
GigaScience, 2022, 11, 1–13

DOI: 10.1093/gigascience/giac071

RESEARCH

SurvBenchmark: comprehensive benchmarking study of
survival analysis methods using both omics data and
clinical data
Yunwei Zhang 1,2, Germaine Wong 3,4,5, Graham Mann 6,7, Samuel Muller 1,8,† and Jean Y.H. Yang 1,2,9,*,†

1School of Mathematics and Statistics, The University of Sydney, Sydney 2006, Australia
2Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia
3Sydney School of Public Health, The University of Sydney, NSW, Sydney 2006, Australia
4Centre for Kidney Research, Kids Research Institute, The Children’s Hospital at Westmead, NSW, 2145, Sydney, Australia
5Centre for Transplant and Renal Research, Westmead Hospital, NSW, 2145, Sydney, Australia
6John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia
7Melanoma Institute Australia, North Sydney, NSW 2065, Australia
8Department of Mathematics and Statistics, Macquarie University, Sydney 2109, Australia
9Laboratory of Data Discovery for Health Limited (D24H), Science Park, Hong Kong SAR, China
∗Correspondence address. Jean Y.H. Yang. School of Mathematics and Statistics, F07, The University of Sydney, NSW 2006, Australia. E-mail:
jean.yang@sydney.edu.au
†Equal contribution.

Abstract

Survival analysis is a branch of statistics that deals with both the tracking of time and the survival status simultaneously as the de-
pendent response. Current comparisons of survival model performance mostly center on clinical data with classic statistical survival
models, with prediction accuracy often serving as the sole metric of model performance. Moreover, survival analysis approaches for
censored omics data have not been thoroughly investigated. The common approach is to binarize the survival time and perform a
classification analysis.
Here, we develop a benchmarking design, SurvBenchmark, that evaluates a diverse collection of survival models for both clinical
and omics data sets. SurvBenchmark not only focuses on classical approaches such as the Cox model but also evaluates state-of-
the-art machine learning survival models. All approaches were assessed using multiple performance metrics; these include model
predictability, stability, flexibility, and computational issues. Our systematic comparison design with 320 comparisons (20 methods
over 16 data sets) shows that the performances of survival models vary in practice over real-world data sets and over the choice of the
evaluation metric. In particular, we highlight that using multiple performance metrics is critical in providing a balanced assessment
of various models. The results in our study will provide practical guidelines for translational scientists and clinicians, as well as define
possible areas of investigation in both survival technique and benchmarking strategies.
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Background
Survival models are statistical models designed for data that have
censored observations, that is, time-to-event data, which are ubiq-
uitous, including in health, tourism [1], economics [2], and engi-
neering [3]. In this paper, we will follow the terminology of survival
analysis in which the event of interest is captured through a “sta-
tus” variable, “s” typically, considered a binary class outcome. The
waiting time to this status event is defined as the “survival” time,
either measured as continuous or discrete time periods. Survival
models target both outcomes: status and time-to-event, whereas
neither regression analysis on time nor classification analysis on
status explain this bivariate outcome information [4]. Classes of
models dealing with these events have wide applicability well be-
yond the clinical and omics applications that are considered here.

Numerous survival models have been developed over the last
decades. There are many studies in the literature that give a good
overview on right-censored data sets without time-dependent co-
variates, for example [5]. However, few of these studies take a
practical viewpoint, and few make sufficient real-world data set

comparisons, particularly in the biomedical field. This motivated
us to develop a benchmarking design for the diverse clinical and
omics survival data in health. This work intends to improve the
knowledge and understanding of such models and guide clinical
decision-making. We first performed an exhaustive search for var-
ious types of available survival analysis methods and the methods
of performance evaluations for the different types of data sets.

Among the comparative studies that included real-world data
sets in health, we found that most have a specific focus such as
on a certain disease (e.g., colon cancer) or on a certain data plat-
form (e.g., omics or clinical). For example, Schober and Vetter [6]
and Ahmed et al. [7] conduct reviews on classical survival models
such as the Kaplan–Meier (KM) method and the Cox Ppoportional
Hhzards (CoxPH) model with a focus on clinical data with an in-
duced anasthesia state and a specific colon cancer type, respec-
tively. Lee and Lim [8] apply the penalized Cox model, survival sup-
port vector machine (SVM), random survival forest (RSF), and Cox
boosting models on large genomic data. To date, no systematic re-
view encompasses data sets obtained from multiple disease types.
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Therefore, this necessitates the development of a benchmarking
design that will provide a better understanding of how different
survival models perform in practice across various disease types.

With the emergence of different modeling approaches from
various disciplines, many of these recent comparison studies have
limited their focus on either within classical models (KM method,
CoxPH model) or within modern machine learning (ML) methods.
Recently, a comprehensive survey article [5] compares three cate-
gories of statistical survival and ML methods with a focus on theo-
retical mathematical details. However, this study does not provide
practical implications of the various methods, and no comparison
of performance using real-world data sets is made. There is a need
for better guidance on what data analysis strategy to use.

A recent exception is the benchmark study by Herrmann et
al. [9]. This valuable contribution includes both real-world clin-
ical and omics data sets and analyzes these with classical regres-
sion and modern ML methods with particular focus on the impact
of considering the multi-omics structure to the survival model
predictability. However, this study includes cancer diseases only,
and data sets are solely obtained from The Cancer Genome Atlas.
There remains a pressing need to look into more diverse and thus
more heterogeneous data sets coming from multiple databases to
benchmark the survival model performances from more diverse
aspects.

