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Abstract: Coronary artery calcification (CAC) is a feature of coronary atherosclerosis and a well-
known risk factor for cardiovascular disease (CVD). As the absence of CAC is associated with a lower
incidence rate of CVD, measurement of a CAC score is helpful for risk stratification when the risk
decision is uncertain. This was a retrospective study with an aim to build a model to predict the
presence of CAC (i.e., CAC score = 0 or not) and evaluate the discrimination and calibration power of
the model. Our data set was divided into two set (80% for training set and 20% for test set). Ten-fold
cross-validation was applied with ten times of interaction in each fold. We built prediction models
using logistic regression (LRM), classification and regression tree (CART), conditional inference tree
(CIT), and random forest (RF). A total of 3302 patients from two cohorts (Soonchunhyang University
Cheonan Hospital and Kangbuk Samsung Health Study) were enrolled. These patients’ ages were
between 40 and 75 years. All models showed acceptable accuracies (LRM, 70.71%; CART, 71.32%;
CIT, 71.32%; and RF, 71.02%). The decision tree model using CART and CIT showed a reasonable
accuracy without complexity. It could be implemented in real-world practice.

Keywords: coronary artery calcium score; prediction model; vascular calcification

1. Introduction

Coronary artery calcification (CAC), a feature of coronary atherosclerosis [1], is a
well-known risk factor for cardiovascular disease (CVD) [2]. Notably, a CAC score can
be implemented for risk stratification when a risk decision is uncertain [2]. Measuring
a CAC score may be a beneficial approach, especially for patients with atherosclerotic
cardiovascular disease (ASCVD) risk of 5–7.5% [3]. The absence of CAC is associated with
a lower incidence rate of CVD [4]. However, measuring a CAC score can be burdensome in
terms of the financial aspects of patients and insurance, although previous cost-effectiveness
analyses have revealed that CAC testing is cost-effective for asymptomatic patients [4–6].

Results of the Multi-Ethnic Study of Atherosclerosis (MESA) have shown that a CAC
score is affected by traditional risk factors, including age, male sex, white ethnicity, hyper-
tension (HTN), body mass index (BMI), diabetes mellitus (DM), smoking, and family history
of CVD [7,8]. We have shown that insulin resistance [9], lipoprotein(a) [10], hemoglobin
glycation index [11], non-alcoholic fatty liver disease (NAFLD) [12], and systemic inflam-
mation [12] are related to progression of CAC in Koreans, similar to the results of the MESA
study. Cross-sectionally, we also have shown that metabolic risk factors [13–17], age [18],
and non-alcoholic fatty liver disease [19] are associated with incident presence of CAC,
defined as a CAC score > 0.
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Given the association between traditional risk factors of CVD and CAC mentioned
above, we hypothesized that models to predict a patient’s CAC score could be built. For
example, we have previously built a model to predict a CAC score > 0 using criteria for
metabolic syndrome [16]. Based on the ability of a CAC score to guide risk management
of CVD, such a model could contribute to the re-grading of risk prediction from clinical
perspectives. Thus, the purpose of this study was to build a model to predict the presence
of coronary artery calcification and evaluate the discrimination and calibration power of
the model.

2. Materials and Methods
2.1. Study Population and Design

We merged two cohorts from Soonchunhyang University Cheonan Hospital (Cheonan,
Korea) and Kangbuk Samsung Hospital of Sungkyunkwan University (Seoul, Korea). The
cohort from Soonchunhyang University Cheonan Hospital was built for our previous study
(under review), in which we tried to show that CAC score might be associated with rapid
renal deterioration. Briefly, we collected data of patients who underwent cardiac-computed
tomography at Soonchunhyang University Cheonan Hospital, Cheonan, Korea, between
January 2010 and July 2012. Patients with baseline estimated glomerular filtration rate
(eGFR) ≥ 60 mL/min per 1.73 m2 and followed up for more than one year were enrolled.

