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Background.Vestibular schwannoma (VS) is benign, slow-growing brain tumor that negatively impacts patient quality of life, which
may cause even death. This study aimed to explore key genes and microRNAs (miRNAs) associated with VS.Methods.ThemRNA
and miRNA expression profiles of VS downloaded from Gene Expression Omnibus (GEO) database were included in this study
to perform an integrated analysis. The differentially expressed mRNAs (DEmRNAs) and miRNAs (DEmiRNAs) were identified.
Then, functional annotation and protein-protein interaction networks (PPI) of DEmRNAs were constructed. DEmiRNA-target
DEmRNAs analysis and functional annotation of DEmiRNA-target DEmRNAswere performed. Results.A total of 2627DEmRNAs
(1194 upregulated and 1433 downregulated DEmRNAs) and 21 DEmiRNAs (12 upregulated and 9 downregulated DEmiRNAs) were
identified. ISG15, TLE1, and XPC were three hub proteins of VS-specific PPI network. A total of 2970 DEmiRNAs-DEmRNAs
pairs were obtained. Among which, hsa-miR-181a-5p, hsa-miR-106-5p, and hsa-miR-34a-5p were the top three DEmiRNAs
that covered most DEmRNAs. The functional annotation of DEmiRNA-target DEmRNAs revealed that the DEmiRNA-target
DEmRNAs were significantly enriched in cGMP-PKG signaling pathway, adrenergic signaling in cardiomyocytes, and pathways
in cancer. Conclusion.The results of this present study may provide a comprehensive understanding for the roles of DEmRNAs and
DEmiRNAs in the pathogenesis of VS and developing potential biomarkers of VS.

1. Introduction

Vestibular schwannoma (VS), commonly termed acoustic
neuromas, arise from the vestibular branch of the eighth
cranial nerve and is benign, slow-growing brain tumors that
negatively impact patients’ quality of life, which may cause
hearing loss, tinnitus, facial palsy, and when large enough,
brain stem compression, and even death [1, 2]. VSmay appear
unilaterally but may also appear bilaterally when associated
with neurofibromatosis type 2 syndrome (NF2) [2]. To date,
the identification of the NF2 gene is the most important
finding to our understanding of VS biology [3]. Current treat-
ment modalities of VS are various, including observation,
also known as wait-and-scan or watchful waiting, radiation
therapy (RT) and microsurgical resection (MS), based on
assorted factors, such as size at diagnosis, significant tumor
growth on serial imaging, or patient symptoms [4].

Recent efforts to define the associated genes and molec-
ular pathways involved in tumorigenesis and expansion

have been met with some success. Welling et al. identified
a number of deregulated genes in tumor tissue by using
cDNAmicroarray analysis of tissue samples from 1 vestibular
nerve versus 3 cystic sporadic, 3 solid sporadic, and 1 NF2-
associated vestibular schwannoma [5]. Cayé-Thomasen et
al. examined the gene expression in tissue samples from 3
human vestibular nerves versus 16 solid, sporadic vestibular
schwannomas using a microarray chip and identified more
than 20,000 genes [6]. Aarhus et al. studied 25VSs and 3 tibial
nerves (controls) with the ABI 1700 microarray platform and
obtained 1650 differentially expressed genes [7]. However,
the molecular events involved in the development of this
condition are not well understood.There is an urgent need to
investigate new therapeutic targets for VS and develop novel
treatment options.

MicroRNA (miRNA) is a new class of noncoding RNA
molecules, which is short (∼21-23 nucleotides long), single-
stranded RNA molecules and later shown to be a key
part of posttranscriptional regulatory mechanisms of gene
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expression in diverse organisms [8, 9]. MiRNAs broadly
participates in the regulation of protein translation and
mRNA stability and are believed to play pivotal roles in awide
array of biological processes, including tumor development
[10–12]. As alterations in miRNA expression levels have been
linked with a variety of disease processes, focus on aberrant
expression in pathological states has increased [13].

