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ABSTRACT
The 12th annual Utah Cardiac Recovery Symposium (U-CARS) in 2024 continued its mission 
to advance cardiac recovery by uniting experts across various fields. The symposium 
featured key presentations on cutting-edge topics such as CRISPR gene editing for heart 
failure, guideline-directed medical therapy for heart failure (HF) with improved/recovered 
ejection fraction (HFimpEF), the role of extracorporeal cardiopulmonary resuscitation 
(ECPR) in treating cardiac arrest, and others. Discussions explored genetic and metabolic 
contributions to HF, emphasized the importance of maintaining pharmacotherapy in 
HFimpEF to prevent relapse, and identified future research directions including refining 
ECPR protocols, optimizing patient selection, and leveraging genetic insights to enhance 
therapeutic strategies.
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INTRODUCTION

The Utah Cardiac Recovery Symposium (U-CARS), which 
began in 2013, marked its 12th consecutive year in 2024 
and continues to advance the field of myocardial recovery. 
U-CARS was conceptualized by a University of Utah 
team that was passionate about advancing myocardial 
recovery. The conference has drawn healthcare providers 
and scientists with a broad range of expertise—including 
basic scientists, clinical researchers, physicians, and 
practitioners—into the same room to discuss and debate 
advances in heart recovery. U-CARS is one of a few 
conferences dedicated to myocardial recovery and has 
shepherded the task of creating a collective forum where 
groups interested in this area of work are able to interact 
and contribute to advances. 

The symposium covers a range of topics, from gene 
therapy to practical treatment approaches, and embodies 
the founders’ vision of a dynamic, cooperative, and 
innovative forum. This article is a collaborative effort to 
capture the proceedings of the U-CARS conference that 
occurred earlier this year, with input from two teams: (1) 
Houston Methodist’s Muthu Kumar Krishnamoorthi and 
Arvind Bhimaraj, who attended the conference, and (2) 
the University of Utah’s Konstantinos Sideris and Stavros 
G. Drakos, who contributed in organizing the U-CARS 
conference. 

The U-CARS 2024 was held in Salt Lake City in early 
February 2024. The keynote address was delivered by Dr. Eric 
Olson, PhD, from the University of Texas Southwestern, who 
discussed the potential of CRISPR gene editing for genetic 
regulation as a crucial original approach in managing heart 
failure (HF) and recovery. Additionally, the conference 
featured Clyde Yancy, MD, from Northwestern University, 
who provided insights on guideline-directed medical therapy 
(GDMT) for patients with HF with improved/recovered 
ejection fraction (HFimpEF) and Demetri Yannopoulos, MD, 
from the University of Minnesota, who delivered a lecture 
on cardiac arrest that focused on the role of extracorporeal 
cardiopulmonary resuscitation (ECPR) in treatment. 

PATHOBIOLOGY OF HEART FAILURE AND 
CARDIAC RECOVERY 

GENETIC UNDERPINNING 
Idiopathic dilated cardiomyopathy (DCM) is a HF etiology, 
where the underlying genetic mechanisms could explicate 
the potential cause of or susceptibility to HF. Studies on 
the incidence of DCM revealed that 35% of idiopathic 
DCM has been attributed as familial,1 exhibiting that a 
significant proportion of DCM has a genetic origin. While 

nonischemic cardiomyopathy is a prevalent term, it must 
be acknowledged that lack of a cause (such as ischemic 
disease) cannot be a diagnosis and hence indicates a need 
for further assessment for causality, including DCM as one 
of the differentials. While genetic underpinning of the 
causality is emerging, its impact on recovery after HF has 
not been studied extensively. Data suggests that various 
genetic variants, such as Titin truncated variants versus 
Lamin-A mutations versus other variants of unknown 
significance, have different prognostic and recovery 
potential with medications,2,3 but their implications in 
predicting cardiac recovery or sustainable recovery after 
durable mechanical circulatory support has not been 
studied. 