Another cohort consisted of patients from the Kangbuk Samsung Health Study—a
health check-up program at the Health Promotion Center of Kangbuk Samsung Hospital.
Detailed methods are described in our previous reports [9,11]. In short, these studies
enrolled 2411 patients whose CAC scores were measured between January 2010 and
December 2010. They measured the CAC score for the general check-up of the coronary
artery, albeit without any symptoms. Patients did not have a history of diabetes, ischemic
stroke, or coronary artery disease. They had repeated measurements of CAC score between
January 2014 and December 2014. We used follow-up data in 2014 as CAC scores were
higher in 2014 than those in 2010. Patients with ages between 40 and 75 years were included
because the evidence and guidelines on whether to start statin therapy was robust for this
age group [2].

The study protocol was reviewed and approved by the Institutional Review Board
at each center (Soonchunhyang University Cheonan Hospital, Cheonan, Korea, SCHCA
2020-10-015; and Sungkyunkwan University Kangbuk Samsung Hospital, Seoul, Korea,
KBSMC 2020-12-008). The requirement of informed consent was waived because of its
retrospective design. This study was conducted following the principles of the Declaration
of Helsinki.

2.2. Covariates and STUDY Outcome

Variables available in both cohorts were used, including age, sex, eGFR, prior history
of HTN, DM, non-high-density lipoprotein (non-HDL) cholesterol, and BMI. As the status
of current smoking was not collected for the Cheonan cohort, we could not assess the effect
of smoking on the model. The CAC score was categorized into two groups: CAC score of 0
(negative CAC score) or not (positive CAC score group).

2.3. Statistical Analyses

All statistical analyses were performed using R software version 4.0.2 (The R Foun-
dation for Statistical Computing, Vienna, Austria). Continuous variables are expressed as
mean ± SD or median (interquartile ranges), as appropriate. Categorical data are presented
as count (percentage). Groups were compared using Student’s t-test or the Mann–Whitney
test with regard to the distribution of variables for normally distributed continuous vari-
ables, as appropriate. For categorical variables, Pearson’s chi-squared test or Fisher’s exact
test was used, as appropriate.

The data set was divided into two groups: 80% for training and 20% for test. The
training set was divided into ten folds for cross-validation. Each fold consisted of 90%
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of training data and 10% of validation data. The first model was built using the training
data from the first fold. Next, the model was validated, and its accuracy was calculated
using the validation data from the same fold. The second model was built and validated
using training and validation data of the second fold, respectively. The process continued
until a tenth model was built. This process was repeated ten times. As a result, 100 models
were built. Among these models, the model with the highest accuracy was selected.
Through these processes, we attempted to ensure the generalizability of the model and
prevent overfitting.

Logistic regression, classification and regression tree (CART) [20], conditional infer-
ence tree [21], and random forest [22] were used. As covariates, age, sex, BMI, non-HDL
cholesterol, eGFR, HTN, and DM were used. When creating logistic models, all continuous
variables were log-transformed. Interactions between age and other variables were added
to estimate coefficients. After a model construction, another model with the lowest Akaiki
information criterion (AIC) was calculated from each fold’s initial model. The regression
tree using the CART method was optimized by pruning based on standard errors. Using
the CART and conditional inference method, each regression tree model was rebuilt after
mutating continuous variables (including age, eGFR, BMI, and non-HDL cholesterol) to
categorical type, because categorical variables were more intuitive and could be more easily
used. Age was categorized based on decades. Based on a Korean guideline on non-HDL
cholesterol management targets according to risk category, non-HDL cholesterol was cat-
egorized into <100, 100–129, 130–159, 160–189, and ≥190 [23]. BMI was categorized into
<25 or ≥25 (obese) based on the WHO classification for obesity in Asians [24]. eGFR was
grouped into ≥90 or 60–89 according to the Kidney Disease: Improving Global Outcomes
(KDIGO) guideline [25].

