested that imaging can characterize longitudinal spatial 
variations of the tumor phenotype and its micro‑environment 
so that the system dynamics over time can be quantitatively 
captured.[25] Segal et  al. showed that contrast‑enhanced CT 
image characteristics correlate with most of the liver’s global 
gene expression profiles revealing cell proliferation, liver 
synthetic function, and patient prognosis.[26] Within the same 
context, Diehn et al. mapped neuroimaging parameters with 
gene expression patterns in glioblastoma,[27] whereas Strauss 
et  al. combined dynamic pet kinetic parameters with gene 
array techniques.[28] Eary et  al. previously demonstrated 
that a globally assessed FDG distribution heterogeneity in 
sarcoma is a potential prognostic factor.[29]

Standardized uptake value‑related parameters and 
first‑order parameters

In this study, ROC analysis was performed on SUV‑related 
parameters and first‑order textural parameters  [Figure  1]. 
The value of SUVmax, other SUV‑based parameters, and 
first‑order textural parameters was limited, possibly 
because it is extracted from a single voxel and does not 
characterize the total F18 FDG uptake. The AUC values 
for these parameters were not more than 0.7.

Second order parameters

In this work, the second order and the higher order 
parameters were significant in predicting the tumor 
response in carcinoma esophagus patients.

The second‑order parameters provide information on 
the size of homogeneous areas. 4 parameters from 
GLZLM  [Figure  2] and GLRLM  [Figure  3] matrix were 
significant.

GLZLM matrix

The GLZLM matrix is a second‑order parameter. It 
quantifies gray level zones in an image. A  gray‑level 
zone is defined as the number of connected voxels that 
share the same gray‑level intensity. These are the regional 
heterogeneity parameters. In our study, four parameters 
from the GLZLM_matrix were significant in predicting the 
response in carcinoma esophagus patients posttreatment. 
They were GLZLM_LZE, GLZLM_LGZE, GLZLM_
SZLGE, GLZLM_LZLGE. AUC value was more than 0.7 
for these parameters.

GLZLM_LZE: Is a measure of the distribution of large 
area size zones, with a greater value indicative of more 
larger size zones and more coarse textures.

GLZLM_LGZE: Measures the distribution of lower 
gray‑level size zones, with a higher value indicating a 
greater proportion of lower gray‑level values and size 
zones in the image.

GLZLM_SZLGE: Measures the proportion in the image 
of the joint distribution of smaller size zones with lower 
gray‑level values.

GLZLM_LZLGE: Measures the proportion in the image 
of the joint distribution of larger size zones with lower 
gray‑level values.

Figure  2: ROC curves of textural parameters of GLZLM matrix. ROC: 
Receiver operating characteristics
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These parameters quantify the coarseness of the image. 
They map the areas with low gray levels and assess their 
sizes and arrangements. The response of the tumor to 
the chemotherapy depends on these gray levels and their 
arrangements. More the variation in the texture and gray 
level of the tumor, the more aggressive would be the tumor.

GLRLM matrix

The GLRLM matrix is a second‑order parameter. It 
quantifies gray level runs, which are defined as the length 
in number of pixels, of consecutive pixels that have the 
same gray level value. These are the regional heterogeneity 
parameters. In our study, four parameters from the GLRLM 
matrix were significant in predicting the response in 
carcinoma esophagus patients posttreatment. They were 
GLRLM_LRE, GLRLM_LGRE, GLRLM_SRLGE, 
GLRLM_LRLGE. AUC value was more than 0.7 for these 
parameters.

GLRLM_LRE: Is a measure of the distribution of long 
run lengths, with a greater value indicative of longer run 
lengths and more coarse structural textures.

GLRLM_LGRE: Measures the distribution of lower 
gray‑level size runs, with a higher value indicating a 
greater proportion of lower gray‑level values and size, runs 
in the image.

GLRLM_SRLGE: Measures the joint distribution of shorter 
run lengths with lower gray‑level values.

GLRLM_LRLGE: Measures the distribution of low 
gray‑level values, with a higher value indicating a greater 
concentration of low gray‑level values in the image.

Similar to the GLZLM matrix, the parameters from the 
GLRLM matrix quantify the heterogeneity of the tumor. 
More the heterogeneity, the more aggressive will be the 
tumor.