Establishing a genetic role of a cardiomyopathy 
opens the possibility of genetic manipulation to promote 
myocardial recovery by either enhancing regeneration, 
genetic silencing, or upregulation or direct genetic 
reprograming using CRISPR technology.4-6 In fact, this has 
become a reality in some mono-genomic disease states, 
such as Duchenne muscular dystrophy (DMD), which is 
caused by mutations in the gene encoding dystrophin 
protein, a membrane-associated protein that is essential 
for the continuation of muscle structure and function. 
Patients with DMD suffer from loss of mobility at an 
early age, leading to premature death from cardiac and 
respiratory failure. Current treatment strategies have failed 
to successfully overcome this disease. However, CRISPR 
gene editing is a promising strategy that has provided novel 
prospects to improve the disease condition by addressing 
and eliminating the DMD mutations, thus restoring 
dystrophin expression throughout skeletal and cardiac 
muscle. In vitro (human cells) and in vivo (small and large 
mammals) investigation has corroborated the potential of 
this method.7-9 The application of such technology for HF 
recovery will depend on the ability to identify targets that 
will yield a clinical benefit. 

A broader perspective in understanding the impact 
of genetics on the incidence of HF could be gained by 
population genetic studies, such as HerediGENE, which was 
established in 2018. HerediGENE focused on the genetic 
analysis of DNA samples to identify and recommend 
patient testing for genetic risks of cardiovascular diseases. 
Since its inception, HerediGENE has been used to identify 
genetic causes of diseases, with some data sets used to 
exhibit the risk conferred by apolipoprotein B,10 forms of 
venous thromboembolism,11 and the effects of the complex 
relationship between genetics and environment on lipid 
levels and coronary artery disease.12 Studies that focus 
on HF incidence and recovery in such an early association 
would be relevant but are currently lacking. Similarly, many 
genome-wide association studies have identified targets 
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in cardiovascular disease, with one HF analysis identifying 
176 risk loci at genome-wide significance for HF.13 

Cardiomyocyte regeneration and understanding of 
the genetic determinants of fetal ability to repair injured 
hearts has suggested a role of cell cycle regulation. 
Various aspects of cell-cycle control are being investigated 
to identify any therapeutic potential to influence 
cardiomyocyte proliferation to promote HF reversal or some 
type of recovery. It is evident that the cardiac cell profile 
reveals a complex interplay between cardiomyocytes 
and non-cardiomyocytes, and further research is 
needed to understand the role of genetic control of non-
cardiomyocytes in the setting of HF and the potential to 
influence recovery. 

METABOLISM IN MYOCARDIAL 
FUNCTION

The heart has a continuous high-energy demand for 
optimal contractile function and basal metabolism, 
which makes energy production and energy source in 
the cardiac environment paramount. The heart is an 
omnivore that uses multiple energy substrates such as 
carbohydrates, lipids, amino acids, lactate, and ketone 
bodies for ATP production.14,15 Alterations in metabolic 
pathways are associated with dysfunctional metabolism 
that is frequently exhibited in HF.16 Branched chain 
amino acids play an essential role in energy metabolism. 
However, impaired branched chain amino acid oxidation 
is linked to insulin resistance and contributes to cardiac 
hypertrophy and contractile dysfunction.17 While lipid 
metabolism contributes significantly to the cardiac energy 
requirement, defective lipid metabolism can lead to the 
formation of ceramides, a cardiotoxin that causes lipotoxic 
cardiomyopathy.18-21 In addition to cardiomyocytes, 
dysfunctional lipid metabolism, especially sphingolipid in 
vascular endothelium, contributes to the development of 
atherosclerosis.22 Thus, there is a need to understand and 
explore therapeutic options to regulate cardiac metabolism 
in HF in order to promote and sustain HF recovery.

CLINICAL PARADIGMS OF HEART 
FAILURE AND CARDIAC RECOVERY

AMERICAN COLLEGE OF CARDIOLOGY STAGE C: 
GUIDELINE-DIRECTED MEDICAL THERAPY FOR 
HEART FAILURE WITH IMPROVED/RECOVERED 
EJECTION FRACTION 
Heart failure represents a clinical syndrome resulting 
from multiple myocardial diseases that lead to impaired 

