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Abstract

Background: During HCV infection, the activation status of peripheral blood monocytes and its impact on HCV replication
are poorly understood. We hypothesized that a modified activation of peripheral blood monocytes in HIV-HCV coinfected
compared to HCV monoinfected patients may contribute to different monocytes reservoirs of HCV replication.

Methods: We performed a case-control analysis involving HCV-infected patients with and without HIV coinfection. In
peripheral blood mononuclear cells (PBMCs), peripheral blood lymphocytes (PBLs) and peripheral blood monocytes isolated
from HCV monoinfected and HIV-HCV coinfected patients, intracellular HCV load and a marker of cellular activation, nuclear
factor-kappaB (NF-kB) activation, were quantified using intracellular detection of HCV-core protein and electrophoretic
mobility shift assay, respectively.

Results: Intracellular HCV loads were higher in monocytes isolated from HIV-HCV coinfected patients than in those of
monoinfected patients. Among PBMCs isolated from HIV-HCV coinfected patients, intracellular HCV loads were higher in
monocytes compared to PBLs. Cellular activation as measured by NF-kB activation was higher in monocytes isolated from
HIV-HCV coinfected patients than in those of monoinfected patients.

Conclusions: Our results reveal the peripheral blood monocytes as an important extrahepatic reservoir for HCV in HIV-HCV
coinfected patients and indicate a potential association between the activation state of monocytes and the size of the HCV
reservoir in HIV-HCV coinfected patients.
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Introduction

Hepatitis C virus (HCV), a positive-strand RNA virus belonging

to the Flavivirus, is the major etiologic agent of parenterally-

transmitted non-A non-B hepatitis [1]. Currently, almost 3% of

the world population is infected by HCV, and these numbers seem

to be increasing. One of the most remarkable features of HCV

infection is that more than 85% of acutely infected patients

become chronically infected. Therefore, in most infected patients,

HCV persists indefinitively, leading to chronic hepatitis, cirrhosis,

and hepatocellular carcinoma [2]. In addition, HCV is present in

approximately one third of patients infected with HIV in

developed countries [3]. The accelerated progression of chronic

hepatitis C and the increase in life expectancy of HIV-infected

patients with the use of combination antiretroviral therapy

(HAART) have led to an increase in hospitalizations and deaths

attributable to HCV in HIV-HCV-coinfected patients [4]. Several

reports found an association between HCV coinfection and

progression of HIV disease and HIV infection has also been

reported to accelerate the development of severe liver disease [5–

8].

HCV was originally thought to be a strictly hepatotropic virus,

but there is mounting evidence that it can also replicate in

peripheral blood mononuclear cells (PBMCs), particularly in

patients with HIV infection [9–12]. The infected cells were

reported to contain HCV negative strand RNA, which is a viral

replicative intermediate, and viral genomic sequences were often

found to be distinct from those found in serum and liver [13,14].

Furthermore, it was also reported that several cell types including

human T- and B-cell lines, PBMCs, peripheral blood lymphocytes

(PBLs) and monocytes/macrophages are capable of supporting
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HCV infection in vitro and ex vivo in peripheral blood isolated cells

[10,15–18]. In addition, some viral strains were found to be

lymphotropic both in vitro and in vivo in infected chimpanzees [19].

The presence of HCV replication was documented in hemato-

poietic cells inoculated into the severe combined immunodeficien-

cy mice [20] and in PBMCs from patients after, but not before,

liver transplantation [21]. Thus, extrahepatic replication of HCV

could be facilitated by immunosuppression.

We report here that in HIV-HCV coinfected patients the

peripheral blood monocytes are a main extrahepatic cellular

reservoir of HCV and display increased NF-kB activation

compared to monocytes isolated from monoinfected patients.

