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Phenethyl isothiocyanate (PEITC), extracted from cruciferous vegetables, showed anticancer activity in many human cancer cells.
Our previous studies disclosed the anticancer activity of PEITC in human glioblastoma multiforme (GBM) 8401 cells, including
suppressing the cell proliferation, inducing apoptotic cell death, and suppressing cell migration and invasion. Furthermore, PEITC
also inhibited the growth of xenograft tumors of human glioblastoma cells. We are the first to investigate PEITC effects on the
receptor tyrosine kinase (RTK) signaling pathway and the effects of proinflammatory cytokines on glioblastoma. The cell
viability was analyzed by flow cytometric assay. The protein levels and mRNA expressions of cytokines, including tumor
necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), were determined by enzyme-linked
immunosorbent assay (ELISA) reader and real-time polymerase chain reaction (PCR) analysis, respectively. Furthermore,
nuclear factor-kappa B- (NF-κB-) associated proteins were evaluated by western blotting. NF-κB expression and nuclear
translocation were confirmed by confocal laser microscopy. NF-κB binding to the DNA was examined by electrophoretic
mobility shift assay (EMSA). Our results indicated that PEITC decreased the cell viability and inhibited the protein levels and
expressions of IL-1β, IL-6, and TNF-α genes at the transcriptional level in GBM 8401 cells. PEITC inhibited the binding of
NF-κB on promoter site of DNA in GBM 8401 cells. PEITC also altered the protein expressions of protein kinase B (Akt),
extracellular signal-regulated kinase (ERK), and NF-κB signaling pathways. The inflammatory responses in human
glioblastoma cells may be suppressed by PEITC through the phosphoinositide 3-kinase (PI3K)/Akt/NF-κB signaling pathway.
Thus, PEITC may have the potential to be an anti-inflammatory agent for human glioblastoma in the future.
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1. Introduction

The incidence rate of glioblastoma multiforme (GBM) was
2.9 times in the USA (2.48 per 100,000) and as many as that
in Taiwan (0.85 per 100,000) [1]. Patients with GBM had the
lowest survival rate in the histology of primary malignant
brain and CNS tumors: the one-year survival rate was
37.5% in the USA and 50.3% in Taiwan, respectively.
According to a hospital-based study from the National Can-
cer Database in the USA, even GBM patients treated at an
academic medical center and the high-volume facility had
the median overall survival of 13.3 months [2]. Current mul-
timodality treatments cannot control this most common and
aggressive primary brain malignancy well.

The complex pathogenesis in GBM involves receptor
tyrosine kinase (RTK) signaling through two main down-
stream signaling pathways, Ras/mitogen-activated protein
kinase (MAPK)/extracellular signal-regulated kinase (ERK)
and Ras/phosphoinositide 3-kinase (PI3K)/protein kinase B
(Akt) [3]. Besides, inhibition of the ERK/NF-κB signaling
pathway can block GBM progression [4]. Cytokines includ-
ing tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-
1β), pathogen-associated molecular patterns, ultraviolet and
ionizing radiation, reactive oxygen species, growth factors,
DNA damage, and oncogenic stress can trigger NF-κB acti-
vation pathways [5]. TNF-α is a proinflammatory cytokine
with pleiotropy and biological effects [6]. However, the Akt
pathway triggers critical immune and inflammatory
responses in human embryonic kidney 293 cells [7]. It acti-
vates NF-κB by tumor necrosis factor (TNF). High levels of
inflammatory cytokines such as IL-1β, IL-6, and IL-8
enhance cell proliferation, invasion, stemness, and angiogen-
esis [8]. Furthermore, the elevated inflammatory cytokine
IL-6 can raise tumor progression and invasion in GBM,
and high levels of IL-1β also activate GBM cells and promote
IL-6 production [9].