cardiac output and/or increased intracardiac pressures.23 
Traditionally, HF is classified based on left ventricular 
ejection fraction (LVEF). High mortality rates are prevalent 
across all types of HF, including those with reduced 
(HFrEF), mildly reduced, and preserved ejection fractions 
(HFpEF).24,25 Recent advancements in HF pharmacotherapy, 
the introduction of cardiac resynchronization therapy, 
and better insights into reversible causes of HF have led 
to significant improvements in LVEF in many patients.23 
This improvement has been linked to more favorable 
outcomes compared to those with stable or declining EF.26 
Consequently, a new subgroup was identified as HFimpEF, 
with the most contemporary definition comprising 
an initial LVEF < 40% and an increase of ≥ 10% with 
follow-up measurement > 40%.27,28 Noteworthy is the fact 
that HFimpEF is an empiric definition recognized more 
as a marker of treatment response and favorable clinical 
outcomes rather than a distinct pathobiological category 
of HF, considering the diverse causes of the condition.27 

While comprehensive guidelines are available for HFrEF 
populations (which recommend multiple medication and 
device therapies), recent guidelines have emerged for 
HFpEF with the benefit of certain agents (ARNI/SGLT2i) 
in both these types of HF, highlighting the possibility of 
a continuum of pathobiology contrary to the decades of 
work that have tried to elucidate the distinctions based on 
ejection fraction. Current evidence specific to HFimpEF is 
sparce23,28; it could be perceived as a continuum towards 
myocardial recovery/remission, but the true histological 
and genetic changes with EF improvement have not been 
studied in humans. Recent animal models have created 
opportunities to explore the same.29,30 

Various clinical variables have been proposed to predict 
myocardial recovery,31 and treatment strategy centers 
around treating any reversible causes of cardiomyopathy 
as well as initiation and up-titration of GDMT 
pharmacotherapy. The maintenance of pharmacotherapy 
in patients who have shown improvement or full recovery 
of LVEF and symptom relief was investigated in the 
randomized TRED-HF (Therapy withdrawal in REcovered 
Dilated cardiomyopathy – Heart Failure) study. It included 
patients with dilated cardiomyopathy with a full recovery 
of LVEF from < 40% to ≥ 50% and a normalization of LVEDV 
and natriuretic peptides level. Patients were randomized 
to either a stepped withdrawal of drugs or a continuation 
of treatment. Gradually reducing medication resulted in a 
relapse of HF in 44% of patients, characterized by a decrease 
in LVEF > 10% or the resurgence of HF symptoms compared 
to no relapses in the control group who continued their 
treatment.32 It is important to note that HFimpEF might be 
better termed “transient remission of systolic dysfunction” 
given the frequent recurrence of decreased LVEF. 
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Studies have shown that in patients with a nonischemic 
origin of HF, systolic dysfunction reoccurred in nearly 19% 
of cases, often associated with discontinuation of HF 
medications.33 Consequently, the current American Heart 
Association (AHA) Guidelines for managing HF include a 
Class I, Level B recommendation to continue GDMT that 
resulted in improved systolic function in patients with 
HFimpEF.28 Despite the absence of specific evidence for 
diuretics, a general consensus on weaning and cessation 
is recommended in patients with HFimpEF. Also, the ability 
to manage without diuretics may indicate a lower risk of 
recurrence of HF in HFimpEF patients.27,34 

The recent paradigm of cardiometabolic pathway in HF 
from trials of SGLT-2 inhibitors shows an expansion from 
the GLP-1 pathway, with the SELECT “Semaglutide Effects 
on Cardiovascular Outcomes in People with Overweight 
or Obesity” trial35 showing benefit in HF outcomes. GLP-
1 receptors are ubiquitously expressed in vascular tissue 
but are lacking in the ventricular myocardium.36 However, 
animal studies have shown a benefit of GLP-1 agonists 
to promote LV remodeling and hence opens a frontier to 
study their role in myocardial recovery.37 In conclusion, 
HFimpEF is a key indicator of successful treatment and 
improved outcomes and a reflection of the pathobiology 
towards recovery. Although there is recent investment in 
understanding this entity, its management is challenging 
and highlights the need for future studies. Finally, while 
the field of HF is identifying pathological and clinical 
phenotyping instead of an ejection fraction-based 
classification,38 there might be a need to reinvent the entity 
of HFimpEF.