To this end, we develop a benchmarking design SurvBenchmark
that considers multiple aspects with several evaluation metrics
on a large collection of real-world health and biomedical data sets
that guides right-censored data survival method selection and
new method development.

Survival Models and Their Evaluation
Survival models can deal with data that explain censored obser-
vations with a bivariate outcome variable, consisting of “time” (the
minimum of “time-to-event” and “censoring time”) and “event” (bi-
nary: “class 1” = “event did occur,” “class 0” = “otherwise”). There
are two key features of such censored survival objects. First, the
class label “0” means an observation is censored as its exact event
time is not observed. Second, an additional tracking time mea-
surement is included as part of the response.

There are two main branches of survival models: classical sta-
tistical survival models, which include parametric, nonparamet-
ric, and semiparametric models, and modern ML survival mod-
els, which include ensemble-based methods and state-of-the-art
deep learning–based approaches. Both sets of models are briefly
reviewed in the following sections.

Classical survival models
The CoxPH model [10] is the most widely used classical survival
model. CoxPH works on the hazard function, which is given by

h (t, x) = h0 (t) e
(∑p

j=1 β jx j

)
(1)

where x = (x1, x2, . . . , xp) is the covariate vector and h0(t) is the
baseline hazard function. CoxPH is a semiparametric model and
the baseline hazard function is canceled out when taking the ratio
of 2 hazard functions.

The penalized Cox model is another extension of the CoxPH
model that helps to prevent overfitting. The L1 regularized CoxPH
model adds a scaled sum of absolute values of the magnitude of

model coefficients, that is, λ1

p∑
j = 1

|β j| , as the regularization term

to the partial log-likelihood. Other regularizers can be used such

as L2 regularization, that is, λ2

p∑
j = 1

(β j )2, or other scaled sums of

nonnegative penalties of the β ′s, such as in the following general
penalized partial log-likelihood:

log (L(β )) − λ
∑p

j=1
π

(
β j

)
, (2)

where L(β ) is the partial likelihood as, for example, given in Tib-
shirani [11] (Equation 2) and then optimization takes place [12,
13, 14]. Using the L1 penalty in Equation (2) gives the Lasso Cox
estimation and using the L2 penalty gives the Ridge Cox solution,
respectively. If instead of a single regularization term, we consider
a weighted average of the L1 and L2 penalty, we obtain the Elastic
Net Cox model. One remarkable characteristic of the Lasso Cox
model and the Elastic Net Cox model is that they can simultane-
ously perform feature selection and prediction, because some of
the beta parameters can be penalized all the way to 0 when max-
imizing (2). Notice that the various types of regularization terms
can also appear in the loss function of modern ML methods, which
we introduce in the next subsection.

Modern machine learning models
There has been a growing interest in the use of modern ML meth-
ods in health as a result of their exceptional performance in many
other areas, such as in finance [15], environment [16], and internet
of things [17]. Notable examples in health include the application
of RSF on complex metabolomics data [18] and SurvivalSVM to
the survival of prostate cancer patients [19]. Both approaches are
survival analysis extensions to two widely used ML algorithms for
binary classification, namely, random forest and SVM.

SurvivalSVM was developed by Van Belle et al. [20] for time-to-
event data. It is a variant of the regularized partial log-likelihood
function (2) above but has a different penalty term. In contrast

to using λ
p∑

j = 1
π (β j ), SurvivalSVM uses penalized splines and then

applies both, ranking constraints and regression constraints to
the corresponding partial log-likelihood function. SVM with those
constraints enables models for high-dimensional omics data to
have more flexible structure, for example, additive (non)linear
models. One distinct feature of SurvivalSVM is that it treats the
prognostic problem as a ranking problem and therefore the esti-
mation of the hazards is not directly incorporated in the model.

RSF was first proposed by Ishwaran et al. [21] as an extension
of random forest to model censored survival data. Random forest
[22] is a nonparametric bagging-based ensemble learning method
that adds variation in the training data sets by bootstrapping the
data. Multiple models are generated based on many resamples.
The ensemble prediction result is then an average of these multi-
ple models or the result of a majority vote. The key components
in our application of RSF are that we use Harrell’s C-index to eval-
uate the survival tree instead of the mean square error for regres-
sion problems or confusion matrix for classification problems and
that we use the log-rank score in each node as the stopping rule.

Another ensemble-based approach is the boosting method,
which contains multiple learners and sequentially gives more
weight to weak learners to enhance predictability. For example,
the Cox boosting model [23, 24, 25, 26] is developed based on Cox
models with boosting being applied to the estimation of the re-
gression parameter vector β in Equation (1). There are two popu-
lar approaches to update β: the first is the model-based approach
that leads to the mboost method, and the second is the likelihood-
based approach that leads to the CoxBoost method (benchmarked
in this study).
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These models so far only focus on optimizing a single objective.
Because survival data are time dependent, it is natural to have
multiple tasks related to one or more time points of interest. This
naturally leads to multitask learning, a method that deals with
the need to predict for more than a single response variable, based
on joint optimization of multiple likelihood functions correspond-
ing to each task. The multitask logistic regression model (MTLR)
by Yu et al. [27] is a survival model for multiple time points, where
for each, the task is to predict survival using a logistic regression
model and the parameters from each model are estimated simul-
taneously in the maximization of the joint likelihood function.