Patients and Methods

Patients
We conducted a prospective cohort study of 15 patients, 8 HCV

monoinfected patients and 7 HIV-HCV coinfected patients

followed in Besancon University Hospital (Table 1). The HCV-

infected patients were candidates for pegylated interferon plus

ribavirin therapy. They all had history of injecting drug use. The

mean age was 59 years (610 years) and 47 years (68 years) for

monoinfected and coinfected patients, respectively (p = 0.04). The

distribution of HCV genotypes, the plasma HCV load and anti-

HCV regimen are shown in Table 1. All HIV-positive patients

were treated with HAART for at least 1 year, had undetectable

plasma HIV-1 RNA levels (,40 copies/ml) for at least 1 year and

had a level of CD4+ T lymphocytes higher than 300 cells/mm3 of

blood. Biological characteristics (CD4+ T cell count, HAART

treatment, HIV disease stage) of HIV-infected patients are

presented in Table 1. According to the French Regulatory

Authority for clinical studies, prospective and retrospective studies

with observational analysis only are not evaluated by Human

Protection Committees. The Human Protection Committee East

Area II from France was consulted and issued a formal waiver of

approval. This study did not rely solely on medical records. The

authors did not have any contact with the study subjects and

performed tests on patient blood samples that were part of a

routine care. The blood samples were anonymized before being

used by the authors.

Isolation and Culture of PBMCs, PBLs and Monocytes
Isolation of PBMCs was done by Ficoll gradient centrifugation,

as previously reported [22]. Peripheral blood from patients was

diluted with equal amounts of PBS, was overlaid on Ficoll medium

(Eurobio, Les Ulis, France), and was centrifuged at 9006g for

30 min at 25uC without break and acceleration. The PBMC band

was removed and washed 2 times with PBS. Cell count was

determined by Malassez cytometer (Poly Labo, Strasbourg,

France) and resuspended in RPMI-1640 medium without addition

of serum. The cells were plated onto plastic cell culture flasks and

incubated at 37uC. After 2 h, the nonadherent cells were removed

to get peripheral blood lymphocyte (PBL)-enriched culture.

Adherent cells (.95% CD14+ by flow cytometric analysis),

monocytes, were washed with sterile PBS and cultured in

RPMI-1640 medium supplemented with 10% (v/v) human AB

serum, penicillin (100 IU/ml), and streptomycin (100 mg/ml).

Electrophoretic Mobility Shift Assay (EMSA)
To measure the NF-kB activation, EMSA was carried out as

previously described [23]. Briefly, nuclear extracts prepared from

PBMCs, PBLs and monocytes were incubated with 20 fmol of

biotin-end-labeled 45bp NF-kB oligonucleotide, 5-TTGTTA-

CAAGGGACTTTCCGCTGGGGACTTTCCAGG-

GAGGCGTGG-3 (bold indicates NF-kB binding sites) in the

presence of binding buffer [10 mMTris, 50 mMKCl, 1 mM DTT

at pH 7.5 and 50 ng/mlPoly (dINdC)]. NF-kB oligonucleotide was

labeled with biotin using Biotin 39 End DNA Labeling kit (Pierce,

Rockford, IL) and complementary pairs were annealed by heating

in boiling water for 5 min and then reducing the temperature

slowly till room temperature. The DNA-protein complex formed

was resolved from free oligonucleotide on a 6% native polyacryl-

amide gel in 1X Tris-borate-EDTA buffer, using Mini-PROTE-

AN 3 Cell (Bio-Rad, Hercules, CA) and was transferred to

Biodyne precut nylon membrane (Pierce) using Mini Trans-Blot

Electrophoretic Transfer Cell (Bio-Rad). Biotin-end-labeled DNA

was detected by LightShift Chemiluminescent EMSA kit (Pierce).

Serological and Virological Markers
HIV infection was assessed by the positivity of two serological

tests including ELISA (HIV Genscreen ULTRA, Biorad; HIV

Duo Roche, Basel, Switzerland) and Western blot (HIV Blot 2.2,

MP Diagnostics, Solon, OH). Quantification of plasmatic HIV

RNA was done using a COBAS TaqMan HIV-1 assay (Roche).