Phenethyl isothiocyanate (PEITC), a component
extracted from cruciferous vegetables, exhibits chemopre-
ventive activity in diverse tumors. It has been investigated
in small human clinical trials against various diseases from
cancer to autism [10]. PEITC targets proteins that inhibit
different cancer-promoting mechanisms, including cell pro-
liferation, progression, and metastasis [11]. Our previous
studies disclosed the in vitro effects of PEITC on human
GBM 8401 cells, including the apoptosis induction [12],
the reduction of migration and invasion through the inhibi-
tion of uPA, Rho A, and Ras, as well as the inhibition of
matrix metalloproteinase gene expression [13], and the
changes of the gene expressions and the levels of cell cycle
regulation-associated proteins [14]. Furthermore, we also
revealed that PEITC suppressed the in vivo growth of xeno-
graft tumors of human GBM cells [15]. Literature reported
that the pretreatment of PEITC promoted the sensitivity of
temozolomide- (TMZ-) resistant glioblastoma cell lines
and toward TMZ to inhibit the expression of O6-methyl-
guanine-DNA methyltransferase (MGMT) through sup-
pressing NF-κB activity to reverse the chemoresistance [16].

No reports reveal PEITC effects on RTK signaling path-
ways and immune-inflammatory responses of GBM in the

available literature. In the present study, we first investigated
the regulations among ERK, Akt-dependent pathways, NF-
κB activity, and cytokine levels in GBM 8401 cells after
PEITC treatment in vitro.

2. Materials and Methods

2.1. Chemicals and Reagents. PEITC, Tris-HCl, trypan blue,
propidium iodide (PI), and dimethyl sulfoxide (DMSO)
were obtained from Sigma Chemical Co. (St. Louis, MO,
USA). RPMI-1640, fetal bovine serum (FBS), L-glutamine,
penicillin-streptomycin, and trypsin-EDTA were purchased
from Gibco BRL/Invitrogen (Carlsbad, CA, USA). IL-1β
(ab214025), IL-6 (ab178013), and TNF-α (ab181421) were
purchased from Abcam (Cambridgeshire, UK). Primary
antibodies and secondary antibodies were obtained from
Cell Signaling Technology (St. Louis, MO, USA). Polyvinyli-
dene difluoride (PVDF) membrane was obtained fromMilli-
pore (Temecula, CA, USA). PEITC was dissolved in DMSO.

2.2. Cell Culture. Human brain glioblastoma multiforme
(GBM) 8401 cell line was purchased from the Food Industry
Research and Development Institute (Hsinchu, Taiwan).
Cells were cultured in RPMI-1640 medium supplemented
with 10% FBS, 2mM L-glutamine, and 1% antibiotics (100
units/ml penicillin and 100μg/ml streptomycin), grown at
37°C under a humidified 5% CO2 and 95% air at one atmo-
sphere. The medium was changed every two days [17].

2.3. Cell Morphological Observation and Cell Viability
Measurement. GBM 8401 cells at a density of 1 × 105 cells/
well were plated in 12-well plates and were treated with
PEITC at the final concentrations (0, 4, 8, and 12μM) for
48 h. Cells from each well were monitored for morphological
examination, and representative photographs were taken at
×200 magnification under an inverted microscope. To deter-
mine cell viability, cells from the individual well were trypsi-
nized and collected by centrifuging at 1500 rpm for 5min,
washed twice with PBS, and added PI solution (5μg/ml).
Nonviable cells were stained with PI dye and displayed
brighter fluorescence than the viable cells by flow cytometric
analysis (FACSCalibur, Becton-Dickinson; San Jose, CA,
USA) [18].

2.4. IL-1β, IL-6, and TNF-α Determination by Enzyme-
Linked Immunosorbent Assay (ELISA) Reader. The GBM
8401 cells (2:5 × 105 cells) in RPMI-1640 medium contain-
ing 10% fetal bovine serum (FBS), 2mM L-glutamine, 100
units/ml penicillin, and 100μg/ml streptomycin with various
concentrations of PEITC (0, 4, 8, and 12μM) were placed
onto a 24-well culture plate for 48h. At the end of incuba-
tion, cells were centrifuged and medium was collected for
ELISA. In brief, 50μl of medium was added to 50μl of the
antibody cocktail and was incubated for 1 hour at room tem-
perature. Each well was washed with 1x wash buffer, and
100μl of development solution was added to each well and
incubated for 10 minutes in the dark. 100μl of stop solution
was added to well for ELISA Reader, set the OD at 450nm as
described previously [19].