AMERICAN COLLEGE OF CARDIOLOGY STAGE D: 
PATIENTS WITH MECHANICAL ASSIST DEVICES
Patients with durable left ventricular assist devices (LVADs) 
achieve a significant mortality benefit, and such a support 
system has been effective in prolonging life and used as 
a bridge to transplantation. However, using LVADs to 
recover the myocardium has not gained effective traction 
in the clinical world. Post-LVAD assessment of myocardial 
recovery centers around imaging and hemodynamics. 
Echocardiogram is widely available, and studies have 
shown a moderate ability to assess filling pressures.39 
Effective unloading of the left ventricle while optimizing the 
right ventricle will be necessary to promote optimal clinical 
outcomes and perhaps myocardial recovery. Patients 
continue to have morbidity related to HF despite LVAD use,40 
possibly due to ineffective unloading, inadequate systemic 
perfusion, and underappreciation of LV-RV interactions.41 
Accurate assessment of effective unloading might be 
challenging and needs special consideration42 since most 

echocardiography criteria historically were validated in 
patients without LVAD. 

Although the current generation of LVADs seem to 
have a lower incidence of aortic insufficiency compared 
to the HeartMate II™ (Abbott Cardiovascular),43 accurate 
assessment of aortic and mitral valve pathologies 
will be important in the context of cardiac recovery 
related to surgical planning (device decommissioning 
versus explantation and need for surgical intervention 
for valves). Other imaging modalities such as cardiac 
computed tomography can aid in assessing anatomical 
relationships of the LVAD, and fluorodeoxyglucose-positron 
emission tomography can assess infection burden. Such 
assessments can facilitate thorough surgical planning with 
regard to myocardial recovery. 

Active assessment of myocardial recovery after LVAD 
placement is not always performed, and there is a need 
to actively pursue recovery as a desirable goal. Specific 
strategies such as tools to identify patient cohorts with 
higher probability of recovery, systematic utilization of 
invasive hemodynamics to assure effective ventricular and 
atrial unloading, and appropriate utilization of guideline-
directed medical therapy can be implemented to create 
a “purposeful recovery” program rather than a passive 
observational strategy.40 Although the percentage of 
LVAD patients who have undergone device explantation in 
real world registries is low (approximately 2-3%), studies 
have shown that the percentage of patients who recover 
their ejection fraction and have reverse remodeling are 
10 times higher in the same registries.44-47 Furthermore, 
programs might be incentivized to perform transplantation, 
and providers could be disincentivized to push the realm 
of recovery. Further research focused on predictors of 
successful explant when there is imaging and hemodynamic 
myocardial recovery after durable LVAD is needed to avoid 
undue risks and promote physicians to pursue this strategy. 
The recent International Society for Heart and Lung 
Transplantation mechanical circulatory support guidelines 
advocate strongly in favor of pursuing the LVAD bridge-
to-recovery strategy in appropriate patients and provide 
specific guidance on how to manage these patients.48

Surgical planning49 needs to start at the time of initial 
implant for patients who might be considered for recovery 
and LVAD explant or decommissioning. Identifying valve 
pathologies that can be fixed and coronary lesions that 
might be surgically revascularized at the time of initial 
implant to maximize recovery potential is currently not 
established but could be considered. Criteria to establish 
myocardial recovery to the point of LVAD explant or 
decommissioning have not been systematically described, 
but many centers use echo and invasive hemodynamic 
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assessments with LVAD turn down. Some centers also 
perform cardiopulmonary exercise testing with low-speed 
settings of the LVAD. Lower speed assessments might 
need appropriate anticoagulation. Once a determination 
is made that a patient can tolerate LVAD explant or 
decommissioning, there is no consensus regarding which 
technique is better. While the latter poses less surgical risk, 
a full explant might be needed in situations of infected 
hardware. Also, the ability to plan a reimplant if needed has 
not been standardized. Much needs to be done in studies 
to assess surgical techniques and strategies to optimize 
myocardial recovery after durable LVAD.