More recently, the ML and artificial intelligence communities
refer to the methods described above as classical ML methods due
to the emergence of deep learning (DL), a conceptual advance-
ment based on neural networks (NN). In survival analysis, a num-
ber of DL survival models were developed such as Cox-nnet [28],
DeepSurv [29], and DeepHit [30]. The key concept here is having
different loss functions that particularly target either the haz-
ard or the survival probability for those neurons in hidden layers
when building the DL architecture. High-dimensional complex bi-
ological information can be better represented with the applica-
tion of those hidden layers [31] and through relaxing the propor-
tional hazard assumption.

Feature selection methods applied to survival
models
The input features are fundamental to every statistical or ma-
chine learning model, and the survival model is no exception [32].
Wrapper and filter [33] are two feature selection methods that are
widely used for not only regression and classification models but
also survival models.

The wrapper approach is a model-dependent method in which
the performance of the model determines the selection of subsets
of features. Stepwise feature selection approaches fall into this
category since one feature is deemed to be included or deleted
as the model’s performance improves. Other more computational
approach such as the genetic algorithm (GA) [34], which was orig-
inally developed to solve an optimization problem, has been ex-
tended to use as a feature selection approach [35]. The main idea
is to start with an initial set of features to then replace it with one
that includes features from other parts of the data to optimize the
classification accuracy based on a linear discrimination analysis
model.

The filtering approach, on the other hand, is a model-
independent feature selection method that produces a subset of
features without involving the models. This step often occurs out-
side and before building prediction models. Many of these strate-
gies select features using hypothesis testing statistics from a uni-
variate study. With the advent of omics data in the 1990s, the
statistics community embraced the development of differential
expression (DE) analysis, which is a filter-type feature selection
method for identifying promising genes/features using “parallel
univariate strategies” based on linear modeling [36].

Classical performance evaluation metric for
survival data
Classically, survival analysis is evaluated in 3 broad settings:
the concordance index, the Brier score, and the time-dependent
area under the curve (AUC). Similar to evaluating classification
and regression models, metrics for calibration and discrimina-
tion are developed with incorporating censoring by applying rank-

based methods or error-based methods together with a weighting
scheme.

C-index and its extension in survival analysis
C-indices in survival analysis are concordance-based methods,
where “concordance” measures how close a prediction is to the
truth. The original C-index for survival analysis was introduced
by Frank E. Harrell [37] as a time-independent performance mea-
sure. C-indices range from 0 to 1, where 1 means perfect perfor-
mance and 0 means worst possible performance. If a model would
not take into account any information from the data, that is, a ran-
dom prediction is made, then the corresponding C-index would be
around 0.5. For most clinical data sets, a C-index around or larger
than 0.6 is considered an acceptable prediction. Harrell’s C-index
[38] defines concordance by looking at ranks of pairs of subjects in
the data (there are n choose 2 pairs for data with n subjects). Har-
rell’s C-index further depends on the censoring distribution of the
data, is motivated by Kendall’s tau statistic, and is closely related
to Somers’ D. When ranking the subjects, censored subjects are
excluded, and pairs included in the formula are only those com-
parable, noncensored pairs. There are different versions of the C-
index, where the differences come from the different ways that
censored subjects are ranked.

We will use the following 3 concordance indices: Begg’s C-index,
Uno’s C-index, and GH C-index. First, Begg’s C-index [39] uses KM
estimation to incorporate both censored and uncensored subjects
by assigning different weight to them. Second, Uno et al. [40] de-
velop a new way to calculate the rank with the help of inverse
probability of censoring weight (IPCW). Third, the GH C-index
[41] changes the concordance function into a probability function
based on the Cox model estimation and then approximates its dis-
tribution, which is robust to censoring.

Brier score
The Brier score [42, 43] uses IPCW to handle censored subjects
when measuring discrepancies between the estimated values and
the actual values. This score can be considered a similar measure
to the mean squared error (MSE) in regression models to some
extent. Like the MSE, the Brier score takes a value greater than
0 that depends on the data, and the smaller the Brier score, the
better. However, to have better interpretability, the integrated Brier
score (IBS) is introduced, which also takes values between 0 and
1– it averages the loss over time in situations where there is no
interest in a particular time point but performance is with regards
to all time points as a whole.

Time-dependent AUC
The time-dependent AUC is inspired from binary classification
model evaluations. The receiver operating characteristic (ROC)
curve is a classical model assessment plot that examines the re-
lationship between the sensitivity and the false-positive rate. The
area under the ROC curve is termed AUC. In survival analysis,
event statuses are changing over the time, which requires a dy-
namic measurement to discriminate the predicted versus the ac-
tual. Chambless and Diao [44] were the first to propose a time-
dependent AUC for survival analysis. They define the AUC(t) as
the probability that a person with disease onset by time t has a
higher score than the person with no event by time t. Changes of
model predictability for different time points can therefore be vi-
sualized by time-dependent AUC curves, which allows people to
compare long time versus short time predictability.
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Materials and Methods
Data sets: 6 clinical and 10 omics data sets
Clinical data sets—6 clinical data sets with different sample sizes
and disease types are selected (see references in Table 1).

� Veteran data is a survival data set from the randomized trial
of 2 treatment regimens for lung cancer obtained from the
R package “survival.” There are 6 measured features in this
data.

� PBC data (5 clinical features, 312 patients) from the Mayo
Clinic trial in primary biliary cirrhosis (Pbc) of the liver con-
ducted between 1974 and 1984; obtained from the R “Ran-
domForestSRC.”

� Lung data (7 features, 228 patients) contains patient survival
information with advanced lung cancer from the North Cen-
tral Cancer Treatment Group and is available from the R pack-
age “survival.”