2 Oxidative Medicine and Cellular Longevity



2.5. Real-Time Polymerase Chain Reaction (RT-PCR). GBM
8401 cells (2:4 × 106 cells/dish) were plated to 10 cm dishes
overnight and then exposed to 0 and 8μM of PEITC for
24 h. Cells from the individual sample were collected, and
the total RNA was isolated using the Qiagen RNeasy Mini
Kit (Qiagen, Inc., Valencia, CA, USA) as described previ-
ously [20–22]. RNA samples were reverse-transcribed to
cDNA at 42°C for 30min using the High-Capacity cDNA
Reverse Transcription Kit. A defined amount of cDNA was
mixed with the Master Mix containing SYBR Green and
200nM of primers shown in Table 1. Then, quantitative
PCR was performed by 50°C for 2min, 95°C for 10min,
and 40 cycles of 95°C for 15 sec and 60°C for 1min using
the Applied Biosystems 7300 Real-Time PCR System in trip-
licate. The fold change of gene expression was determined
using the comparative 2-ΔΔCT method based on comparing
with the level of GAPDH.

2.6. Western Blotting Assay. GBM 8401 cells (1 × 106 cells/
dish) were plated in 10 cm dishes and treated with 0 and
8μM of PEITC for 0, 6, 24, and 48 h. After treatment, cells
were collected and lysed in lysate buffer composed of
40mM Tris-HCl (pH 7.4), 10mM EDTA, 120mM NaCl,
1mM dithiothreitol, and 0.1% Nonide P-40. The protein
concentration of each treatment was determined by using
the Bio-Rad protein assay kit. Defined amounts (30μg) of
proteins from individual samples were separated on 10%
sodium dodecyl sulfate-polyacrylamide electrophoretic gels
(SDS-PAGE) and then electrotransferred to PVDF mem-
branes (Millipore, Temecula, CA, USA). The resultant blot
was soaked in blocking buffer, 2.5% FBS in TBST (Tris-buff-
ered saline containing Tween-20) for 1 h at room tempera-
ture. Then, the blots were probed with the primary
antibodies for t-ERK1/2, p-ERK1/2Thr202/Tyr204, PI3K, p-
Akt1/PKBαThr308, p-Akt1/PKBαSer473, Akt, p-p65Ser276, p-
p65Ser529, p65, p-IKKα/βThr23, IKKα/β, p-IκBαSer32/Ser36,
and β-actin (Cell Signaling Technology; Beverly, MA,
USA) in blocking buffer at 4°C overnight. Immunoreactive
proteins were reacted with horseradish peroxidase- (HRP-)
conjugated secondary antibodies (Cell Signaling Technol-
ogy; Beverly, MA, USA) and detected by chemilumines-
cence. The relative protein expression from each treatment
was assessed by ImageJ software as described previously [23].

2.7. Observations of Confocal Laser Scanning Microscopy.
GBM 8401 cells at a density of 1 × 105 cells/well were main-
tained on 18mm coverslips and then treated with PEITC (0
and 8μM) for 24h. At the end of treatment, cells were fixed
with 4% paraformaldehyde in PBS and permeabilized using
0.2% Triton-X 100 in PBS for 15min. Subsequently, cells
were washed with PBS and probed with an anti-p65 anti-
body (Novus Biologicals; Centennial, CO, USA) and then
reacted with secondary antibodies conjugated with FITC
(green fluorescence), and their nucleus was stained by PI
(red fluorescence). All samples were observed and photo-
graphed under a Leica TCS SP8 Confocal Spectral Micro-
scope, as described previously [24].

2.8. Electrophoretic Mobility Shift Assay (EMSA). GBM 8401
cells (5 × 105 cells/dish) were plated into 10 cm dishes, and
were incubated with 0, 4, 8, and 12μM of PEITC for 24 h.
Cells were harvested for nuclear extracts by using the NE-
PER Nuclear and Cytoplasmic Extraction Kit (Pierce, Rock-
ford, Illinois, USA), and the protein concentrations for
EMSA were determined with a LightShift Chemiluminescent
EMSA Kit (Pierce) as described previously [22].

2.9. Statistical Analysis. All data were represented with the
mean ± standard error from at least three independent
experiments. One-way analysis of variance (ANOVA) with
Newman-Keuls multicomparison test was used for the com-
parison between PEITC-treated and control groups. The dif-
ference between PEITC-treated and control was considered
significant if p < 0:05.