THE ROLE OF ECMO IN CARDIAC 
RECOVERY AND SURVIVAL IN CARDIAC 
ARREST PATIENTS 

The incidence of unexpected cardiac arrest is notably 
high in the United States, with approximately 200,000 
in-hospital and 350,000 out-of-hospital cardiac arrests 
occurring annually. Survival rates to hospital discharge 
following these events are low, ranging from 6% to 26% 
for in-hospital arrests and typically less than 10% for out-
of-hospital arrests.50-56 Efforts to improve cardiac recovery 
and overall outcomes in cardiac arrest are increasingly 
involving the use of extracorporeal techniques to restore 
circulation.57-59 One such approach is the use of venoarterial 
extracorporeal membrane oxygenation (ECMO) during 
cardiac arrest, which is referred to as extracorporeal 
cardiopulmonary resuscitation (ECPR). 

ECMO-facilitated resuscitation achieves three primary 
objectives in patients with refractory cardiac arrest: it 
reliably normalizes perfusion, provides cardiopulmonary 
support to identify and treat the underlying cause (typically 
severe coronary artery disease with both chronic and acute 
coronary occlusions), and ensures consistent access to the 
catheterization laboratory for angiography and angioplasty 
when necessary. Additionally, it serves as a bridge-to-
recovery in the intensive care unit, mitigating the risk of 
accelerated deterioration and death from multiorgan 
injury sustained during prolonged resuscitation efforts.60-62 

Data strongly support the effectiveness of ECPR in 
improving survival rates and neurological outcomes in 
patients with refractory cardiac arrest, as evidenced by 
multiple studies demonstrating significantly better results 
with ECPR compared with standard cardiopulmonary 
resuscitation (CPR) or advanced cardiovascular life support 
(ACLS). Propensity-score matched analyses by Chen et al. 
and Shin et al. demonstrated significantly better outcomes 
with ECPR, with Chen et al. reporting a 30.4% survival to 

discharge rate with good neurological function (Cerebral 
Performance Category 1-2) compared to 15.2% with 
CPR,58 and Shin et al. showing 2-year survival rates of 20% 
for ECPR versus 5% for CPR,57 Ouweneel et al. conducted 
a meta-analysis of matched pairs and found that 30-day 
survival with good neurological outcomes was 23% for ECPR 
compared with 9.7% for CPR. Additionally, a multicenter 
retrospective study from Lunz et al. demonstrated higher 
3-month survival rates for in-hospital cardiac arrest of 
34.2% with ECPR compared to 9% for out-of-hospital 
cardiac arrest. 

Yannopoulos et al. compared an ECPR protocol to 
historical controls, reporting improvement in survival to 
discharge with good neurological outcomes (Cerebral 
Performance Category 1-2), achieving 41.9% for ECPR 
versus 15.3% for standard CPR (OR 4; P < .0001).60 
Yannopoulos et al. also conducted a randomized controlled 
trial comparing ECPR to standard ACLS and found that 
survival to hospital discharge was 43% for ECPR versus 7% 
for ACLS; this demonstrated a significant risk difference of 
36% and a relative risk of 0.61, with a posterior probability 
of ECPR superiority at 0.9861.61 These trials collectively 
reinforce the superior efficacy of ECPR in improving survival 
and neurological outcomes in refractory cardiac arrest 
cases. Future studies should focus on refining patient 
selection criteria, optimizing protocols, and exploring the 
long-term benefits and risks of ECPR to further validate its 
efficacy and enhance its implementation in clinical practice.

COMMENTARY ON LEARNINGS FROM 
THE CONFERENCE

Myocardial recovery without disease recurrence will 
become possible when the underlying biology of heart 
pathology and recovery are understood (Figure 1). The 
current understanding and hence treatment focuses 
on cardiomyocytes. For cardiac recovery to manifest, 
regeneration of functional cardiomyocytes is crucial. 
Delivery of differentiated and functionally mature 
pluripotent stem-cell-derived cardiomyocytes or direct 
reprogramming using CRISPR in native cells of the 
damaged myocardium could contribute to local or organ-
level recovery in physiology and function. 

