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ABSTRACT

Protein–peptide interactions are involved in a wide
range of biological processes and are attractive tar-
gets for therapeutic purposes because of their small
interfaces. Therefore, effective protein–peptide dock-
ing techniques can provide the basis for potential
therapeutic applications by enabling an atomic-level
understanding of protein interactions. With the in-
creasing number of protein–peptide structures de-
posited in the protein data bank, the prediction ac-
curacy of protein-peptide docking can be enhanced
by utilizing the information provided by the database.
The GalaxyPepDock web server, which is freely ac-
cessible at http://galaxy.seoklab.org/pepdock, per-
forms similarity-based docking by finding templates
from the database of experimentally determined
structures and building models using energy-based
optimization that allows for structural flexibility. The
server can therefore effectively model the structural
differences between the template and target protein–
peptide complexes. The performance of GalaxyPep-
Dock is superior to those of the other currently avail-
able web servers when tested on the PeptiDB set
and on recently released complex structures. When
tested on the CAPRI target 67, GalaxyPepDock gen-
erates models that are more accurate than the best
server models submitted during the CAPRI blind pre-
diction experiment.

INTRODUCTION

Protein–protein interactions that are mediated by short lin-
ear peptides of interacting partners are critical in a broad
range of biological processes, such as signaling pathways,
protein cellular localization and post-translational modifi-
cations (1–4). The importance of such interactions is ev-
ident because of their involvement in critical human dis-
eases, such as cancer and infections (5,6). Because of the

small sizes of protein–peptide interfaces, such interactions
can be modulated by small chemicals or synthetic pep-
tides (7,8). Therefore, effective computational modeling
of protein–peptide interactions can provide useful infor-
mation for understanding complex biological processes in
molecular detail and for modulating protein–protein inter-
actions for disease treatment.

As in other areas of molecular modeling, it is very difficult
to obtain reliable predictions by computational protein–
peptide docking when prior knowledge of the interactions is
not available. When there is no information on the binding
site, putative binding sites must be searched for on the entire
surface of the target protein. Such global docking methods
show limited accuracy for predicting high-resolution com-
plex structures, but successful predictions of at least part of
the binding residues have been reported (9–11). When ex-
perimental or predicted data on binding site residues are
available, such information can be used to constrain the
docking to local regions of the protein surface (12). These
local docking methods usually require a model protein–
peptide complex structure as input, whereas global dock-
ing methods require only a protein structure and a pep-
tide sequence. Among the various protein–peptide docking
methods developed so far, only a small number of meth-
ods are available as web servers, such as PepSite (13) and
PEP-SiteFinder (14) for global docking and Rosetta Flex-
PepDock (15–17) and PepCrawler (18) for local docking.

As increasing number of protein–peptide complex struc-
tures are being deposited in the protein data bank, the prob-
ability of finding protein–peptide complexes similar to a
given target complex in the structure database increases. For
example, 87% of the non-redundant protein–peptide com-
plexes in the PeptiDB set (19) have similar proteins, with a
protein TM-score > 0.6, among the experimentally resolved
structures that were published prior to the given complex.
Because protein–peptide interactions are usually stabilized
through hot spot interactions (19,20), the observed hot spot
interactions in known protein–peptide complex structures
can be useful for predicting interactions that involve a range
of new variations in target proteins and peptides.
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The GalaxyPepDock server presented in this paper uti-
lizes information on protein–peptide interactions of simi-
lar proteins in the database of experimentally determined
structures to generate high-resolution complex structures
when reasonable template protein–peptide complex struc-
tures can be found. A further refinement by GALAXY
energy-based optimization (21–24) enables the modeling of
structural differences between the template and target com-
plex structures by sampling the backbone and side-chain
flexibilities of both protein and peptide.

GalaxyPepDock identified 75.4% of the binding site
residues on average, compared with 66.2 and 40.9% by
PEP-SiteFinder (14) and PepSite (13), respectively, for the
40 PeptiDB targets that have ≤ 10 residue-long peptides
that are accepted by PepSite. In terms of complex structure
prediction, GalaxyPepDock returned structures with better
than acceptable quality when measured by the CAPRI cri-
terion ((25), http://www.ebi.ac.uk/msd-srv/capri/round28/
round28.html) for 37 of the 57 PeptiDB targets, compared
with the 9 targets returned by PEP-SiteFinder. A similar
level of improvement by GalaxyPepDock was also observed
when tested on 22 recently released protein–peptide com-
plex structures. When tested on the CAPRI target 67, pre-
dictions of medium accuracy were made; this accuracy is
among the best predictions made by human groups and su-
perior to the best server predictions submitted during the
CAPRI blind prediction experiment. For this target, the
conformational change of the protein by peptide binding
was also correctly predicted.