3. Results

3.1. PEITC Decreased the Cell Viability of GBM 8401 Cells.
GBM 8401 cells were treated with PEITC at different con-
centrations (0, 4, 8, and 12μM) for 48 h before the cells were
analyzed. The cell morphology was monitored, and the cyto-
toxicity of PEITC treatment was determined. PEITC
induced morphological alternations of GBM 8401 cells
based on cells that became smaller in size, shrinking, mem-
brane blebbing, and floated on medium (Figure 1(a)). The
total percentages of viable cells were analyzed by PI exclu-
sion assay using flow cytometric assay, and results showed
that PEITC diminished the number of viable GBM 8401
cells dose dependently (Figure 1(b)). After being exposed
to more than 4μM of PEITC, the total viable cells were sig-
nificantly reduced in GBM 8401 cells. PEITC at 8μM
reduced cell viability to 52.4% in GBM 8401 cells, and more
than 90% reduction of cells exposed to 12μM of PEITC was
observed after 48 h treatment. Thus, 8μM of PEITC was
selected for subsequent experiments.

3.2. PEITC Inhibited the Levels and mRNA Transcription of
IL-1β, IL-6, and TNF-α Genes in GBM 8401 Cells. The effects
of PEITC on the levels (proteins) and mRNA transcription
of cytokine genes, including IL-1β, IL-6, and TNF-α, were

Table 1: Primer sequences used for real-time PCR.

Primer name Primer sequence

TNF-α F 5′-ATTGCCCTGT GAGGAGGAC-3′
R 5′-TGAGCCAGAAGAGGTTG AGG-3′

IL-1β F 5′-GGA TATGGAGCAACAAGTGG-3′
R 5′-ATGTACCAG TTGGGGAACTG-3′

IL-6 F 5′-CTTCGGTCCAGTTGCCTTCT-3′
R 5′-GTGAGTGGCTGTCTGTGTGG-3′

GAPDH F 5′-TGCACCACCAACTGCTTAGC-3′
R 5′-GGCAT GGACTGTGGTCATGAG-3′

Abbreviations: GAPDH: glyceraldehyde-3-phosphate dehydrogenase; F:
forward primers; R: reverse primers.
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investigated by ELISA reader and real-time PCR analysis,
respectively (Figures 2(a) and 2(b)). The levels (proteins)
of IL-1β, IL-6, and TNF-α on GBM 8401 cells were of signif-
icant inhibition, and these effects were dose dependent
(Figure 2(a)). Moreover, the mRNA expressions of IL-1β,
IL-6, and TNF-α were indeed reduced 70%, 79.1%, and
84.5%, respectively, when GBM 8401 cells were exposed to
8μM of PEITC for 24 h (∗∗∗p < 0:001) compared to the con-
trol group (Figure 2(b)). Our data suggested that PEITC
might regulate the expressions of IL-1β, IL-6, and TNF-α
at the transcriptional level in GBM 8401 cells.

3.3. PEITC Altered Akt- and ERK-Associated Protein
Expression in GBM 8401 Cells. MAPK and Akt signaling
pathways involved in the secretion of TNF-α cytokine in
GBM 8401 cells were investigated in this study. By western
blotting analysis, PEITC at 8μM decreased the protein levels
of p-ERK1/2Thr202/Tyr204 at 24 and 48h treatment time
dependently but did not change the protein levels of t-
ERK1/2 significantly at 6, 24, and 48 h treatment
(Figure 3(a)). Moreover, PEITC at 8μM reduced the protein
levels of PI3K, p-Akt1/PKBαThr308, p-Akt1/PKBαSer473, and
Akt at 6, 24, and 48h treatment in a time-dependent man-
ner, respectively (Figure 3(b)). We also investigated the
effects of PI3K inhibitor (LY 294002) pretreatment on
GBM 8401 cells, and then, GBM 8401 cells were treated with
PEITC for 48 h. Cells were harvested for western blotting for
the expressions of PI3K, p-Akt1/PKBαThr308, and p-p65Ser276

in GBM 8401 cells (Figure 3(b)). Both cotreatments of
PEITC and LY 94002 resulted in lower PI3K and PKBαThr308

in GBM 8401 cells; however, there is no significant change in
the levels of p-p65Ser276.