HCV infection was assessed by the positivity of two serological

tests (Monolisa HCV Ag-Ab ULTRA Bio-Rad, Roche anti-HCV

assay). The quantification of plasmatic HCV RNA was done by a

bDNA assay (Quantiplex HCV Versant 3.0, Bayer, Leverkusen,

Germany). The intracellular detection of capsid antigen and

antibodies associated with an infection by HCV was done with the

Monolisa HCV Ag-Ab ULTRA assay that is an immunoassay for

the detection of HCV infection (Biorad) [24].

Statistical Analysis
Figures show the means of independent experiments and

standard deviations. Statistical analysis was performed using the

Mann Whitney U test and considered significant at p#0.05. The

program used for plotting was Microsoft Excel.

Results

Comparison of Intracellular HCV Load in PBMCs Isolated
from HIV-HCV Coinfected Patients and Mono-infected
Patients
We measured both the plasma and intracellular HCV load in

PBMCs isolated from HIV-HCV coinfected patients and HCV

monoinfected patients. The mean plasma HCV load was 5.45 log

IU/ml (61.07) in HCV monoinfected patients and 4.85 log IU/

ml (61.86) in HIV-HCV coinfected patients (p =NS) (Figure 1,

Table 1). The mean intracellular HCV load in PBMCs was not

significantly different among HIV-HCV coinfected patients and

monoinfected patients (0.093 OD vs. 0.057 OD, p= 0.09)

(Figures 2 and 3).

Comparison of Intracellular HCV Load in Monocytes and
PBLs from HIV-HCV Coinfected and HCV Monoinfected
Patients
To determine the subset(s) of mononuclear cells that harbor

HCV, we separated monocytes from autologous PBLs isolated

from the peripheral blood of HIV-HCV coinfected patients and

from HCV infected patients. We measured in both cell types the

intracellular HCV viral load (Figures 2 and 3). In coinfected

patients, the intracellular HCV load was 13.8-fold higher in

monocytes than in PBLs (0.485 OD vs. 0.035 OD, p= 0.01)

(Figure 3). In HCV monoinfected subjects, the intracellular HCV

load was not significantly different in monocytes and in PBLs

(0.111 OD vs. 0.031 OD, p=0.12) (Figure 3). Thus, our results

Monocytes as a Reservoir for HCV

PLOS ONE | www.plosone.org 2 May 2014 | Volume 9 | Issue 5 | e96907



T
a
b
le

1
.
C
h
ar
ac
te
ri
st
ic
s
o
f
th
e
p
o
p
u
la
ti
o
n
st
u
d
ie
d
.

P
a
ti
e
n
t

A
g
e

G
e
n
d
e
r

H
C
V

G
e
n
o
ty
p
e

H
IV

S
ta
tu

s
C
D
4
co

u
n
t

H
A
A
R
T

A
n
ti
-H

C
V

tr
e
a
tm

e
n
t

H
IV

p
V
L
,
co

p
ie
s/
m
l

P
la
sm

a
H
C
V

R
N
A

lo
g
IU

/m
l

H
IV
-H

C
V

co
in
fe
ct
e
d
p
a
ti
e
n
ts

(n
=
7
)

1
3
9

M
1
a

A
1
2
6
2

D
4
T
,T
EN

,D
D
I

0
,
4
0

5
.8
8

2
4
3

M
4

C
7
7
4

3
T
C
,T
EN

,
N
EV

0
,
4
0

5
.5
6

3
4
2

F
3
a

B
4
9
5

T
EN

,A
B
A
,F
O
S,
R
IT

0
,
4
0

6
.3
0

4
4
3

F
1
a

C
7
2
4

LO
P
,
EF
A

0
,
4
0

6
.1
5

5
4
9

M
1
a

A
5
5
0

A
Z
T
,3
T
C
,

A
B
C

0
,
4
0

2
.7
9

6
4
7

F
1
b

A
4
3
4

A
Z
T
,3
T
C
,

A
B
C

0
,
4
0

6
.0
5

7
6
5

F
n
/a

C
4
1
8

T
EN

,
N
EV

,
LO

P
0

,
4
0

1
.1
9

M
e
an

4
7

6
6
5

,
4
0

4
.8
5

H
C
V

m
o
n
o
in
fe
ct
e
d
p
a
ti
e
n
ts

(n
=
8
)