THE GALAXYPEPDOCK METHOD

The overall procedure of template selection and model-
building is illustrated in Figure 1 and is described in more
detail below.

Template selection

Templates for protein–peptide complex structure prediction
are selected from the PepBind (26) database with the follow-
ing score for each complex structure in the database

Scomplex = ZTM + ZInter,

where ZTM measures the protein structure similarity by
the Z-score of the TM-score of a database protein struc-
ture when aligned to the target protein structure by TM-
align (27) and ZInter measures the interaction similarity of
a database complex and the target complex when aligned
to the former by the Z-score of the interaction similarity
score SInter defined below. Up to 10 complexes with Scomplex
> 90% of the maximum value are selected as templates and
used in the model-building procedure described in the next
subsection.

To measure the interaction similarity of a database com-
plex and the target complex, the target complex is first
aligned to the database complex by protein structure align-
ment and peptide sequence alignment. Peptide alignment is
performed by gapless sequence alignment with a modified
BLOSUM62 (28) matrix score, by multiplying the weight
of (1 + the number of hydrophobic or ionic protein residues

contacting the given peptide residue in the template com-
plex structure) to the BLOSUM62 matrix components with
scores > 0. Hydrophobic (or ionic) protein–peptide residue
pairs with at least one heavy atom pair within 5.0 Å (or 6.0
Å) are considered to be contacting following the PepBind
criterion (26). In this way, more emphasis is put on the pep-
tide residues contributing to hot spot interactions than on
other residues during peptide alignment. An example case
of peptide alignment is provided in Supplementary Figure
S1(a). The interaction similarity score SInter is then calcu-
lated by summing the interaction pair similarity score Si− j
for all of the protein–peptide residue pairs (i − j ) in contact
in the template complex, as illustrated in Supplementary
Figure S1 (b) for the example case. Si− j is measured by the
similarities in the amino acids of the contacting pair (i − j )
in the template complex and of the corresponding pair (i ′ −
j ′) in the target complex aligned to the template and is de-
fined as Si− j = Max [B(i, i ′) + B( j, j ′), B(i, j ′) + B( j, i ′)],
where B(i, i ′) is the BLOSUM62 matrix component for the
amino acid of residue i and that of residue i ′.

Model-building

For each template, 50 model complex structures are first
generated with the model-building tool of GalaxyTBM
(29,30) using protein structure alignment and peptide se-
quence alignment. For the model-building optimization,
restraints on the distances between interacting protein–
peptide pairs are added to the GALAXY energy, with
weights dependent on the interaction pair similarity score
Si− j (see Supplementary Figure S1(c) for details). Interac-
tion pairs with higher similarities to the template tend to be
conserved by stronger template-derived restraints, whereas
the sampling of other parts of the structure is driven more
by the physics-based energy than by template-derived infor-
mation. Of the model structures generated by GalaxyTBM,
10 structures are selected by choosing the structures with
the best energy values for each template and are further re-
fined following the GalaxyRefine (21) protocol. This refine-
ment step allows for the adjustment of the backbone and
side-chain structures by repetitive molecular dynamics re-
laxations after side-chain repacking.

Performance of the method

The performance of GalaxyPepDock was compared with
those of two available web servers, PEP-SiteFinder and Pep-
Site, which perform global docking and thus do not re-
quire the protein–peptide structure as input. Because PEP-
SiteFinder and PepSite are ab initio methods that do not
rely on template information, the comparison of the results
presented here demonstrate the extent to which a similarity-
based method such as GalaxyPepDock can be useful com-
pared with the ab initio methods for the benchmarking
set. For a fair comparison, the complexes in the PepBind
database that were released after each target complex were
excluded during template search in GalaxyPepDock predic-
tion. The accuracy of the best model of the 10 generated
models was evaluated for each method.

The non-redundant set of PeptiDB (19) was first em-
ployed for comparison. Peptide docking to unbound pro-
tein structures was performed on 57 of the 103 PeptiDB
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Figure 1. Flowchart of the GalaxyPepDock algorithm. Given a protein structure and a peptide sequence, template complex structures are first selected
from the PepBind database based on protein structure similarity and protein–peptide interaction similarity. Models are then built with the model-building
tool of GalaxyTBM, and the 10 models that are selected based on energy are returned after further optimization by the GalaxyRefine flexible refinement
method.

complexes for which unbound protein structures are avail-
able in the structure database because re-docking peptides
to bound protein structures is only of theoretical interest.
For the 40 PeptiDB targets that have ≤ 10 residue-long pep-
tides that are accepted by PepSite, GalaxyPepDock identi-
fied 75.4% of the binding site residues on average, compared
with the 66.2% and 40.9% identified by PEP-SiteFinder and
PepSite, respectively (see Supplementary Table S1 for re-
sults for individual targets). In terms of complex structure
prediction, GalaxyPepDock generated structures with bet-
ter than acceptable quality when measured by the CAPRI
criterion (25, http://www.ebi.ac.uk/msd-srv/capri/round28/
round28.html) for 37 of the 57 PeptiDB targets, compared
with the 9 targets returned by PEP-SiteFinder (see Supple-
mentary Tables S2 and S3 for details).