This present study performed an integrated analysis
of miRNAs and mRNAs expression profiles of VS down-
loaded fromGene ExpressionOmnibus (GEO) database.The
differentially expressed mRNAs (DEmRNAs) and miRNAs
(DEmiRNAs) were identified. In addition, protein-protein
interaction (PPI) network of DEmRNAs was conducted.
DEmiRNA-target DEmRNAs analysis and functional anno-
tation of DEmiRNA-target DEmRNAs were performed. In
doing so, we hope this study could represent a new avenue
for understanding the pathogenesis and developing potential
biomarkers of VS.

2. Materials and Methods

2.1. Microarray Expression Profiling in GEO. The mRNA
and miRNA expression profiles of patients with VS were
downloaded from GEO database (http://www.ncbi.nlm
.nih.gov/geo). The search strategy in the GEO datasets was
as follows: (1) selected datasets should be mRNA/miRNA
transcriptome data of the whole genome; (2) these data
were derived from tumor tissues and adjacent nontumor
tissues of patients with VS; (3) datasets were standardized or
raw datasets. Three datasets of mRNA expression profiles,
including GSE108524, GSE56597, and GSE39645, and two
datasets of miRNA expression profiles, including GSE43571
and GSE24390, were included in this study (Tables 1 and 2).

2.2. Identification of DEmRNAs and DEmiRNAs in Patients
with VS Compared with Normal Controls. MetaMA, an R
package, is used to combine data from multiple microar-
ray datasets, and we obtained the individual P-values. The
Benjamini & Hochberg method was used to obtain multiple
comparison correction false discovery rate (FDR). DEmR-
NAs and DEmiRNAs in VS compared to normal controls
were obtained with FDR < 0.05 and FDR < 0.01, respectively.
Hierarchical clustering analysis of DEmRNAs was conducted
by using R package “pheatmap”.

2.3. Functional Annotation of DEmRNAs between Patients
with VS and Normal Controls. Functional annotation,
including Gene Ontology (GO) function and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses of the DEmRNAs between patients
with VS and normal controls, were performed by CPDB
(http://cpdb.molgen.mpg.de/CPDB). FDR < 0.01 was set as
the cut-off for significance.

2.4. PPI Network Construction. Top 50 up- and down-
regulated DEmRNAs were scanned with the Biological
General Repository for Interaction Datasets (BioGrid,
http://www.uniprot.org/database/DB-0184). In order to
further explore the biological functions of the DEmRNAs,

PPI network was then constructed by using Cytoscape
software (version 3.6.1, http://www.cytoscape.org).

2.5. DEmiRNA-Target DEmRNAs Analysis. As miRNAs tend
to decrease the expression of their target mRNAs, tar-
get genes from DEmRNAs that expressed inversely with
that of miRNA were selected to subject to further inves-
tigation [14]. Firstly, the putative targeted DEmRNAs of
DEmiRNAs were predicted by six bioinformatic algo-
rithms (RNA22, miRanda, miRDB, miRWalk, PICTAR2,
and Targetscan). Then, the confirmed targeted DEmRNAs
of DEmiRNAs were obtained from miRWalk. Thirdly, the
confirmed DEmiRNA-DEmRNA pairs were derived from
miRWalk and the DEmiRNA-DEmRNA pairs recorded by ≥
4 algorithms. Based on the obtained DEmiRNA-DEmRNA
pairs, DEmiRNA-DEmRNA interaction networks between
VS and normal controls were constructed by using Cytoscape
software (http://www.cytoscape.org/).

2.6. Functional Annotation of DEmiRNA Targets. To further
research the biological function of the target DEmRNAs
of DEmiRNAs, GO and KEGG pathway analysis were per-
formed by using CPDB (http://cpdb.molgen.mpg.de/CPDB).
FDR < 0.01 was set as the cut-off for significance.

3. Results

3.1. DEmRNAs and DEmiRNAs between Patients with VS
and Normal Controls. Compared to normal controls, a total
of 2627 DEmRNAs (1194 upregulated and 1433 downregu-
lated DEmRNAs) and 21 DEmiRNAs (12 upregulated and 9
downregulated DEmiRNAs) were identified. The top 10 up-
and downregulated DEmRNAs and all DEmiRNAs between
patientswithVS andnormal controlswere displayed inTables
3 and 4, respectively. Hierarchical clustering analysis of top
100 up- and downregulated DEmRNAs and DEmiRNAs was
displayed in Figure 1.