8
6
5

F
1
a

–
n
/a

–
0

0
5
.0
5

9
6
7

M
1

–
n
/a

–
0

0
5
.9
1

1
0

6
9

F
3
a

–
n
/a

–
0

0
5
.7
8

1
1

5
2

F
1

–
n
/a

–
0

0
5
.5
5

1
2

4
2

F
n
/a

–
n
/a

–
0

0
2
.7
9

1
3

5
6

M
n
/a

–
n
/a

–
0

0
6
.3
3

1
4

4
9

F
1
b

–
n
/a

–
0

0
5
.8
8

1
5

7
4

M
1

–
n
/a

–
0

0
6
.3
1

M
e
an

5
9

5
.4
5

n
/a
,
n
o
t
av
ai
la
b
le
.

d
o
i:1
0
.1
3
7
1
/j
o
u
rn
al
.p
o
n
e
.0
0
9
6
9
0
7
.t
0
0
1

Monocytes as a Reservoir for HCV

PLOS ONE | www.plosone.org 3 May 2014 | Volume 9 | Issue 5 | e96907



indicate that monocytes rather than PBLs harbor HCV in

coinfected patients (Figure 2 and 3). Moreover, the intracellular

HCV load was 4.4-fold higher in monocytes of coinfected subjects

than in monocytes of monoinfected subjects (0.485 OD vs. 0.111

OD, p=0.037) (Figure 3).

Higher NF-kB Activation in Monocytes from HIV-HCV
Coinfected Patients Compared to Monocytes from
Monoinfected Patients
The activation state of monocytes can be assessed by the

expression of cell surface markers such as up-regulation of CD69

and HLA-DR and the release of soluble CD14, but also by the

specific activation of intracellular pathways such as NF-kB
activation [25,26,27]. Since HCV replication is inhibited by

interferon that could be regulated through NF-kB-dependent
mechanisms [28–30] and since HIV activates NF-kB in several cell

types including monocytes/macrophages [7,31,32], we assessed

the level of NF-kB activation in monocytes, but also in autologous

PBLs and PBMCs isolated from the peripheral blood of coinfected

patients and HCV monoinfected patients. We measured NF-kB
activation using an EMSA followed by quantification with a

phosphoimager as previously reported [23] (Figure 4A). Although

levels of NF-kB activation were not statistically different in PBMCs

of coinfected and monoinfected patients (5.47 versus 3.30,

p = 0.10), a 1.7-fold higher NF-kB activation was measured in

monocytes of HIV-HCV coinfected subjects compared to

monocytes isolated from HCV monoinfected patients (5.60 versus

3.25, p = 0.04) (Figure 4B). In contrast to monocytes, levels of NF-

kB activation were not statistically different in PBLs of coinfected

and monoinfected patients (4.36 versus 2.54, p = 0.07) (Figure 4B).

Our results indicate high intracellular HCV loads and high levels

of NF-kB activation in monocytes isolated from HIV-HCV

coinfected patients.