Challenges such as precise gene editing, gene delivery 
mechanisms, and the issue of immune response still exist 
and require further research. However, recent evidence 
suggests that non-cardiomyocytes contribute to the 
progression of cardiac events and hence could be an 
important therapeutic target. It would be insightful to 
explore the role of non-cardiomyocyte cells in the cardiac 
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environment, which could lead to better understanding 
of the disease. The complex interplay between non-
cardiomyocytes (eg, resident fibroblasts, microvascular 
endothelial cells, pericytes, and endocardial endothelial 
cells), the extracellular matrix, and cardiomyocytes seems 
to be a dynamic process that changes throughout HF and 
recovery.29 

Myocardial recovery can be conceptualized into two 
steps: (1) promoting recovery from a pathological state, 
and (2) maintenance of the recovered heart function for 
the long term. While clinical parameters to identify recovery 
potential have been established in database studies, specific 
biological predictors must be further investigated.31,63-65 
Currently, all patients receive GDMT to promote recovery 
while also being assessed for reversible causes. Therapeutic 
agents targeting dysfunctional metabolic pathways offer 
a promising strategy for the management of metabolic 
dysfunction-induced cardiomyopathy. Comprehensive 
investigation of different metabolites and pathways in 
heart failure with reduced and preserved ejection fraction 
would provide useful direction to focus on mitigating 
metabolism dysfunction. 

Personalized treatment strategies will be possible if 
large-scale genotypic and phenotypic studies are able to 
identify profiles of patients who might respond better to 

various strategies. Population genetics study genotypic 
and phenotypic alterations and can be used to evaluate 
and monitor specific mutations that lead to cardiovascular 
diseases. However, there are some limitations in 
successfully employing this strategy, including adequate 
patient population data necessary to draw clinically 
relevant conclusions, and timely follow-up and counseling 
for patients. Conversely, bolstering the genetic testing 
and counselling infrastructure would result in population 
genetics being a powerful tool. Future research should aim 
to understand the underlying mechanisms of recovery and 
the potential role of targeted therapies in sustaining heart 
function and preventing relapse of HFimpEF. 

Our understanding of cardiogenic shock has advanced 
recently, with organized efforts to recover individuals from 
a shock state. While the physiology of a shock state at 
the organism level implicates the involvement of various 
organs, myocardial rest and load have been conceptual 
frameworks that have revolutionized the field of temporary 
mechanical support to promote a chance for the heart 
to recover. Various mechanical support devices can have 
different physiological implications on the heart when used 
in patients with cardiogenic shock, and the implications of 
possible recovery can draw parallels from the learning of 
long-term support using durable LVADs.

Figure 1 Conceptualization of myocardial recovery. Normal cardiac milieu adaptation during heart failure results in abnormalities of 
distinct factors such as CM and NCM, the ECM, and the modified LV geometry. Myocardial recovery could manifest in two forms: (1) 
remission, where further heart failure events can reoccur, or (2) myocardial recovery that is free from further cardiac insufficiencies. 
Modified from Mann et al.66 CM: cardiomyocytes; NCM: non-cardiomyocytes; ECM: extracellular matrix; LV: left ventricular
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In order for the field of HF recovery to progress, 
conferences such as U-CARS are necessary so that like-
minded researchers, clinicians, and industry partners 
can gather to learn and exchange information and ideas. 
The 2024 symposium emphasized the importance of 
genetic and metabolic research in driving advances in HF 
management, underscored the need for ongoing research 
and pharmacotherapy in HFimpEF to prevent relapse, 
and highlighted the significant role of ECPR in improving 
outcomes for cardiac arrest patients who may progress 
to cardiogenic shock. Through collaborative efforts and 
interdisciplinary discussions, U-CARS demonstrates a 
commitment to integrating innovative research with 
clinical practice, fostering the ongoing quest to promote 
cardiac recovery.

KEY POINTS

•	 Myocardial recovery is possible through a multipronged 
approach.

•	 Clinical focus on guideline-directed medical therapy 
and device-based interventions can ameliorate and 
accelerate cardiac recovery.

•	 Population genetics is a powerful tool that can be 
explored to aid in early diagnostics and treatment of an 
at-risk population.

•	 Genetic modifications through targeted approaches like 
CRISPR would be a promising strategy if accompanied 
by thorough methodological refinements and efficacy 
validation in different models.

•	 Active discussion at scientific forums such as U-CARS 
that promote dialogue between research scientists 
and clinicians would lead to development of better 
treatment modalities for myocardial recovery. 
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