3. Results
3.1. Characteristics of the Cohorts

Figure 1 depicts the algorithm to enroll patients in both cohorts. The cohort from
Soonchunhyang University Cheonan Hospital consisted of 4019 patients. Among them,
2661 patients were excluded as demonstrated in Figure 1. As data of the Cheonan cohort
were collected in order to show eGFR trajectories, patients without eGFR data for more
than one year were excluded. Finally, a total of 3302 patients (1358 from the Cheonan
cohort and 1944 from the Kangbuk Samsung Health Study) remained in the study.
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Baseline characteristics of the cohort are demonstrated in Table 1. All patients aged
between 40 and 75 years and had eGFR ≥ 60 mL/min per 1.73 m2. Among these patients,
1263 (29.2%) had a CAC score above 0 (positive CAC score). In the Cheonan cohort, patients
were older (61 (53–69) years vs. 46 (43–49) years) and had a higher percentage of those with
a medical history of HTN (59.1% vs. 17.6%) and DM (33.5% vs. 2.1%). They also had higher
CAC scores (9 (0–129) vs. 0 (0–1)) than those in cohort of the Kangbuk Samsung Health
Study. Because the cohort of the Kangbuk Samsung Health Study consisted of individuals
enrolled in health examination programs for workers, it showed a more male predisposition.
In addition, patients were younger and less likely to have other comorbidities (i.e., healthier
than the Cheonan cohort).

Table 1. Clinical characteristics of two cohorts enrolled for this study.

Variables Total Cohorts
(n = 3302)

Cheonan
(n = 1358)

Kangbuk Samsung
(n = 1944)

Age, year 49 (45–58) 61 (53–69) 46 (43–49)
40–49, n (%) 1708 (51.7) 196 (14.4) 1512 (77.8)
50–59, n (%) 815 (24.7) 399 (29.4) 416 (21.4)
60–69, n (%) 453 (13.7) 439 (32.3) 14 (0.7)
70–75, n (%) 326 (9.9) 324 (23.9) 2 (0.1)
Male, n (%) 2502 (75.8) 718 (52.9) 1784 (91.8)
HTN, n (%) 1145 (34.7) 803 (59.1) 342 (17.6)
DM, n (%) 495 (15.0) 455 (33.5) 40 (2.1)

eGFR, ml/min per
1.73 m2 97.9 (88.3–104.5) 98.4 (90.5–105.1) 97.5 (87.7–104.2)

≥90, n (%) 2307 (69.9) 1029 (75.8) 1278 (65.7)
60–89, n (%) 995 (30.1) 329 (24.2) 666 (34.3)
BMI, kg/m2 24.6 (22.8–26.7) 24.7 (22.7–26.9) 24.6 (22.9–26.6)

<25, n (%) 1802 (54.6) 732 (53.9) 1070 (55.0)
≥25, n (%) 1500 (45.4) 626 (46.1) 874 (45.0)

non-HDL, mg/dL 146 (120–173) 135 (109–165) 153 (129–177)
<100, n (%) 376 (11.4) 246 (18.1) 130 (6.7)

100–129, n (%) 727 (22.0) 359 (26.4) 368 (18.9)
130–159, n (%) 987 (29.9) 355 (26.1) 632 (32.5)
160–189, n (%) 747 (22.6) 240 (17.7) 507 (26.1)
≥190, n (%) 465 (14.1) 158 (11.6) 307 (15.8)
CACS, units 0 (0–26) 6 (0–129) 0 (0–1)

0, n (%) 2039 (61.8) 601 (44.3) 1438 (74.0)
1–100, n (%) 790 (23.9) 375 (27.6) 415 (21.3)
>100, n (%) 473 (14.3) 382 (28.1) 91 (4.7)

Abbreviations: HTN, hypertension; DM, diabetes mellitus; eGFR, estimated glomerular filtration rate; BMI, body
mass index; non-HDL, non-high density lipoprotein cholesterol; CACS, coronary artery calcification score.