3.2. Functional Annotation of DEmRNAs between Patients
with VS and Normal Controls. Anatomical structure devel-
opment (FDR = 1.30E-33), multicellular organism devel-
opment (FDR = 1.67E-33), intrinsic component of plasma
membrane (FDR = 8.06E-10) and RNA polymerase II tran-
scription factor activity, and sequence-specific DNA binding
(FDR = 3.72E-23) were significantly enriched GO terms in
VS (Figures 2(a)–2(c)). Neuroactive ligand-receptor interac-
tion (FDR = 1.49E-10), calcium signaling pathway (FDR =
0.000137054), and cGMP-PKG signaling pathway (FDR =
0.000853812) were significantly enriched KEGG pathways in
VS (Figure 2(d)).

3.3. PPI Network Construction. The VS-specific PPI network
was consisted of 308 nodes and 310 edges. ISG15 (degree =
26), TLE1 (degree = 24), and XPC (degree = 16) were three
hub proteins of VS-specific PPI network (Figure 3).

3.4. DEmiRNA-Target Interactions. A total of 2970 DEm-
iRNAs-DEmRNAs pairs, including 2570 DEmiRNAs-
DEmRNAs pairs which were predicted by ≥ 4 algorithms

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
http://cpdb.molgen.mpg.de/CPDB
http://www.uniprot.org/database/DB-0184
http://www.cytoscape.org
http://www.cytoscape.org/
http://cpdb.molgen.mpg.de/CPDB
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Table 1: List of mRNA study samples from GEO.

GEO
accession Author Platform Samples

(N:P) Year

GSE108524 Zhao Fu GPL17586 [HTA-2 0] Affymetrix Human Transcriptome
Array 2.0 [transcript (gene) version] 4 : 27 2018

GSE56597
Miguel
Torres-
Martin

GPL10739 [HuGene-1 0-st] Affymetrix Human Gene 1.0
ST Array [probe set (exon) version] 9 : 30 2014

GSE39645
Miguel
Torres-
Martin

GPL6244 [HuGene-1 0-st] Affymetrix Human Gene 1.0
ST Array [transcript (gene) version] 9 : 31 2013

Table 2: List of miRNA study samples from GEO.

GEO
accession Author Platform Samples (N:P) Year

GSE43571 Miguel
Torres-Martin

GPL8786 [miRNA-1] Affymetrix Multispecies
miRNA-1 Array 3 : 16 2014

GSE24390 Okay Saydam GPL7436 Wurdinger/Krichevsky miRNA array IV 4 : 20 2010

Table 3: Top 10 up- and downregulated DEmRNAs between
patients with VS and normal controls.

Gene symbol ID FDR Regulation
LARP6 55323 0 down
PRICKLE1 144165 0 down
RAI2 10742 0 down
G0S2 50486 0 down
AQP1 358 0 down
MEOX1 4222 0 down
FOXP2 93986 0 down
SOBP 55084 0 down
SLC6A9 6536 0 down
TACR1 6869 0 down
BTK 695 0 up
NLGN4X 57502 0 up
ZMAT3 64393 0 up
ATF7IP2 80063 0 up
P2RY12 64805 0 up
MR1 3140 0 up
CHD7 55636 0 up
CHPF 79586 0 up
SLC15A3 51296 0 up
SLC46A3 283537 0 up
DEmRNAs, differentially expressed mRNAs; FDR, false discovery rate.

and 568 validated DEmiRNAs-DEmRNAs pairs derived
from the miRWalk, were obtained (Figure 4). Among which,
hsa-miR-181a-5p (degree = 186), hsa-miR-106-5p (degree =
175), and hsa-miR-34a-5p (degree = 161) were the top three
DEmiRNAs that covered most DEmRNAs.