Discussion

We observed higher intracellular HCV loads in monocytes

isolated from HIV-HCV coinfected patients compared to mono-

cytes isolated from monoinfected patients. Higher NF-kB activa-

tion was measured in monocytes of HIV-HCV coinfected patients

compared to monocytes isolated from HCV monoinfected

patients. Our results underline the peripheral blood monocytes

Figure 1. Plasma HCV loads in HIV-HCV coinfected patients and in HCV monoinfected subjects. Individual values (upper panel) and
mean values (6S.D.) (lower panel) of plasma HCV RNA loads were measured. p =NS.
doi:10.1371/journal.pone.0096907.g001

Monocytes as a Reservoir for HCV
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as an important extrahepatic reservoir for HCV in HIV-HCV

coinfected patients and suggest that monocytes activation could

participate to the formation of the HCV reservoir.

In our study, we observed similar levels of plasma HCV load in

monoinfected and coinfected patients. This result was not

surprising given the normal levels of CD4 cell count in our

HIV-infected population [6]. However besides plasma viral load,

the detection of HCV infection in cellular subpopulations of the

peripheral blood was important [33] and able to discriminate

substantial differences between HCV monoinfected and HIV-

HCV coinfected patients. Whereas there is little doubt that HCV

replicates primarily in the liver, the presence of extrahepatic

replication sites remains controversial. This evidence has been

questioned because commonly used techniques are limited in their

ability to discriminate between positive and negative strands. In

several earlier studies that used assays optimized for strand

specificity, HCV negative strand RNA was not detected in PBMCs

from infected patients [34,35]. By contrast others have recently

reported the relatively common detection of HCV negative strand

RNA in PBMCs [10,15,18]. We used a HCV core antigen ELISA

assay, since it was reported that monitoring of viral kinetics by use

of either core antigen or RNA concentrations in HCV-infected

patients undergoing antiviral combination therapy resulted in very

similarly shaped curves in all cases [36]. Additionally, the HCV

core antigen ELISA detected intracellular virus and not cell-bound

virus, since similar levels of HCV core antigen were detected in

monocytes from HCV-infected patients with or without trypsin

treatment (data not shown). We detected only very low amounts of

HCV in PBMCs of monoinfected and coinfected patients.

Therefore, we decided to assess the presence of HCV in PBMC

subpopulations, namely peripheral blood monocytes and PBLs.

We observed primarily the presence of HCV in the peripheral

blood monocytes, and almost not in PBLs, isolated from HIV-

HCV coinfected patients. In agreement with our data, within the

population of PBMCs, among the cells harboring replicating

HCV, monocytes/macrophages have been reported previously to

be potentially one of the main cellular targets [10,13]. Although

the HCV infection of monocytes was constantly observed in both

Figure 2. Intracellular HCV loads in HIV-HCV coinfected patients and in HCV monoinfected subjects. Intracellular HCV loads were
measured in autologous PBMCs, PBLs and monocytes isolated from the peripheral blood of monoinfected and coinfected patients as described in
Materials and Methods. Please note the different scales of y axis used for each cell population.
doi:10.1371/journal.pone.0096907.g002
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monoinfected and coinfected patients, we measured the highest

amounts of HCV in monocytes of coinfected patients. This might

indicate that HIV infection favors the replication of HCV in

monocytes of coinfected patients [9], even in HAART-treated

patients with undetectable plasma HIV load.