� ANZ data (ANZDATA): Australia & New Zealand Dialysis and
Transplant Registry data containing graft survival informa-
tion and electronic clinical records for kidney transplanta-
tion recipients in Australia and New Zealand from 30th June
2006 to 13th November 2017. This data contains records for
both living and deceased donors and also multiorgan trans-
plants. We processed the raw data, restricting the transplant
date to be after 18th September 2008 and retained deceased
donor kidney transplants only. Missing records are excluded,
resulting in 3,323 patients and 38 features containing patient,
donor, and donor–recipient human leukocyte antigen (HLA)
compatibility.

� UNOS_Kidney data: Organ transplant data based on the
Organ Procurement and Transplantation Network (OPTN)–
United Network for Organ Sharing (UNOS) in the United
States (based on OPTN data as of March 2020). We selected
a random sample of 3,000 records associated with deceased
donor kidney transplantation only with 99 features contain-
ing recipients, donors, and donor–recipient HLA compatibility.
Missing values are imputed using the R package “MICE.”

� Melanoma_clinical data, extracted from melanoma data [45,
46]: A in-house data set collected as a part of a multi-omics
study. This is the part that contains clinical information for
patients. After deleting all missing values, we have 88 patients
with stage III melanoma disease measured by 14 clinical fea-
tures.

Omics data sets—We consider 8 published data and 2 in-house
melanoma cancer data sets. A summary of the size and censoring
rate of all data sets can be found in Table 1.

� Two ovarian cancer gene expression data sets, downloaded
from the R package “curatedOvarianData.” Curation and
analysis pipeline of this data follow [47]. Ovarian1 is the
“GSE49997_eset” data, and Ovarian2 is the “GSE30161_eset”
data.

� Another 6 gene expression data sets are available online from
work by Yang and colleagues [48]. We have named them GE1
to GE6 for easier rendering of labels in our figures. For GE_3,
log2 transformation is applied, followed by a k-nearest neigh-
bor imputation method (KNN) imputation with 10 nearest
points. For GE_6, median normalization is applied. For others,
no further preprocessing was performed.

� Melamona_itraq and Melanoma_nano are 2 in-house
melanoma omics data sets [45, 46]. The first is a protein
expression data set from the iTRAQplatform and the second

is a Nanostring data set from the above melanoma study, and
preprocessing steps are described in the respective papers.
The itraq protein expression data has 41 patients with 640
proteins. The nanostring data has 45 patients with 204 genes
[49], and the GEO ID is “GSE156030."

Benchmarking design/procedure
Evaluation metrics: We examine model performance metrics that
can be broadly grouped into 4 categories and assess performance
in terms of each method’s flexibility, predictability, stability, and
computational efficiency, detailed in Supplementary Table S1 and
briefly summarized as follows:

(i) We measure model flexibility by looking at whether a given
method can handle different data modality, different level
of sparsity, and represents multiple ways, including the type
of data required (clinical, omics), type of input required (cat-
egorical, numerical), sparsity of the data allowed (yes, no),
and prediction ability evaluation metrics allowed.

(ii)We measure model predictability using 3 different metrics: C-
index, time-dependent AUC, and Brier score. We apply 4 dif-
ferent modified versions of the C-index: Harrell’s C-index,
Begg’s C-index, Uno’s C-index, and GH C-index. For identi-
fication of different time points, we equally divided the sur-
vival time ranging from the first quartile to the third quartile
into 15 time points for each data set, and therefore, we ob-
tained 15 AUC values corresponding to each time point. As
for the Brier score, we calculated the raw Brier score and the
IBS. The raw Brier score is calculated by taking the sum of all
Brier scores for all event times in the data set.

(iii)We measure the model computational efficiency using both
computational time and memory. Computational time is cal-
culated using the “Sys.time” function in R. Memory is calcu-
lated using the “Rprof” function in R, and the total memory
used is summarized for each experiment.

(iv)We measure model stability using model reproducibility and
the standard deviation (SD) of model predictability metrics.
Model reproducibility is defined as the proportion of success-
ful runs among all the runs attempted. For each model pre-
dictability metric, we calculated its SD. We then ranked the
values for all the methods for each data set from the most
stable (smallest SD) to the least stable (largest SD).

Benchmarking methods: All methods evaluated are described
in Table 2 (details in Supplementary Data). In this benchmark
study, hyperparameter sets used in these methods are chosen to
be the default set. All compared methods (Supplementary Data)
and evaluation metrics (Supplementary Table S1) are applied and
evaluated on real-world data sets listed earlier. We apply 20 times
(runs) repeated 5-fold cross validation using RStudio server (RRID:
SCR_000432) with 15 cores in parallel. For each run, the whole data
is split into a training data set (80%) and a testing data set (20%)
with each method trained using the training data set and values
of evaluation metrics calculated using the testing data set. For
methods with a feature selection step, a nested feature selection
step is applied on those training folds within each 5-fold cross-
validation procedure. Detail about the packages and parameters
can be found in the Supplementary Data, and functions used to
evaluate the methods are shown in Supplementary Table S1.

https://scicrunch.org/resolver/RRID:SCR_000432
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Table 1: Data sets summary

Data sets summary

Data set (name
used in this
paper)

No. of ob-
servations

No. of
variables

Type of
data

Censoring rate
(rounded to 4 decimal

places) Reference

Melanoma_itraq 41 642 Omics 0.4146 Wang KYX et al. Cross-Platform Omics Prediction
procedure: a game changer for implementing precision
medicine in patients with stage-III melanoma. bioRxiv
2020.12.09.415927; doi:
https://doi.org/10.1101/2020.12.09.415927

Melanoma_nano 45 206 Omics 0.4222 Wang KYX et al. Cross-Platform Omics Prediction
procedure: a game changer for implementing precision
medicine in patients with stage-III melanoma. bioRxiv
2020.12.09.415927; doi:
https://doi.org/10.1101/2020.12.09.415927

Ovarian_2 58 19,818 Omics 0.3793 Ganzfried BF et al. (2013) curatedOvarianData: clinically
annotated data for the ovarian cancer transcriptome.
Database, 2013.