3.4. PEITC Altered NF-κB Signaling Pathway-Associated
Protein Levels, NF-κB Translocation, and NF-κB Activity in
GBM 8401 Cells. The effects of PEITC on the TNF-α cyto-
kine secretion were investigated for the involvement of the
NF-κB signaling pathway. By western blotting analysis,
PEITC at 8μM decreased the protein levels of NF-κB (p-
p65Ser276) at 6, 24, and 48h treatment and NF-κB (p-
p65Ser529) at 48 h (Figure 4(a)). PEITC at 8μM decreased
the protein levels of NF-κB (p65) at 24 and 48 h treatment
in a time-dependent manner (Figure 4(a)). PEITC also
reduced the protein levels of p-IKKα/βThr23, IKKα/β, and
p-IκBαSer32/Ser36 by western blotting analysis in time-
dependent manners (Figure 4(b)). Furthermore, PEITC at
8μM abated the expression and nuclear translocation of
NF-κB (p65) in GBM 8401 cells at 24 h, which were observed
by confocal laser scanning microscopy (Figure 5).

3.5. PEITC Decreased the Binding of NF-κB p65 on DNA in
GBM 8401 Cells. In order to further confirm the effects of
PEITC on NF-κB p65 binding on DNA in GBM 8401 cells,
cells were incubated with various concentrations of PEITC
(0, 4, 8, and 12μM) for 24 h and were collected and further
assayed by using EMSA and results are shown in Figure 6.
Results from Figure 6 show that NF-κB p65 binding on
nuclear DNA was decreased at 25% and 58% at 8 and
12μM of PEITC treatment, respectively.
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Figure 1: PEITC induced cell morphological changes and decreased the viable cell number of GBM 8401 cells. (a) Cells were treated with
defined concentrations (0, 4, 8, and 12μM) of PEITC for 48 h, and cell morphological alternations were monitored under a phase-contrast
microscope at ×200 as described in Materials and Methods. (b) Cells were harvested to determine the viable cell number by flow cytometric
assay. The values presented are the mean ± SD (n = 3) from three independent experiments. ∗∗∗p < 0:001, significant difference compared
for PEITC-treated and vehicle control cells. C: control.

4 Oxidative Medicine and Cellular Longevity



4. Discussion

PEITC prevents the initiation of carcinogenesis and sup-
presses the progression of tumorigenesis [11]. The anticancer
effects of PEITC on cell proliferation, apoptosis, angiogenesis,
metastasis, autophagy, inflammation, and immunomodula-

tion in different cancer models have been reported. PEITC
reduced the cell viability of GBM 8401 cells in our previous
experiments, including the studies of apoptosis, migration,
and invasion [12, 13]. In the present study, PEITC changed
the morphology of GBM 8401 cells (Figure 1(a)). PEITC
reduced cell viability of GBM 8401 cells after 48h treatment
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Figure 2: PEITC inhibited the mRNA levels of cytokines in GBM 8401 cells. Cells were placed in 12-well plates and treated with 0, 4, 8, and
12μM of PEITC for 24 h. Samples were assayed for the proteins levels of IL-1β, IL-6, and TNF-α by ELISA (a). Or cells were treated with 0
and 8 μM of PEITC for 24 h. Individual RNA samples were isolated and then reverse-transcribed to obtain cDNA for real-time PCR as
described in Materials and Methods. The expression of IL-1β, IL-6, and TNF-α genes was normalized by comparing them with that of
GAPDH (b). Data represent the mean ± SD of three experiments. ∗∗p < 0:01 and ∗∗∗p < 0:001, significantly different between the PEITC-
treated and control groups.
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Figure 3: PEITC affected Akt- and ERK-associated proteins in GBM 8401 cells. (a) Cells were exposed to 0 and 8 μM of PEITC for 0, 6, 24,
and 48 h and then harvested to measure the levels of Akt- and ERK-associated proteins, including t-ERK1/2, p-ERK1/2Thr202/Tyr204, PI3K, p-
Akt1/PKBαThr308, p-Akt1/PKBαSer473, and Akt in GBM 8401 cells or (b) cells were pretreated with PI3K inhibitor (LY 294002) and were
collected for western blotting assay as described in Materials and Methods.
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in a dose-dependent manner (Figure 1(b)), and the viability
was decreased to 52.4% at 8μM of PEITC treatment.

It is well documented that cytokines such as IL-1β, IL-6,
and TNF-α were involved in inflammatory responses after
host was exposed to environmental antigen. However, the
excessive release of those inflammatory mediators may result
in chronic inflammatory diseases if they are out of control.
Thus, IL-1β or IL-6, TNF-α may be a target to control the
inflammatory responses. Moreover, IL-1β and/or TNF-α
have been shown to induce the expression of IL-6 in various
tissues and cell types [25–29].