3.5. Functional Annotation of DEmiRNA Targets. Based on
GO enrichment analysis, anatomical structure development

Table 4: All DEmiRNAs between patients with VS and normal
controls.

Symbol FDR Regulation
hsa-mir-340 0.000965 down
hsa-mir-10b 0.000965 down
hsa-mir-625 0.002215 down
hsa-mir-182 0.002215 down
hsa-mir-412 0.004423 down
hsa-mir-183 0.004423 down
hsa-mir-181a 0.00834 down
hsa-mir-206 0.008414 down
hsa-mir-126 0.009816 down
hsa-mir-34a 7.66E-09 up
hsa-mir-30a 0.000965 up
hsa-mir-9 0.000965 up
hsa-mir-21 0.000965 up
hsa-mir-601 0.002215 up
hsa-mir-184 0.002215 up
hsa-mir-628 0.00404 up
hsa-mir-654 0.00404 up
hsa-mir-30c 0.008414 up
hsa-mir-106b 0.009057 up
hsa-mir-377 0.009057 up
hsa-mir-22 0.009412 up
DEmiRNAs, differentially expressed miRNAs; FDR, false discovery rate.

(FDR = 1.09E-25), anatomical structure development (FDR
= 3.24E-24), plasma membrane part (FDR = 1.78E-08), and
RNA polymerase II transcription factor activity, sequence-
specific DNA binding (FDR = 5.25E-17) were significantly
enriched GO terms in VS (Figures 5(a)–5(c)). According
to the KEGG pathway enrichment analysis, the DEmiRNA-
target DEmRNAs were significantly enriched in cGMP-PKG
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Figure 1: The heatmap of top 100 up- and downregulated DEmRNAs and DEmiRNAs between VS and normal controls. Row and column
represented DEmRNAs/DEmiRNAs and tissue samples, respectively. The color scale represented the expression levels.
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Figure 2: Significantly enrichedGO terms andKEGGpathways ofDEmRNAsbetween patientwithVS andnormal controls. (a). BP, biological
process; (b). CC, cellular component; (c). MF, molecular function; (d) KEGG pathways. The x-axis shows counts of DEmRNAs enriched in
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Figure 3: VS-specific PPI network. The red and green ellipses represented proteins encoded by up- and downregulated DEmRNAs between
VS and normal controls. Ellipses with black border were DEmRNAs derived from top 10 up- and downregulated DEmRNAs between VS and
normal controls.

signaling pathway (FDR = 7.54E-05), adrenergic signaling in
cardiomyocytes (FDR = 0.00029), and pathways in cancer
(FDR = 0.000433) (Figure 5(d)).

4. Discussion

VS is a benign tumor originating from the nerve sheath of
one of the vestibular nerves. It is the most common extra-
axial tumor in the posterior fossa of adults, comprising over
80% of tumors in the cerebellopontine angle (CPA) [15]. In
this study, we performed an integrated analysis based on the
databases downloaded from GEO to obtain key mRNAs and
miRNAs associated with VS. To the best of our knowledge, it
is the first time to conduct an integrated analysis on miRNAs
and mRNAs expression profiles of VS.

ISG15, a small molecular weight protein, whose expres-
sion is induced by interferon, was first identified as an
ubiquitin-like modified protein and was named ubiquitin
cross-reactive protein as its structure was similar to ubiquitin
[16]. ISG15 has been postulated that it may directly or
indirectly be involved in tumor development [17]. It was

demonstrated that ISG15 was differentially expressed in dif-
ferent tumor cells and different cell lines from same histologic
origin [18]. Zhang et al. reported that the expression of
ISG15 mRNA and protein was significantly higher in tumors
than in adjacent control tissues [19]. Reportedly, ISG15 and
UBE2L6 were identified as negative regulators of autophagy
in esophageal cancer cells [20]. In this present study, ISG15
was significantly upregulated and a hub gene in PPI network
in VS. It is surmised that ISG15 may involve in VS.