GE_5 78 4,753 Omics 0.5641 van ’t Veer LJ et al. (2002) Gene expression profiling predicts
clinical outcome of breast cancer. Nature, 415, 530–536.

GE_3 86 6,288 Omics 0.7209 Bullinger L et al. (2004) Use of gene-expression profiling to
identify prognostic subclasses in adult acute myeloid
leukemia. N Engl J Med, 350, 1605–1616.

Melanoma_clinical
88 16 Clinical 0.3939 Wang KYX et al. Cross-Platform Omics Prediction

procedure: a game changer for implementing precision
medicine in patients with stage-III melanoma. bioRxiv
2020.12.09.415927; doi:
https://doi.org/10.1101/2020.12.09.415927

GE_1 115 551 Omics 0.6670 Sorlie T et al. (2003) Repeated observation of breast tumor
subtypes in independent gene expression data sets. Proc
Natl Acad Sci U S A, 100, 8418–8423.

GE-_4 116 4,753 Omics 0.5641 van de Vijver MJ et al. (2002) A gene-expression signature
as a predictor of survival in breast cancer. N Engl J Med,
347, 1999–2009.

Veteran 137 8 Clinical 0.0657 Kalbfleisch JD and Prentice RL (2002) The statistical
analysis of failure time data. Wiley Series in Probability
and Statistics.

Ovarian_1 194 16,050 Omics 0.7062 Ganzfried BF et al. (2013) curatedOvarianData: clinically
annotated data for the ovarian cancer transcriptome.
Database, 2013.

Lung 228 9 Clinical 0.2763 Loprinzi CL et al. (1994) Prospective evaluation of
prognostic variables from patient-completed
questionnaires. North Central Cancer Treatment Group. J
Clin Oncol, 12, 601–607.

GE_6 240 7,401 Omics 0.4250 Van Houwelingen HC (2004) The elements of statistical
learning, data mining, inference, and prediction. Trevor
Hastie, Robert Tibshirani, and Jerome Friedman, Springer,
New York, 2001. Stat Med, 23, 528–529.

GE_2 295 4,921 Omics 0.7322 Beer DG et al. (2002) Gene-expression profiles predict
survival of patients with lung adenocarcinoma. Nat Med, 8,
816–824.

PBC 312 7 Clinical 0.5994 Fleming TR and Harrington DP (2005) Counting processes
and survival analysis. Wiley Series in Probability and
Statistics.

UNOS_Kidney 3,000 101 Clinical 0.7350 OPTN data (https://optn.transplant.hrsa.gov/)
ANZ 3,323 40 Clinical 0.8739 ANZDATA (https://www.anzdata.org.au/)

Data table showing the names of data sets used in this paper in the first column. Data sets are ordered by the number of observations (second column, from
smallest to largest). Censoring rate is rounded to 4 decimal places.

Results
Comprehensive benchmarking design
To comprehensively evaluate the strength and weakness of the
survival analysis approaches, we select 20 representative meth-
ods from our extensive literature review and study their perfor-

mance when applied to 16 diverse data sets. The performance of
each method is measured against 11 metrics representing multi-
ple aspects, including feasibility, predictability, stability, and com-
putational efficiency. There are 3 key aspects of our comparison
design SurvBenchmark, as depicted in Figure 1: (i) practical focus

https://doi.org/10.1101/2020.12.09.415927
https://doi.org/10.1101/2020.12.09.415927
https://doi.org/10.1101/2020.12.09.415927
(https://optn.transplant.hrsa.gov/)
(https://www.anzdata.org.au/)
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Table 2: Summary of methods used in this study

Method name
Method name in this

paper R function name R package name Parameters (default)

Cox Cox coxph survival NA
Cox with backward
elimination using AIC

Cox_bw_AIC cph, fastbw rms rule = “aic,” sls = .05, k.aic = 2

Cox with backward
elimination using P
value

Cox_bw_p cph, fastbw rms rule = “p,” sls = .05

Cox with backward
elimination using BIC

Cox_bw_BIC cph, fastbw rms rule = “aic,” sls = .05, k.aic =
log(as.numeric(table(train$status)[2]))

Lasso Cox (for clinical
data sets)

Lasso_Cox penalized penalized Lambda1 = 1, lambda2 = 0

Ridge Cox (for clinical
data sets)

Ridge_Cox penalized penalized Lambda1 = 0, lambda2 = 1

Elastic Net Cox (for
clinical data sets)

EN_Cox penalized penalized Lambda1 = 1, lambda2 = 1

Lasso Cox (for omics
data sets)

Lasso_Cox glmnet glmnet alpha = 1, nfolds = 5, type.measure =
“C”

Ridge Cox (for omics
data sets)

Ridge_Cox glmnet glmnet alpha = 0, nfolds = 5, type.measure =
“C”

Elastic Net Cox (for
omics data sets)

EN_Cox glmnet glmnet alpha = 0.5, nfolds = 5, type.measure
= “C”

Random survival forest RSF rfsrc RandomSurvival
Forest

Default: ntree = 1000, mtry = 10

Multitask logistic
regression method

MTLR mtlr MTLR C1 = 1

DNNSurv (deep
learning survival
model)