Therefore, we investigated whether or not PEITC
affected the levels (protein) of IL-1β, IL-6, and TNF-α in
GBM 8401 cells after treatment with or without PEITC at
0, 4, 8, and 12μM for 24h and were assayed by an ELISA
reader. The results (Figure 2(a)) indicated that PEITC at 8
and 12μM significantly inhibited the levels of IL-1β, IL-6,
and TNF-α and higher concentrations of PEITC lead to
higher inhibitions. The gene expression of IL-1β, IL-6, and
TNF-α was inhibited by PEITC in a similar trend in GBM
8401 cells (Figure 2(b)).

RTK signaling regulates cell proliferation, survival,
metastasis, and angiogenesis in GBM cells through the Ras/
MAPK/ERK and Ras/PI3K/AKT pathway, two main down-
stream of RTK [3]. PEITC plays multiple biological func-
tions in human cancer cells. PEITC inhibited the invasion
and migration of human colon cancer HT29 cells by
decreasing SOS-1, PKC, ERK1/2, and Rho A which led to
the reduction of MMP-2 and MMP-9. PEITC also interfered
with the expressions of Ras, FAK, and PI3K and suppressed
GRB2, NF-κB, iNOS, and COX-2, which resulted in inhibit-
ing cell proliferation in HT29 cells [30]. In the human leuke-
mia xenograft animal model, PEITC induced tumor cell
apoptosis and reduced tumor growth via downregulations
of AKT, JNK, and Mcl-1 [31]. PEITC repressed protein
and gene expressions concerning Toll-like receptor 3-
(TLR3-) mediated IFN regulatory factor 3 (IRF3) signaling
pathway in vitro and in vivo [32]. TLR3 upon dsRNA bind-
ing involves its specific adaptor Toll/IL-1R domain-
containing adapter protein inducing IFN-β to enhance the
signal resulting in NF-κB- or IRF3-mediated upregulation
of proinflammatory and cytokine genes. PEITC also
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Figure 4: PEITC affected NF-κB-associated proteins in GBM 8401 cells. Cells were exposed to 0 and 8 μM of PEITC for 0, 6, 24, and 48 h
and then harvested to determine the levels of proteins related to NF-κB-associated signaling pathways in GBM 8401 cells by western blotting
assay as described in Materials and Methods: (a) p-p65Ser276, p-p65Ser529, and p65; (b) p-IKKα/βThr23, IKKα/β, and p-IκBαSer32/Ser36.
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Figure 5: PEITC affected NF-κB expression and nuclear translocation in GBM 8401 cells. Cells were treated with 0 and 8μM of PEITC for
24 h, and then, the expression and nuclear translocation of NF-κB (p65) in GBM 8401 cells were observed by confocal laser scanning
microscopy as described in Materials and Methods.

6 Oxidative Medicine and Cellular Longevity



diminished the phosphorylation of epidermal growth factor
receptor (EGFR), PI3K (p85), 3-phosphoinositide-
dependent protein kinase 1 (PDK1), Akt, phosphorylated
IKK, and IκB to inactivate NF-κB in human oral squamous
carcinoma cells (SAS cells) [33]. Besides, PEITC launches
the MAPK signaling pathway through the elevated expres-
sion of phosphorylated p38, JNK, and ERK. In our study,
PEITC decreased the protein levels of p-ERK1/2Thr202/
Tyr204, PI3K, p-Akt1/PKBαThr308, p-Akt1/PKBαSer473, and
Akt in time-dependent manners (Figure 3(a)). Both cotreat-
ments of PEITC and LY 94002 decreased PI3K and p-Akt/
PKBαThr308 in GBM 8401 cells (Figure 3(b)). PEITC changed
the levels of Akt- and ERK-associated proteins in GBM 8401
cells and may modulate several critical cellular pathways
involving cell proliferation, survival, migration, and
angiogenesis.