TLE familymember 1, transcriptional corepressor (TLE1),
exhibits a well-characterized function in the regulation of
nervous systemdevelopment [21]. In particular, TLE1 exhibits
antineurogenic activity in mammalian forebrain develop-
ment [21]. TLE1 is involved in diverse signaling pathways
and has important roles in neurogenesis, sex determination,
and segmentation during development [22]. Previous studies
suggest TLE1 could be used as a diagnostic marker and is
a possible therapeutic target in various malignancies. Yao
et al. reported that TLE1 was overexpressed in human lung
tumors and may play an important role in promoting lung
tumorigenesis and then speculated it may be a putative lung-
specific oncogene [21]. Bakrin et al. suggested that TLE1
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Figure 4: DEmiRNAs-DEmRNAs interaction network. (a) Interaction network between upregulated DEmiRNAs and downregulated
DEmRNAs. (b) Interaction network between downregulated DEmiRNAs and upregulated DEmRNAs. The rhombic nodes and elliptical
nodes indicate DEmiRNAs and DEmRNAs, respectively. Red and green color represent upregulation and downregulation, respectively.

immunohistochemistry for synovial sarcoma can be very use-
ful to distinguish synovial sarcoma from histological mimics
[23]. Additionally, TLE1 deficiency resulted in enhanced
tumor growth [24]. In this analysis, TLE1 was a hub gene in
PPI network as well, which may imply the important role of
TLE1 in VS.

Prickle1 is important for the nervous system develop-
ment, and believed to be an integral part of the planar cell
polarity (PCP) pathway [25]. Prickle1 has been shown to
regulate neuron morphogenesis, including neuron migra-
tion and neurite growth in the mouse [25–27]. Yang et
al. suggested that in mice, Prickle1 was part of a molecu-
lar mechanism that regulated facial branchiomotor neuron
caudal migration and separated the facial branchiomotor
neuron and the olivocochlear efferents [25]. Prickle1 was
showed to be highly expressed in the spiral ganglion and
involved in regulating distal and central outgrowth of spiral
ganglion neuron neurites of the inner ear [28]. PRICKLE1
was detected to be one of top 10 downregulated DEmRNAs
in VS. In view of this, we speculated PRICKLE1 may impli-
cate in the pathogenesis of VS by participating in neuron
morphogenesis.

Galanin is a multifunctional neuropeptide initially iden-
tified from the porcine intestine [29]. In mammals, galanin
is widely distributed in the central nervous system and
peripheral tissues, where it is involved in the modulation of
hormone and neurotransmitter release, cognitive functions,

and neuronal development [30]. The diverse physiological
effects of galanin are mediated by at least three galanin
receptor subtypes, including GalR1, GalR2, and GalR3
[30].

Misawa et al. indicated that GALR1/2 methylation sta-
tus may serve as an important site-specific biomarker for
prediction of clinical outcome in patients with head and
neck squamous cell carcinoma [31]. In addition, accord-
ing to the KEGG pathway enrichment analysis, GALR1
was enriched in neuroactive ligand-receptor interaction.
These findings may show that GALR1 is associated with
VS.

Based on the obtained DEmiRNAs-DEmRNAs pairs,
they revealed that both PRICKLE1 and GALR1 are targets
of hsa-miR-30c-5p and hsa-miR-30a-5p, which imply the
key role of hsa-miR-30 in VS. Accordingly, we proposed a
hypothesis that hsa-miR-30 may involve in VS by regulating
PRICKLE1 and GALR1.

In conclusion, abundant DEmiRNAs and DEmRNAs
between VS and normal controls were identified which may
make a contribution for developing new diagnostic and
therapeutic strategies for VS and emphasized the importance
of several mRNAs and miRNAs which may implicate in VS.
These findings may provide new insight into understanding
the mechanism of VS. The exact function of these mRNAs
and miRNAs in VS need to be determined with further
research.
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Figure 5: Significantly enriched GO terms and KEGG pathways of DEmiRNA-target DEmRNAs. (a). BP, biological process; (b). CC, cellular
component; (c). MF, molecular function; (d) KEGG pathways. The x-axis shows counts of DEmRNAs enriched in GO terms or KEGG
pathways and the y-axis shows GO terms or KEGG pathways. The color scale represented -lg FDR.
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