3.2. Logistic Regression Models

Multivariable logistic regression models are presented in Table 2. The best AIC model
was calculated from a basic model that included all variables and interaction rim with
log-transformed age. In the best AIC model, interaction rims, including DM * Ln (age) and
Ln (eGFR) * Ln (age), were removed from the model. The final logistic regression estimation
equation is expressed in Figure 2. Figure 3 shows the receiver operating characteristic
(ROC) curve and calibration curve of the final logistic model. The area under the curve
(AUC) of the model was 0.765. Accuracy, sensitivity, and specificity of the logistic regression
model were 70.71%, 49.60%, and 83.78%, respectively (Table 3).
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Table 2. Results of multivariable logistic regression models.

Variables Basic Model Best AIC Model
Coefficients, β p Value Coefficients, β p Value

(Intercept) −182.013 <0.001 −161.37 <0.001
Ln (Age) 45.716 <0.001 40.465 <0.001

Male 8.516 0.011 8.252 0.013
HTN 6.302 0.011 6.622 0.007
DM 3.917 0.263 0.635 <0.001

Ln (eGFR) 3.259 0.708 −0.81 0.035
Ln (BMI) 23.992 0.008 24.307 0.007

Ln (non-HDL) 12.269 0.003 11.723 0.004
Interaction

Sex * Ln (age) −1.898 0.021 −1.833 0.025
HTN * Ln (age) −1.419 0.023 −1.498 0.015
DM * Ln (age) −0.81 0.347

Ln (eGFR) * Ln (age) −1.035 0.638
Ln (BMI) * Ln(age) −5.94 0.009 −6.018 0.008

Ln (non-HDL) * Ln (age) −3.014 0.003 −2.876 0.005

Note: Akaiki information criterion (AIC): basic model, 2638.4; Best AIC model, 2635.4. Multivariable logistic
regression models with full variables and best AIC. Continuous variables were log-transformed. To prevent
overfitting, 10-folds cross-validation with 10 times of iteration was done. Among these models, the model with
the best AIC was selected. Abbreviations: HTN, hypertension; DM, diabetes mellitus; eGFR, estimated glomerular
filtration rate; non-HDL, non-high density lipoprotein cholesterol.

J. Clin. Med. 2021, 10, x FOR PEER REVIEW 6 of 13 
 

 

 

Figure 2. Equation based on the logistic regression model predicting coronary artery calcification 

score ≥ 1. Abbreviations: CAC, coronary artery calcification; HTN, hypertension; DM, diabetes 

mellitus; eGFR, estimated glomerular filtration rate; BMI, body mass index; non-HDL chol, non-

high density lipoprotein cholesterol. 

 

Figure 3. Receiver operator characteristics (ROC) curve (A) and calibration plot (B) of the logistic regression prediction 

model. Abbreviation: AUC, area under the ROC curve. 

Figure 2. Equation based on the logistic regression model predicting coronary artery calcification
score ≥ 1. Abbreviations: CAC, coronary artery calcification; HTN, hypertension; DM, diabetes
mellitus; eGFR, estimated glomerular filtration rate; BMI, body mass index; non-HDL chol, non-high
density lipoprotein cholesterol.



J. Clin. Med. 2021, 10, 457 6 of 11

J. Clin. Med. 2021, 10, x FOR PEER REVIEW 6 of 13 
 

 

 

Figure 2. Equation based on the logistic regression model predicting coronary artery calcification 

score ≥ 1. Abbreviations: CAC, coronary artery calcification; HTN, hypertension; DM, diabetes 

mellitus; eGFR, estimated glomerular filtration rate; BMI, body mass index; non-HDL chol, non-

high density lipoprotein cholesterol. 

 

Figure 3. Receiver operator characteristics (ROC) curve (A) and calibration plot (B) of the logistic regression prediction 

model. Abbreviation: AUC, area under the ROC curve. 

Figure 3. Receiver operator characteristics (ROC) curve (A) and calibration plot (B) of the logistic
regression prediction model. Abbreviation: AUC, area under the ROC curve.

Table 3. Performances of models using logistic regression, classification and regression tree, conditional inference tree, and
random forest.

