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Protein-protein interactions (PPIs) can be conveniently represented as networks, allowing the use of graph theory for their study.
Network topology studies may reveal patterns associated with specific organisms. Here, we propose a newmethodology to denoise
PPI networks and predict missing links solely based on the network topology, the organization measurement (OM) method. )e
OM methodology was applied in the denoising of the PPI networks of two Saccharomyces cerevisiae datasets (Yeast and CS2007)
and one Homo sapiens dataset (Human). To evaluate the denoising capabilities of the OM methodology, two strategies were
applied. )e first strategy compared its application in random networks and in the reference set networks, while the second
strategy perturbed the networks with the gradual random addition and removal of edges. )e application of the OMmethodology
to the Yeast andHuman reference sets achieved an AUC of 0.95 and 0.87, in Yeast andHuman networks, respectively.)e random
removal of 80% of the Yeast and Human reference set interactions resulted in an AUC of 0.71 and 0.62, whereas the random
addition of 80% interactions resulted in an AUC of 0.75 and 0.72, respectively. Applying the OM methodology to the CS2007
dataset yields an AUC of 0.99. We also perturbed the network of the CS2007 dataset by randomly inserting and removing edges in
the same proportions previously described. )e false positives identified and removed from the network varied from 97%, when
inserting 20% more edges, to 89%, when 80% more edges were inserted. )e true positives identified and inserted in the network
varied from 95%, when removing 20% of the edges, to 40%, after the random deletion of 80% edges. )e OM methodology is
sensitive to the topological structure of the biological networks. )e obtained results suggest that the present approach can
efficiently be used to denoise PPI networks.

1. Introduction

Proteins are central players in every organism, as they are
required for virtually every single cellular function. However,
proteins are required to interact with one another to fulfill their
functions. For this reason, disease states may appear, if the
physiological interaction between two proteins is disrupted [1].

Protein-protein interaction (PPI) networks are a subset
of complex biological networks that have specific topological
properties, such as a high clustering coefficient, the pres-
ence of hierarchy, heterogeneity, and a power-law-like
degree distribution [2]. )e guilt-by-association hypothesis

states that two proteins sharing many interactive neigh-
bours are likely to hold functional homogeneity and lo-
calization coherence [3]. )ese characteristics suggest that
the network topology alone may be a viable option for PPI
network denoising. PPI network denoising corresponds to
find interactions that do not exist and to find missing
interactions. Methods to determine protein interactions are
not accurate and organisms are not yet fully known, being
important to denoise PPI networks to have more precise
models of the organisms.

Protein interactions can be represented as graphs,
allowing the use of graph theory in their study. As such,
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different methods were developed to denoise biological
networks (reviewed in [4]). )ese include repeating ex-
periments [5, 6], using prior knowledge about proteins [7, 8],
using functional or structural annotations [9–13], and using
comparisons with theoretical distributions constructed from
known data and network topology-based approaches [14–
18]. )e herein proposed approach falls under the latter
category.

An approach called nonconvex semantic embedding
(NCSE) evaluates the reliability of interactions in a PPI
network trying to learn a Euclidean embedding under the
geometric assumption of PPI networks [19], and it was tested
in three datasets of Yeast Saccharomyces cerevisiae. Com-
putational methods based on machine learning were also
applied to evaluate the reliability of PPIs, and it was tested in
Yeast and Helicobacter pylori PPI datasets [20, 21].

In a recent study, Lü et al. [22] proposed the structural
consistency index and the structural perturbation method
(SPM). On the one hand, the structural consistency index
can reflect the inherent link predictability of a network
without knowing its organization a priori, allowing to es-
timate the explicability of the organization of a network and
to supervise mechanistic changes during the evolution of the
network. On the other hand, the SPM performs link pre-
diction by removing a percentage of the edges in a network,
thus perturbing the remaining network by that percentage.
)is is based on the strong correlation between independent
network perturbations, which suggests that the missing
edges, i.e., false negative (FN) interactions, can be identified
by perturbing the networks with an additional set of known
interactions, i.e., true positive (TP) interactions.

Luo et al. [4] proposed the collaborative filtering-en-
hanced topology-based (CFT) method to perform protein
interatomic mapping on sparse high-throughput screening
(HTS) PPI data since the performance of the network to-
pology-based approach usually deteriorates when using
sparse network data. )is approach is based on the notion
that the solution space of the interatomic mapping and the
solution space of the personalized recommendations are
similar. Each protein is represented as a feature vector that
describes their interactions in the network. In addition, the
feature vector is used to calculate the corresponding simi-
larity vector that represents the interactions through the
functional similarity weight, creating an interneighbour-
hood similarity (I-Sim) for modelling PPIs. Functional
parameters for each protein in the dataset are obtained from
gene ontology (GO), allowing the use of functional similarity
measures. Denoising of the input HTS-PPI data is per-
formed via the integration of saturation-based strategies into
the I-Sim, achieving a precise relationship model. )eir
method was applied to three different datasets and compared
with three other algorithms (interaction generality [14],
Czekanowski–Dice distance [15], and functional similarity
weight [16]), showing better performance on large, sparse
HTS-PPI datasets. Since they use GO annotations to
characterize their proteins, this approach is likely to
underperform when considering less-studied organisms.