DNNSurv multiple functions
as in Github codes

DNNSurv Default: no parameter arguments to
be changed by users

Boosting Cox model CoxBoost coxboost CoxBoost stepnumber = 10, penalty number =
100

Cox model with genetic
algorithm as feature
selection method

Cox (GA) GenAlg GenAlgo n.features = 10 (for omics), n.features
= 4 (for clinical), generation_num = 20

Multitask logistic
regression model with
genetic algorithm as
feature selection
method

MTLR (GA) GenAlg GenAlgo n.features = 10 (for omics), n.features
= 4 (for clinical), generation_num = 20

Boosting Cox model
with genetic algorithm
as feature selection
method

CoxBoost (GA) GenAlg GenAlgo n.features = 10 (for omics), n.features
= 4 (for clinical), generation_num = 20

Multitask logistic
regression model with
ranking-based method
as feature selection
method

MTLR (DE) lmFit,eBayes limma n.features = 10 (for omics), n.features
= 4 (for clinical)

Boosting Cox model
with ranking-based
method as feature
selection method

CoxBoost (DE) lmFit,eBayes limma n.features = 10 (for omics), n.features
= 4 (for clinical)

Survival support vector
machine

SurvivalSVM survivalsvm survivalsvm Default: sgf.sv = 5, sigf = 7, maxiter =
20, margin = 0.05, bound = 10, eig.tol
= 1e-06, conv.tol = 1e-07, posd.tol =
1e-08

DeepSurv (deep
learning survival
model)

DeepSurv deepsurv survivalmodels Default: frac = 0.3, activation = “relu,”
num_nodes = c(4 L, 8 L, 4 L, 2 L),
dropout = 0.1, early_stopping = TRUE,
epochs = 100 L, batch_size = 32L

DeepHit (deep learning
survival model)

DeepHit deephit survivalmodels Default: frac = 0.3, activation = “relu,”
num_nodes = c(4 L, 8 L, 4 L, 2 L),
dropout = 0.1, early_stopping = TRUE,
epochs = 100 L, batch_size = 32L

Data table showing the methods used in this benchmark study. R packages and functions with parameters are listed.
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through applying the design to a broad range of data sets and by
including a taxonomic methods system that evaluates multiple
aspects, (ii) extensive comparison of methods from classical to
state-of-the-art ML approaches, and (iii) comprehensive evalua-
tion of the model performance with the utilization of a customiz-
able weighting framework (Fig. 1B). To apply this in practice, the
following steps are needed:

(1)Provide a “weight vector” of length q, where each weight rep-
resents the strength for each of the q practical aspects. For
example, if an urgent analysis is conducted, one may pre-
fer a very high weight for computational time. On the other
hand, prediction accuracy may be most important in a situ-
ation where computational constraints are of no concern.

(2)According to the specific data modality, select the feasible
methods (m in total) and obtain their rank (recorded in an
m-by-q matrix) for the aspects considered in the “weight vec-
tor.”

(3)Multiply the rank matrix and the “weight vector” to obtain
the final selected method from this list of m scores (Supple-
mentary Table S3).

Practical consideration in assessing model
performance
Many comparison studies define method performance solely in
terms of method predictability, with only a few studies taking into
account computational time. Often the feasibility of the method is
not properly considered or discussed. Practically, it is paramount
that a method can be applied to the data at hand, based on both
the flexibility (data modality, sparsity) and computational require-
ment.

Given the diverse collection of data characteristics that is now
available in the biomedical field, not all survival approaches are
feasible to be applied to all data types, e.g., some classical Cox
models (Fig. 2A, from column 1 to 10; a blue box indicates ‘method
not feasible’) cannot handle large p (features) small n (samples)
datasets (such as GE-1) which is a distinct feature of any molec-
ular (omics) study. Advanced feature selection methods together
with ML survival models such as CoxBoost(DE) can only take nu-
merical data as the input (purple box for input type, where model
characteristics are coded using 0, 1, and 2 with questions defined
as below. Is input type numeric only? Yes: numerical only. No: both
numerical and categorical are OK. Is output type survival risk?
Yes: survival risk. No: survival probability. Can the model handle
n < p situation? Yes: it can. No: it cannot. The other case: output
is the rank of survival risk.).

Next, we look at the computational aspect, and we notice that
DL-based methods are computationally inefficient as highlighted
by the star icon (Fig. 2A). From the many rowwise stars, we observe
that RSF (5 stars) and MTLR (5 stars) are not as computationally
efficient as Cox-based approaches such as Lasso_Cox (1 star) and
CoxBoost (0 stars).

Lastly, a summary tabulating the readily applicability associ-
ated with each of the evaluation metrics for prediction is provided
in Figure 2B. The results highlight that Begg’s C-index and GH C-
index are applicable only for Cox methods (red indicates readily
applicability), that the integrated Brier score can be calculated for
the Cox model and RSF (red), and that the Brier score cannot be
calculated for SurvivalSVM (blue).

Performance evaluation from multiple
perspectives: no “one size fits all”
To achieve a comprehensive overview of different survival ap-
proaches, we assess method performance from multiple perspec-
tives across a large collection of data sets. Here, we color the meth-
ods according to their performances for all 3 broad categories:
model predictability, model stability, and computational efficiency
(Fig. 2C shows ranks of those methods where red means the best
and blue the worst; similarly, Fig. 2D shows Harrell’s C-index val-
ues with red referring to high values and blue to small values). We
find that no method performs optimally across all 3 categories,
and there are various trade-offs among the categories.