NF-κB is involved in the early phases of the cell cycle and
regulates cell growth, differentiation, immune, and inflamma-
tory responses [34]. Activation of NF-κB enhances the initia-
tion and progression of tumors through the mechanism of
angiogenesis, metastasis, and reprogramming of metabolism
[5]. A heterodimer of the p50 and p65 subunits is the most
widely studied form of NF-κB. NF-κB in the cytoplasm is
bound in an inactive complex with IκB, a natural biological
inhibitor of NF-κB, in most cells [35]. IκBα, IκBβ, p105/IκBγ
(precursor of p50), p100 (precursor of p52), and IκBε belong
to the IκB family [36]. IkB kinase complex results in the phos-
phorylation of IκBα at serines 32 and 36 or IκBβ at serines 19
and 23 [37]. The phosphorylation of IκBα and IκBβ targeted
IκB for ubiquitin-dependent degradation through the 26S pro-
teasome complex and resulted in the release and nuclear trans-
location of NF-κB [38]. NF-κB is highly active in glioblastoma,

promoting cell aggressiveness [39] and inflammatory niche
[40]. NF-κB activity was also associated with shorter survival
in glioma patients [41]. Targeting the NF-κB-FAT1 axis might
inhibit the important tumor-promoting pathway in glioblas-
toma because FAT1 andNF-κB independently enhance protu-
morigenic inflammation and upregulate the expression of
HIF-1α/EMT/stemness in tumors [42]. PEITC revoked recep-
tor activator of NF-κB ligand- (RANKL-) induced degradation
of IκB-α, a suppressive partner of NF-κB in RAW264.7macro-
phages, and prohibited the activation of ERK1/2 and p38
MAPK from decreasing RANKL-induced osteoclastogene-
sis [43].

The NF-κB signaling pathway plays a critical role in anti-
cancer mechanism. Cellular migration and invasion, which
were induced by DLL4, could be inhibited by either β-catenin
or a p50 inhibitor in glioblastoma U87MG and U251 cells
[44]. The migration and invasion of glioma cells are synergis-
tically promoted by Notch activation-stimulated β-catenin
and NF-κB signaling pathways. The suppression of NF-κB
binding activity may implicate in the inhibition of MMP in
GBM 8401 cells, and several critical metastasis-related pro-
teins, such as p-EGFRTyr1068, SOS-1, GRB2, Ras, p-AKTSer473

and p-AKTThr308, NF-κB-p65, Snail, E-cadherin, N-cadherin,
NF-κB, MMP-2, and MMP-9, were decreased by tetrandrine
from our previous study [45]. In this study, PEITC reduced
the protein levels of p-ERK1/2Thr202/Tyr204, PI3K, p-Akt1/
PKBαThr308, p-Akt1/PKBαSer473, and Akt in time-dependent
manners by western blotting analysis (Figure 3(a)). PEITC at
8μM decreased the levels of NF-κB (p-p65Ser276, p-p65Ser529,
and p65) in a time-dependent manner by western blotting
analysis (Figure 4(a)). PEITC diminished the levels of p-
IKKα/βThr23, IKKα/β, and p-IκBαSer32/Ser36 after 6, 24, and
48h treatment (Figure 4(b)). PEITC at 8μM also abated the
expression and nuclear translocation of NF-κB (p65) in
GBM 8401 cells at 48h by confocal laser scanning microscopy
(Figure 5). These results indicated that PEITC affected the NF-
κB signaling pathway and may affect the aggressiveness of
glioblastoma and the inflammatory microenvironment. In
our previous study, demethoxycurcumin inhibited the motil-
ity, migration, and invasion of GBM 8401 cells via inhibition
of PI3K/Akt and NF-κB signaling pathways [46]. PEITC
reduced migration and invasion through the inhibition of
uPA, Rho A, and Ras with inhibition of matrix metallopro-
teinase gene expression in GBM 8401 cells [13]. Taken
together, PEITCmay also suppress themigration and invasion
of GBM 8401 cells through Akt, ERK, and NF-κB signaling
pathways.

Furthermore, PEITC reversed the TMZ resistance of
glioblastoma cells (U373-R, U87-R, and T98G cells) by sup-
pressing MGMT via inhibiting the NF-κB activity [16]. Inhi-
bition of the NF-κB activity increased the sensitivity of
glioblastoma cells to alkylating agents such as TMZ in
patients with acquired or induced chemoresistance. PEITC
also inhibited cell growth in the U373-R grafted xenograft
mouse model. In our study in A375.S2 human melanoma
cancer cells in vitro, PEITC suppressed cell migration and
invasion by affecting the MAPK signaling pathway [47]. p-
AKTSer473 levels were increased by PEITC at 1-2.5μM at
24 h, but decreased at 48h treatment. PEITC at 2.5μM

PEITC
0 4 8 12 (𝜇M)

NF-𝜅B

(24 h)