A different strategy termed “intrinsic geometry struc-
ture” (IGS) was proposed by Fang et al. [23]. )e IGS is a

geometry-based approach which uses heat diffusion in the
PPI network to collect structural information about all paths
connecting two given nodes, thus defining intrinsic re-
lationships among them. )ey use a maximum likelihood-
based algorithm to determine the optimal dissipation time,
predicting the global structure of the PPI network from the
local structure. After performing heat diffusion for the
optimal dissipation time, the intrinsic geometric structure of
the PPI network is revealed. One of the main advantages of
the IGS method is its robustness against missing protein
associations and sparse PPI data. )eir method was tested
with the S. cerevisiae (CS2007) network [24], a network of
the bottlenose dolphin community [25], and a network of
known terrorist cells [26]. In addition, they compared the
performance of the IGS with that of two other methods, the
multidimensional scaling-based (MDS) method [27] and the
hierarchical random graph (HRG) method [28], showing
that the IGS performed slightly better thanMDS when tested
with the CS2007 dataset and better than the IGS and HRG
for the other datasets tested.)eir analysis was based only on
the area under the receiver-operating characteristic (ROC)
curve (AUC) values.

Among the described works, the MDS method proposed
by Kuchaiev et al. [27] is the only one relying on the PPI
network topology that was applied in a Homo sapiens PPI
dataset. To address the sparsity problem of the networks,
Luo et al. [4] used collaborative filtering, but the method was
not tested on perturbed networks, i.e., when random noise
was added. )e IGS method [23] was compared to the MDS
method using the Yeast Saccharomyces cerevisiae PPI
dataset, and both methods were tested on perturbed net-
works with the same percentages (from 10% till 80%).
However, they were not able to determine which of the edges
recovered belong to the removed group, or which of the
edges removed are then recovered.

In this paper, we introduce the organization measure-
ment (OM) method to denoise PPI networks based exclu-
sively on the network topology. Topological measures are
used to find trends that characterize interacting and non-
interacting protein distributions. A high-confidence set of
protein interactions is used to construct a network, followed
by the calculation of the weights of interactions and non-
interactions in the network. )e OM weighted matrix is
obtained and used to find distribution trends that allow to
distinguish interaction distributions from noninteraction
distributions. )e OM threshold value that better distin-
guishes these types of distributions is then used to identify
false positive (FP) interactions and FN (novel) interactions.
)is way, an OM topological model is built to be used in the
denoising of a network, resulting in a better approximation
of the expected network.

2. Materials and Methods

)is section will describe how we obtained the datasets used
in the experiments and the topological measures used with
the organization measurement (OM) methodology, in-
cluding the new neighbourhood clustering (NC) proposed
measure. It will also describe the OM methodology, how to
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obtain the OM matrix of weights, and how to determine the
threshold value, giving a description of the OM method-
ology pipeline (Figure 1) to denoise networks.

For each organism, we collected a set of high-confidence
PPIs. Although these PPIs do not reflect the entirety of the
protein interaction networks of the selected organisms, they
were used to construct the known PPI network of each
organism, i.e., their reference sets.

In the application of the OM methodology, various
topological measures were calculated to characterize these
networks, based on the assumption that these measures will
allow the identification of topologic patterns to support
network denoising. In this paper, we use the term
“denoising” to define the identification of FP and FN in-
teractions, removing the former cases from the network
while adding the latter. )e methodology proposed here can
also be used to rank the level of confidence of the in-
teractions already presented in the network. Different to-
pological measures can identify different patterns, and thus,
here we consider that different topological measures can
contribute to the denoising process.

Section 2 will describe in a detailed way the OM
methodology pipeline, with the description of the datasets
chosen to illustrate and validate the proposed methodology
in Section 2.1 and the description of the topological mea-
sures used to test the OM methodology in Section 2.2, in-
cluding a new topological measure proposed. Section 2.3 will
explain the process to obtain the weighted OM matrix from
the adjacency matrix, Section 2.4 will describe how to de-
termine the OM THR value using the ROC curve, and
Section 2.5 will describe how to use the threshold in the
denoising of PPI networks.