For model predictability, we use 7 different measures based on
C-index, Brier score, and time-dependent AUC. Here, MTLR-based
approaches perform evidently better than others, which is most
apparent by looking at the performance results using C-index and
time-dependent AUC. In order to further examine whether MTLR-
based approaches have similar performance across all data sets,
we show our examination on one specific criterion (the most pop-
ular Harrell’s C-index; Mean_hc). In Figure 2D, we demonstrate
that MTLR has optimal performance for all but 1 of the 6 clinical
data sets with PBC having optimal performance for one of the clin-
ical data sets. Variants of MTLR (MTLR(GA) and MTLR(DE)) outper-
formed MTLR when applied to any of the 10 omics data sets, sug-
gesting the performance of the approaches depends on the type
of data set.

For computational efficiency as measured by computational
time and memory usage, the best-performing methods are
classical Cox-based models and CoxBoost. In particular, Cox,
Cox_bw_AIC, and Cox_bw_BIC are the top 3 performing methods
for computational time (Fig. 2C). For model stability, we have 7
criteria, and they are based on calculating the SD of predictabil-
ity metrics described above. Similar to the the computational ef-
ficiency performance, when using SD criteria, Cox, Cox_bw_AIC,
and Cox_bw_BIC are also the top 3 performing methods in all but
one criterion; the exception is the standard deviation of the Brier
score (SD_bs), where DNNSurv ranks first, suggesting its ability to
discriminate survival probabilities for different observations.

In conclusion, the above observations demonstrate that no
method performs optimally for all those categories. In practice,
we recommend first completing a feasibility check first to draw
conclusions on time constraints and to heighten awareness of the
data types actually present and then explicitly deciding on the fo-
cus of the research, for example, that model predictability is the
top priority. Our analysis supports the use of MTLR and its vari-
ants for both omics and clinical data sets when survival predic-
tion is the key priority, despite the fact that these approaches are
inefficient [50]. However, Cox-based models are preferable when
comparing the effect of variables, such as the treatment effect for
clinical data sets, because of their efficiency and interpretability.

Cox-based modern ML methods have similar
prediction performance compared to classical
Cox-based methods
To understand the gain in model predictability from Cox-based
modern ML methods (CoxBoost, Coxboost (GA)), we compare these
models with classical Cox-based methods (Lasso_Cox, EN_Cox),
which are used as a gold-standard method in many studies. Our
results indicate that they have similar performance (Fig. 3) across
a large collection of data sets. For example, in the ANZ data, which
is a representative clinical data set, we observe similar model pre-
dictability measured by both Harrell’s C-index and Brier score. For
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Figure 1: SurvBenchmark: schematic view of our benchmark design. (A) An overview of survival methods used in this study. We broadly classify
current models into 2 categories: classical statistical models (top group) and modern machine learning models (bottom group), which is inspired by
the study from Wang et al. [2]. Each of these categories can be further subdivided as presented in the hierarchical chart. All models in blue and red
colored boxes are implemented in this current benchmark study. (B) A graphical representation of the SurvBenchmark design. The methods and
evaluation metrics are summarized in a matrix with a flexible user-defined weights vector.

GE_5, a representative data set of omics with large p small n data
characteristics, the same conclusion is drawn. This suggests the
performance of modern ML methods in complex health and clin-
ical data is not as clear-cut as in some other domains.

Data-dependent model performance for different
time
To study the model performance over time, we visualize this using
the time-dependent AUC curves for all methods. Here we observe
among 2 representative clinical data sets (PBC, UNOS_Kidney) and
2 omics data sets (GE_2, GE_4) in Figure 4, not all curves are paral-
lel to each other, indicating that the behavior of model predictabil-
ity for different time points is data dependent (see Supplementary
Fig. S1 for further results).

We pick 2 representative models (Cox(GA) and RSF) to demon-
strate this data-dependent model behavior. For UNOS_Kidney
data and GE_2 data, the curves are approximately horizontal,
which indicates the consistency of short-time, medium-time, and
long-time model predictability. In contrast, for PBC data and GE_4
data, model predictability changes along those time points.

Conclusions
This benchmark study comprehensively evaluated the relevance
and usefulness of survival models in practice, where emphasis
is on performance over diverse data sets. In our review, we as-
sessed a broad variety of survival methods from classical CoxPH
models to modern ML models. In this study, we did not survey
the extensive tuning procedures for those survival approaches.
The main reason is that, in practice, often the default hyperpa-

rameter sets are used. Therefore, we also decided to use the de-
fault sets in our study here. However, we note that applying tar-
geted tuning methods for a particular data set may lead to dif-
ferent performances for the considered approaches. The findings
of our systematic assessment will provide specific guidance for
translational scientists and clinicians, as well as define areas of
potential study in both survival methodology and benchmarking
strategies.

In recent years, there is a clear shift in how survival data are
analyzed, from modeling directly the hazard function to build-
ing models directly on survival functions. Conceptually, mod-
eling hazard functions is a good way to identify key risk fac-
tors related to various patients’ risk levels. On the other hand, if
our key criterion is to predict accurately survival, modeling sur-
vival probability directly improves predictability. Methods includ-
ing MTLR, DNNSurv, and SurvivalSVM, which directly model the
survival function, showed better performance in terms of model
predictability, and this is consistent with what Yu et al. [27] have
commented on when discussing the performance of their pro-
posed MTLR method.