Beside the preferential distribution of HCV in monocytes of

coinfected patients, we observed higher levels of NF-kB activation

in monocytes of coinfected patients compared to monocytes of

monoinfected patients. NF-kB activation is increased in HIV-

infected T-cells and monocytes/macrophages and favors HIV-1

replication [32]. The HIV-1 proteins, such as Nef, Vpr, and Tat

stimulate NF-kB activation through the RelA/p50 canonical

pathway in monocytes/macrophages and T-cells, respectively

[23,31,37]. We and other teams recently reported that the HIV-

1 Nef and HCV Core proteins stimulate additionally NF-kB
activation and favor both HIV-1 replication in monocytes/

macrophages and hepatic fibrogenesis [7,38,39]. Our results

indicate that the high levels of NF-kB activation observed in

monocytes of coinfected patients are concomitant of high

intracellular HCV loads. We also observed the highest levels of

the activation marker HLA-DR on monocytes isolated from

HCV-infected patients as compared to healthy subjects (data not

shown), indicating the potential use of HLA-DR marker as an

activation marker on peripheral blood cells of HCV-infected and/

or coinfected patients [26,27]. Additionally, markers of innate

immune activation such as soluble CD14 predict poor host

response to interferon-alpha-based HCV therapy during HIV-

HCV coinfection [40,41]. Although intracellular HCV load is

enhanced in monocytes of HIV-HCV coinfected patients, it is

unclear whether HIV facilitates HCV infection directly or

indirectly as a consequence of immunosuppression. Our study is

a proof-of-concept study on a limited number of patients. Future

clinical trials will be designed to unveil the molecular mechanism(s)

involved in HCV replication in monocytes/macrophages.

In absence of coinfection, HCV infection usually down-

regulates NF-kB activation directly via viral proteins such as

HCV Core or indirectly through inactivation of the MAVS

(mitochondrial antiviral signaling) protein [42–44]. We observed

that monocytes isolated from HCV monoinfected patients display

lower levels of NF-kB activation compared to monocytes isolated

from HIV-HCV coinfected patients. Several studies confirm that

in the absence of HIV infection, the optimal replication of HCV

requires low levels of NF-kB activation. Sustained NF-kB
activation has been reported to be a major factor for the

impediment of HCV replication [29]. HCV triggers activation

of the dsRNA-dependent eIF2a kinase PKR which leads to the

inhibition of IFN expression through general control of translation

while the viral genome can be translated from its eIF2a-insensitive

IRES structure [28,30]. Interestingly PKR silencing suppresses

NF-kB activation in Huh7.5.1 cells, indicating that the modulation

of HCV replication by PKR is dependent on NF-kB mediated

interferon response [29].

Since enhanced NF-kB activation favors the production of

proinflammatory cytokines and chemokines in monocytes/mac-

rophages and results in enhanced cellular activation [45], the low-

levels of NF-kB activation observed in HCV-harboring monocytes

isolated from monoinfected patients will rather lead to a state of

cellular deactivation [46]. Other defects in innate immunity have

been reported in HCV infection [11,47,48]. HCV structural

proteins can interact with TLR-2 in monocytes and induce IL-10

production, which blocks NF-kB activation in monocytes by an

autocrine feedback loop and which inhibits IFN-alpha and IL-12

production in dendritic cells by a paracrine mechanism [48]. In

vitro, TLR2 and TLR4 activation by the HCV core protein leads

Figure 3. Preferential detection of intracellular HCV in peripheral blood monocytes of HIV-HCV coinfected patients. Means (6S.D.) of
intracellular HCV loads measured in autologous PBMCs, PBLs and monocytes isolated from the peripheral blood of HCV monoinfected and HIV-HCV
coinfected patients as described in Materials and Methods are indicated. *p#0.05.
doi:10.1371/journal.pone.0096907.g003
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to a decrease in interleukin-6 production by human antigen-

presenting cells by the negative regulation of NF-kB activation by

the induction of IRAK-M [42]. Additionally, TLR ligand-induced

IL-6 production is significantly reduced in peripheral blood

monocytes isolated from HCV-infected patients, compared with

those of healthy control subjects [42]. Therefore, optimal HCV

replication in monoinfected patients could require deactivated

monocytes that might be part of a more general failure of innate

immunity in these patients [9,11]. The use of anti-HCV proteases

could modify the size of the cellular reservoir in extrahepatic sites

and will require future studies [49–51].

Our results reveal the peripheral blood monocytes as a potential

important extrahepatic HCV reservoir in HIV-HCV coinfected

patients and suggest that monocyte activation could participate to

the formation of the HCV reservoir in HIV-HCV coinfected

patients. This might have important therapeutic implications for

the clearance of HCV from cellular reservoirs in HIV-HCV

coinfected patients.
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