C-Statistics Kappa Acc and 95% CI Sen Spe PPV NPV

LRM 0.765
(0.728–0.801) 0.350 70.71 (67.08–74.16) 49.60 83.78 65.45 72.86

CART 0.690
(0.652–0.728) 0.375 71.32 (67.70~74.75) 55.16 81.33 64.65 74.55

CARTcat 0.638
(0.603–0.672) 0.298 69.35 (65.67–72.85) 40.08 87.47 66.45 70.22

CIT 0.751
(0.714–0.788) 0.379 71.32 (67.70–74.75) 56.75 80.34 64.13 75.00

CITcat 0.759
(0.722–0.796) 0.334 69.95 (66.29–73.43) 48.81 83.05 64.06 72.38

RF 0.753
(0.715–0.791) 0.355 71.02 (67.39–74.46) 49.21 84.52 66.31 72.88

Note: No information rate (NIR), 61.76. All models showed better accuracies than NIR. Abbreviations: LRM, logistic regression model;
CART, classification and regression tree; CARTcat, classification and regression tree using categorically transformed variables; CIT, condi-
tional inference tree; CITcat, conditional inference tree using categorically transformed variables; RF, random forest; Kappa, Cohen’s kappa;
Acc, accuracy; CI, confidence intervals; Sen, sensitivity; Spe, specificity; PPV, positive predictive value; NPV, negative predictive value.

3.3. Classification Trees

Regression trees using the CART method are depicted in Figure 4. In the basic model
(using continuous variables), if a patient was above ≥59.5 years in age or was a male with
age ≥ 52.5 years, the patient was classified to have a positive CAC score (Figure 4A). As
cut-off values were not intuitable, we changed continuous variables to categorical ones,
as described above. Based on the new model, if a patient’s age was in the 60s or 70s,
the patient was classified into a group with a positive CAC score (Figure 4B). Accuracy,
sensitivity, and specificity of the model using continuous variables were 71.32%, 55.16%,
and 81.33%, respectively (Table 3). They were 69.35%, 40.08%, and 87.47%, respectively, in
the model after categorical transformation (Table 3).

In addition, conditional inference trees were trained. These trees were more complex
than those using the CART method (Figure 5). Conditional inference trees using continuous
variables (Figure 5A) and categorically transformed variables (Figure 5B) were built. In the
model with categorical transformation, an age of 60 or 70 was associated with a positive
CAC score (10th–12th terminal node in Figure 5B). Male patients aged between 50 and
59 with HTN were associated with a positive CAC score (9th terminal node in Figure 5B).
After continuous variables were transformed to categorical ones, accuracy, sensitivity, and
specificity decreased similarly to those in the regression tree model using the CART method
(Table 3).
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Next, in conditional inference trees, risk probabilities were categorized into low (<25%,
no box), intermediate (25–49%, blue box), and high (≥50%, red box) (Figure 5). There were
concordances in risk probabilities between the training set and the test set (Figure 6). In
the model using continuous variables, the probability of having a positive CAC score in
the low-risk group was less than 10% (Figure 6A). It was lower than those in the model
using categorical variables (Figure 6B). We could infer that female patients aged ≤ 52 years
without having HTN and non-hypertensive male patients aged ≤ 45 years with non-HDL
cholesterol ≤ 174 mg/dL were less likely to have a positive CAC score.
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variables. Risk probabilities were categorized into three groups: low (<25%), intermediate (25–49%), and high (≥50%).
Positive CAC score represents CAC score ≥ 1. Abbreviation: CACs, coronary artery calcification score.

Contrary to expectations, the random forest did not improve the accuracy compared
with the logistic regression model (70.71% in the logistic regression model vs. 71.02% in
the random forest model, Table 3).