Higher‑order parameters

Higher‑order parameters provide information about spatial 
interrelationships and frequency distributions of the gray 
levels.

Gray level co‑occurrence matrix

The GLCM takes into account the arrangements of pairs of 
voxels to calculate textural indices [Figure 4].

GLCM_Contrast is a measure of the local intensity 
variation. A  larger value correlates with a greater disparity 
in intensity values among neighboring voxels.

GLCM_Correlation is a value between 0 (uncorrelated) and 
1  (perfectly correlated) showing the linear dependency of 
gray level values to their respective voxels in the GLCM.

GLCM_Homogeneity is the homogeneity of gray level 
voxel pairs.

Among the higher‑order parameters, GLCM homogeneity 
was significant in predicting the tumor response. The AUC 
value for GLCM homogeneity is 0.72. It represents the 
homogeneity of the tumor.

NGLDM matrix

The NGLDM matrix quantifies the difference between 
a gray value and the average gray value of its 
neighbors [Figure 5].

NGLDM_Coarseness is a measure of the average difference 
between the center voxel and its neighborhood and is an 
indication of the spatial rate of change. A  higher value 
indicates a lower spatial change rate and a locally more 
uniform texture.

NGLDM_Contrast is a measure of the spatial intensity 
change but is also dependent on the overall gray level 
dynamic range. Contrast is high when both the dynamic 
range and the spatial change rate are high, i.e., an image 

Figure  3: ROC curves of textural parameters of GLRLM matrix. ROC: 
Receiver operating characteristic

Figure 4: ROC curves of textural parameters of GLCM matrix. ROC: Receiver 
operating characteristic. GLCM: Gray level co‑occurrence matrix
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with a large range of gray levels, with large changes 
between voxels and their neighborhood.

NGLDM_Busyness is a measure of the change from a 
pixel to its neighbor. A  high value for busyness indicates 
a “busy” image, with rapid changes of intensity between 
pixels and their neighborhood.

In this study, NGLDM_Busyness is significant in predicting 
the response. The AUC value calculated for NGLDM_
Busyness is 0.75. The cutoff was calculated to be 0.309.

Conclusions
In our study, the value of textual feature analysis was 
explored in the pretreatment FDG PET scans for predicting 
response to combined chemoradiotherapy. Global tumor 
metabolic features based on the intensity histogram were 
computed directly on the original image. Three orders of 
features were derived from the textual analysis: First order, 
second order, and higher order.

These features evaluated in this study highlighted tumor 
heterogeneity at a local and regional level characterized in 
several ways depending on the type of matrix used and the 
kind of feature computed on the matrix.

A single feature cannot be directly linked to a specific 
biological process. One could assume that a combination 
of textual parameters may be closely related to underlying 
physiological processes such as vascularization, perfusion, 
tumor aggressiveness, or hypoxia.[30,31] Therefore, textural 
features could be correlated to physiological processes 
related to response to combined radiochemotherapy.

For example, one could reasonably expect that the tumor 
exhibiting heterogeneous verses with a homogeneous 
FDG uptake may respond less favorably to a uniformly 
distributed radiotherapy dose. We could also hypothesize 
that underlying neoangiogenesis contributes to tumor 

FDG uptake heterogeneity. It is now widely accepted 
that neoangiogenesis is associated with the reduced 
effectiveness of conventional chemotherapy. However, the 
exact relationship between the proposed image‑derived 
indices and the underlying tumor biology can be established 
only on carefully designed prospective studies.

Limitations

The limitation of the present study is that it is retrospective, 
considering a relatively small patient cohort. Therefore, 
the potential of new image‑derived indices characterizing 
tumor FDG distribution for the prediction of response to 
therapy studies in this work needs to be validated by a 
prospective study on a larger patient cohort.

Key points question

Is there a role of textural and radiomic parameters derived 
from baseline 18F‑FDG PET/CT in response prediction in 
esophageal carcinoma patients?

Pertinent findings

A retrospective observational study of 30 primary carcinoma 
esophagus followed up postchemoradiotherapy and were 
divided into progression group and nonprogression group. 
Ten textural analysis parameters turned out to be significant 
in the prediction of disease progression.

Implications for patient care

Textural analysis parameters could provide prognostic 
information in carcinoma esophagus patients.
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