It is striking that MTLR shows remarkably high model pre-
dictability in our benchmark study. We now highlight technical
advantages, disadvantages, and its applications. Numerous rea-
sons could contribute to the better model prediction performance
of the MTLR-based approaches. These include the 3 main rea-
sons as discussed by Yu et al. [27]: direct modeling of the sur-
vival function, simultaneous building of multiple logistic regres-
sion models, and dynamic modeling. Interestingly, the majority of
extended MTLR models since 2011 are based on neural networks
as researchers extend the concept to account for nonlinearity in
data sets [51]. To date, only a limited number of studies have ap-
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Figure 2: Summary heatmaps. (A) Summary for method flexibility and computational efficiency. Row: methods; Column: data sets; Dendrogram:
similarity among data sets. Legend: (1) Left panel indicators 0, 1, and 2, where 0 represents “no,” 1 represents “yes,” and 2 represents “the other case”
for the corresponding questions listed here. Is input type numeric only? Yes: numerical only. No: both numerical and categorical are OK. Is output type
survival risk? Yes: survival risk. No: survival probability. Can the model handle n < p situation? Yes: it can. No: it cannot. The other case: output is the
rank of survival risk. (2) Feasibility where red (1) means feasible and blue (0) means not feasible. (3) Main indicators including data set characteristics
by different colors and stars represent the model is both memory and time-consuming. Similarity is defined using the Euclidean distance with
feasibility indicator 0 and 1. (B) Prediction ability evaluation metric flexibility. Row: methods; Column: prediction ability evaluation metrics;
Dendrogram: similarity among evaluation metrics; Legend: readily applicability where red (1) means readily applicable and blue (0) means not readily
applicable. Similarity is defined using the Euclidean distance with feasibility indicator 0 and 1. (C) Rank heatmap for method overall performance.
Row: methods; Column: performance metrics. Legend: (1) Rank: red to blue from 1 to 20, where 1 means the top rank. (2) Performance metric
categories: 5 different categories representing all metrics used to evaluate method performances. (D) Harrell’s C-index heatmap. Row: data sets;
Column: methods; Legend: Harrell’s C-index.
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Figure 3: Prediction ability for Cox-based methods. Top left: Harrell’s C-index on ANZ data. Top right: Brier score on ANZ data. Bottom left: Harrell’s
C-index on GE_5. Bottom right: Brier score on GE_5.

plied MTLR in health using clinical data in HIV patients [52] or
on large omics data sets to predict patient survival in breast and
kidney cancers [53]. Given its outstanding model predictability ob-
served for most of the data sets in our study, we believe there is
opportunity to use MTLR more widely for survival risk modeling
in health contexts.

Model predictability is one of the key metrics to assess sur-
vival studies, with Harrell’s C-index being currently the most pop-
ular. As this kind of ranking-based concordance measurement is
suitable to evaluate predicted outcomes with censored data, vari-
ous concordance indices are developed using different methods to
handle censoring such as Uno’s C-index using IPCW. Besides con-
cordance indices, other predictability metrics such as the time-
dependent AUC, which applies a similar idea as the AUC in binary
classification but divides the whole time interval into multiple
time points, are also adopted in some survival studies [54]. Given
that model predictability could be measured by multiple types of
indices, we suggest that hybrid evaluation metrics should be ap-
plied in practice to provide relatively comprehensive assessments
for the fitted model.

While many survival approaches are applicable to both clini-
cal and omics data, there are a number of recently developed ap-
proaches that are specifically tailored for high-dimensional omics

data, such as CoxBoost. The rationale behind developing data-
specific methods is to better capture the distinct data character-
istics in either the clinical or omics studies. Clinical data usu-
ally include mixed-modality variables and large sample sizes but
have large n (observations) and small p (features). In contrast,
omics data naturally come with a large collection of molecular
features and with small n but their data type is homogeneous.
When it comes to various real-world data sets, performances
are also affected by many other aspects besides data type (clin-
ical, omics) such as data modality, and therefore, it is challeng-
ing to directly examine whether those tailored methods indeed
improve the performance. Further examination of the aspects
that affect model predictability can be found in Supplementary
Table S2.

Deep learning–based methods failed for some data sets on
some cross-validation runs. Taking the method DNNSurv as an
example, among all 100 runs, DNNSurv had a 100% completion
rate for 5 out of the 12 applicable data sets (Supplementary Fig. S2)
only. For the remaining 7 data sets, completion rate was around
80% and as low as 63% for the Melanoma_itraq data. This instabil-
ity is likely due to tuning parameter sensitivity when the sample
size is small [55]. All failed iterations are not recorded when gen-
erating the results.
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Figure 4: Time-dependent AUC curves. (A) PBC data. (B) UNOS_US data. (C) GE_4 data. (D) GE_2 data. Two selected models: Cox(GA) and RSF.

Additional Files
Supplementary Fig. S1: Data dependent performance for short
and long time prediction.
Supplementary Fig. S2: Method reproducibility.
Supplementary Fig. S3: Uno’s C-index boxplots.
Supplementary Fig. S4: Brier Score boxplots.
Supplementary Table S1: Different evaluation criteria for assess-
ing the performance models.
Supplementary Table S2: Examination of potential aspects that
affect the model predictability using Harrell’s C-index.
Supplementary Table S3: Ranking matrix.
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Data Availability
For the ANZDATA, data request can be made through the AN-
DATA registry, and access to the data source will require HREC
approvals. UNOS_kidney data can be requested from [56]. Codes
for running those methods and evaluation measurements for an
example data set are available at [57]. All supporting data and ma-
terials are available in the GigaScience GigaDB database [58].
Availability of supporting source code and requirements.
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Operating system(s): Platform independent
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