Figure 6: PEITC decreased the binding of NF-κB p65 on DNA in
GBM 8401 cells. GBM 8401 cells (5 × 105 cells) were treated with 0,
4, 8, and 12μM of PEITC for 24 h. Cells were harvested for nuclear
extracts, and the protein concentrations for EMSA were
determined with a LightShift Chemiluminescent EMSA Kit
(Pierce) as described in Materials and Methods.
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decreased NF-κB binding of p65 to DNA in A375.S2 cells,
but at 1-2μM, it increased the binding. In the present study,
PEITC at 8μM decreased the protein levels of PI3K, p-Akt1/
PKBαThr308, p-Akt1/PKBαSer473, and Akt at 6, 24, and 48 h
treatment in a time-dependent manner in GBM 8401 cells,
respectively (Figure 3(a)). PEITC at 8μM decreased the pro-
tein levels of NF-κB (p-p65Ser276) at 6, 24, and 48 h treatment
in a time-dependent manner, and NF-κB (p-p65Ser529) at
48 h treatment, respectively (Figure 4(a)). PEITC at 8μM
decreased the protein levels of NF-κB (p65) at 24 and 48 h
treatment in a time-dependent manner (Figure 4(a)). PEITC
may have different effects on MAPK and NF-κB signaling
pathways in the same cancer cells at different concentrations
and treatment timing. Furthermore, results from EMSA
indicated that PEITC at 4 and 8μM significantly inhibited
the binding of NF-κB p65 on DNA in GBM 8401 cells
(Figure 6). Therefore, further studies of the directions of
these signaling pathways in glioblastoma cells at different
concentrations and treatment timing of PEITC are needed.

IL-1β, a major proinflammatory cytokine, launches var-
ious malignant processes by activating different cells to
increase key molecules driving oncogenic events [8]. A high
level of IL-1β was observed in glioblastoma cells (CCF3 and
U87MG cells) [48] and human glioblastoma specimens [49].

The binding of IL-1β and the IL-1R leads to activating NF-
κB and MAPK signaling pathways and cooperatively induces
the expression of target genes cooperatively [50]. IL-1β-
dependent activation of NF-κB, p38 MAPK, and JNKs path-
ways, however, increases VEGF and sphingosine kinase 1,
subsequently enhancing migration, invasion, and angiogene-
sis, respectively [8, 51]. GBM cells regain self-renewal capac-
ity after exposure to IL-1β [52]. Furthermore, IL-1β and
TGF-β cooperated to elicit upregulation of stemness factor
genes and augmented invasiveness and drug resistance, lead-
ing to tumor growth in vivo [53]. Therefore, targeting the
production and activity of IL-1β might control the progres-
sion of glioblastoma.

The level of IL-6 mRNA was stabilized, and IL-6 biosyn-
thesis was increased by the activation of several signaling
pathways by proinflammatory cytokines IL-1β or TNF-α
[54]. IL-6-mediated STAT3 activation enhanced cell migra-
tion and invasion in glioblastoma cells (U251, T98G, and
U87MG) [55]. TNF and the associated receptor superfamily
are important to the development of glioblastoma, and
upregulation of TNF-α is influential to the progression of
glioblastoma in U373 glioma cells [56]. Targeting TNF
superfamily-related genes may be a potential therapeutic
approach for GBM [57]. In our study, PEITC inhibited the

Figure 7: The possible signaling pathways involved in suppressing proinflammatory cytokines in human glioblastoma cells by PEITC.
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transcription of IL-1β, IL-6, and TNF-α genes in GBM 8401
cells (Figure 2(b)) and may control the progression of GBM
through targeting IL-1β or affecting IL-6 on the regulation
of signaling pathways by proinflammatory cytokines IL-1β
or TNF-α. The detailed mechanism needs to be confirmed
in in vivo studies in the future.

5. Conclusions

PEITC significantly reduced the levels of proinflammatory
cytokines, such as TNF-α, IL-6, and IL-1β genes, in tran-
scriptional levels and modulated ERK- and Akt-dependent
and NF-κB signaling pathways in GBM 8401 cells. The pos-
sible signaling pathways regarding PEITC on GBM 8401
cells are summarized (Figure 7). PEITC may have anti-
inflammatory effects on GBM, which can be a basis for fur-
ther experiments to explore the immune regulation of
PEITC on glioblastoma in vivo.
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