4. Discussion

Our study showed that the CAC score could be predicted based on clinical demo-
graphics and laboratory data. Recently, the importance of CAC score in the scope of
cardiovascular preventive medicine has been rising, especially for guiding when to begin
statin therapy. However, taking a CT scan to estimate the CAC score is controversial. Our
results might help physicians select patients who need coronary artery calcium CT. The
complexity of our logistic model exerted the necessity for a web-based or program-based
approach. Therefore, we used a decision tree, a more intuitable option. The CART and
the conditional inference tree built in this study showed an acceptable accuracy—about
70% (Table 3). Based on the CART model, coronary artery calcium CT could be needed
for patients with an age of 60 years or more or male patients with an age of 53 years or
more (Figure 4A). The conditional inference tree showed more complex results. Therefore,
we focused on the tree model using categorical variables. If we use a 50% prevalence of
positive CAC score as needing a CT scan, the following patients could be recommended
for a CT scan: (1) patients with an age in the 60s or 70s and (2) male patients with an age in
the 50s and hypertension (Figure 5B).

CAC is the most robust risk factor associated with future adverse events among all
risk factors studied so far [26]. The MESA study has shown that CAC scores are associated
with a higher risk for incident CHD and that CAC scores have predictive value in addition
to standard risk factors [27]. When the CAC score was included, the MESA risk score
significantly improved risk prediction (C-statistic from 0.75 to 0.80, p < 0.0001) [28]. The
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predictability of the Framingham Risk Score for CHD was improved when the CAC score
was added, especially in patients with a Framingham Risk Score of at least 10% [29]. The
incident ASCVD risk of 10-year risk was strongly associated with the CAC score (doubling
CAC was estimated to have a 14% increase in ASCVD risk) [30].

CAC score is closely associated with a patient’s demographic data, including race,
sex, and age, as demonstrated in the MESA study [31]. The cardiovascular risk score as
pathological determinants of atherosclerosis in youth (PDAY) could predict future CAC
score, suggesting a relationship between CAC score and traditional cardiovascular risks [32].
The PDAY risk score consists of age, sex, non-HDL and HDL cholesterol, smoking, blood
pressure, BMI, and glycol-hemoglobin (HbA1c) [32]. DM also contributes to CAC, both
in incident CAC and the progression of CAC [7,8]. Given the association between CAC
score and traditional cardiovascular risks, including laboratory and demographic data, the
prediction of CAC score based on these variables is a reasonably conceivable approach.
Therefore, the prediction model of the CAC score could be helpful for clinicians, especially
in cost-efficacy, if the accuracy could be precisely advanced and if the model could be
validated in the future. Recently, Lee et al. have reported a promising way to predict a
CAC score of 100 or more using machine learning algorithms [33].

Since the power of a CAC score of 0 is well known, a model is needed to predict
whether a CAC score is 0 or not. Alongside the accuracy of the model, it should be readily
applicable in real clinical situations. In this study, logistic regression models showed the
best C-statistics with moderate accuracies (Table 3). However, a program to auto-calculate
risk is necessary because of the complexity of the equation (Figure 2). The regression tree
builds simple decision trees using a recursive binary splitting algorithm. It is a simple
method to interpret and implement [20,21]. In the present study, conditional inference trees
showed a loss in accuracy. However, the extent of loss in accuracy was acceptable, even
when variables were transformed into categorical ones (Table 3).

Our study has several limitations. First, the cohorts used in this study were enrolled
for other previous studies and their data were collected retrospectively. This could lead
to biases. Second, the cohort from the Cheonan hospital did not have information for
smoking. Therefore, we could not integrate smoking status, an important confounding
factor, to our model. Third, the prevalence of diabetes in our cohort was too low (only
15%). This could limit our study to general clinical practice because the patient who needs
to know a CAC score is likely to be diagnosed with diabetes. Fourth, all participants in
our study were Koreans. It is a weakness of our study because the MESA study showed
that race could also affect CAC score [31]. Fifth, external validation was not performed.
Although we used k-folds cross-validation to minimize risks of overfitting, validation of
the prediction model using other data sets is necessary in the field. Lacking validation of
models was our limitation.

5. Conclusions

Despite the limitations, CAC scores might be predictable based on patients’ demo-
graphic and laboratory data. This approach could help clinicians guide personalized
therapy in the prevention of ASCVD, although further validation with other studies
is warranted.
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