It should be emphasized that the flexible-structure
energy-based model-building procedure of GalaxyPep-
Dock can improve the predictions beyond that of a
simple method that superimpose the target onto the tem-
plate structure. The improvement in prediction accuracy
achieved by additional energy optimization compared with
the template superimposition method can be observed
from the increased number of high-accuracy/medium-
accuracy/acceptable predictions from 5/22/36 to 6/27/37
and the improved median ligand-RMSD/interface-
RMSD/(fraction of native contact) values from 3.0 Å/1.6
Å/0.571 to 2.8 Å/1.3 Å/0.667.

For an independent test, protein–peptide complexes
involving 5- to 15-residue peptides and with available
unbound protein structures that share ≤70% sequence
identity were selected among recently released struc-
tures (released after 2009). This set consists of 22 com-
plexes. On this set, GalaxyPepDock showed a similar
level of improvement, producing structures with better
than acceptable quality for 17 of the 22 targets, com-
pared with 5 returned by PEP-SiteFinder (see Supple-
mentary Tables S4 and S5 for details). The number
of high-accuracy/medium-accuracy/acceptable predictions
was increased from 0/8/15 to 0/9/17 and median ligand-
RMSD/interface-RMSD/(fraction of native contact) val-
ues were improved from 3.1 Å/1.8 Å/0.588 to 2.5 Å/1.6
Å/0.693 by energy optimization.

GalaxyPepDock was also tested on the CAPRI tar-
get 67 (PDB ID: 4N7H), and a medium-accuracy pre-
diction was made (see Supplementary Table S6). Com-
pared with template-superimposed models, the quality of
the model was improved by energy optimization from ac-
ceptable to medium accuracy, with improvements in ligand-
RMSD/interface-RMSD/(fraction of native contact) val-
ues from 2.9 Å/1.5 Å/0.500 to 1.8 Å/1.0 Å/0.688. In the
CAPRI blind prediction experiment, no group submitted
high-accuracy models for this target, and 6 of the 44 reg-
istered groups submitted medium-accuracy models. The
best server predictions were only of acceptable quality. The

http://www.ebi.ac.uk/msd-srv/capri/round28/round28.html
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Figure 2. GalaxyPepDock output page. Generated models are shown in
the images and can be downloaded or viewed using the JavaScript Protein
Viewer. Additional information such as selected templates, alignments of
query and template sequences, protein structure similarity, interaction sim-
ilarity score, estimated accuracy and predicted binding site residues is also
provided.

‘Seok’ group submitted models only of acceptable quality
because no refinement procedure was applied at the time.

THE GALAXYPEPDOCK SERVER

Hardware and software

The GalaxyPepDock server runs on a cluster of 12 Linux
servers of 2.33-GHz Intel Xeon 8-core processors. The web
application uses the Python programming language and the
MySQL database. The protein–peptide docking pipeline is
implemented using Python. The protein–peptide docking
algorithm is implemented in the GALAXY program pack-
age (29,31) written in Fortran 90. The JavaScript Protein

Viewer (http://biasmv.github.io/pv/) is used for the visual-
ization of the predicted models.

Input and output

The required input is a protein structure in PDB format and
a peptide sequence in FASTA format. The size of the target
protein and peptide is limited to 900 and 30 amino acids,
respectively, for computational efficiency. The average run
time is 2–3 h. Ten model structures can be viewed and down-
loaded from the website, and additional information on the
predicted binding sites and estimated accuracy of the pre-
dicted interactions is provided. The prediction accuracy is
estimated from a linear model of the relationship between
the fraction of correctly predicted binding site residues and
the template-target similarity (measured by the protein TM-
score and SInter) obtained by a linear regression of the Pep-
tiDB test set results. For targets with a low estimated accu-
racy close to 0, it is suggested that ab initio docking servers
such as PEP-SiteFinder are tried. A sample output page is
shown in Figure 2.

CONCLUSIONS

GalaxyPepDock is a similarity-based protein–peptide
docking web server that performs additional flexible-
structure energy-based optimization. The effective combi-
nation of database search and physics-based optimization
allows for a superior performance compared with the exist-
ing methods when complexes involving similar proteins can
be found in the database.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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