2.1. Datasets. )e Search Tool for the Retrieval of Inter-
acting Genes/Proteins (STRING) database [29] contains
known and predicted protein interactions of various or-
ganisms. PPIs in STRING are derived from five main
sources: (1) genomic context predictions, (2) high-
throughput experimental methods, (3) conserved coex-
pression experiments, (4) automated text mining, and (5)
previous knowledge from third-party databases. Each in-
teraction in STRING has an associated score for each pre-
diction method and has a combined score (CS) that ranges
from 0 to 1000, indicating the degree of confidence of each
interaction. Calculation of the CS considers several pa-
rameters, such as the number and the quality of different
sources, indicating that a PPI occurs.

)e interactions derived by experimental methods with a
score greater than 900 have been considered to have high
confidence in multiple works [30, 31]. )erefore, the ref-
erence sets used in this work comprise experimentally de-
termined PPI data obtained from STRING with a score
greater than or equal to 900.

)ese data were collected from two different organisms,
namely, Yeast Saccharomyces cerevisiae (Yeast) and Homo
sapiens (Human) [29]. Using these data, an undirected
network is constructed for each organism and the main
component is extracted.

Table 1 summarizes the characteristics of the reference
set networks obtained for Yeast and Human, including the
number of nodes, the number of edges, the average degree,
and the network density. )e observed average degree and
density values are highly suggestive that these biological
networks are sparse, i.e., they have much less edges than the
complete network with the same set of nodes. Our high-
confidence networks (i.e., PPIs obtained from the STRING
database with an experimental source score greater than
900) comprised 29,319 interactions between 3,937 proteins
for the Yeast dataset and 16,931 interactions between 4,943
proteins for the Human dataset.

Additionally, we used a high-confidence external dataset
compiled by Collins et al. [24] and referred to as CS2007
hereafter, to compare the proposed methodology with other
topology-based denoising methods [23, 27, 32]. )is dataset
comprises 9,074 PPIs between 1,622 unique proteins from
Yeast Saccharomyces cerevisiae. To ensure a direct com-
parison between the OM methodology and the existing
methods, we followed their approaches and only used the
largest connected component. )e largest connected com-
ponent of the dataset compiled by Collins et al. [24] includes
8,323 interactions between 1,004 proteins (Table 1).

2.2.Measures for Similarity andDiversity Analysis of Network
Data. Protein interactions can be conveniently modelled as a
network, where each node represents a protein and each edge
represents an association between two proteins. )e most
commonly used technique to quantify the interaction profile
similarity of protein interaction networks (or any type of
biological network) relies on association indices. Fuxman Bass
et al. [33] performed a comprehensive review on the selection
of association indices for the analysis of gene similarity. In
their work, the Jaccard (JC), geometric, and cosine indices
were shown to be the most versatile; although not excelling in
any particular task, their strengths were themost balanced out
of all evaluated measures. A review of similarity indices can
also be found in [34]. Simone et al. tested the application of
different association indexes in bipartite networks [35].

A more recent study reports that the JC measure per-
forms better than three other measures in a specific model
[36].

)e JC measure is defined as the ratio of the intersection
of the number of neighbours of nodes i and j to their union
(i.e., the ratio of nodes shared between i and j to the total
number of nodes connected to both):

JCij �
|Γ(i)∩ Γ(j)|

|Γ(i)∪ Γ(j)|
, (1)

where Γ(i) is the set of neighbours of i. We also explored and
tested additional measures, and two of them that gave good
results were betweenness (BETW) and Katz indices.

)e implementation of the betweeness (BETW) index
used was

BETWij �
BETWi + BETWj 

2
, (2)

where
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BETWi � 
l,m∈V

nsp(l, m | i)

nsp(l, m)
, (3)

in which V is the set of nodes, nsp(l, m) is the number of
(l, m) shortest paths, and nsp(l, m | i) is the number of those
paths passing through the node i.

)e implementation of the Katz index used was

KATZij �
KATZi + KATZj 

2
, (4)

KATZi � α
l

Adjilxl + β, (5)

where Adj is the adjacency matrix of the network with ei-
genvalues λ. α � 1/λmax and β � 0, when Katz centrality is
the same as the eigenvector centrality.

Based on the idea that closely associated proteins are
more likely to interact, that the network modularity is
associated with the clustering coefficient (CC) [37], and
that a high mean CC of a community can be used to identify
those that are functionally homogeneous [38], we imple-
mented a novel measure to emphasize the relevance of the
CC concept associated with the neighbourhood concept in
a network. )is measure was called the neighbourhood
clustering (NC) measure and is defined as the ratio of the
sum of the CC of the nodes shared between i and j to the

Table 1: Topological characteristics of the Yeast, CS2007, and Human networks used as reference sets.

Organism Name Source No. of nodes No. of edges Average degree Density

Yeast Saccharomyces cerevisiae Yeast STRING with experimental CS≥ 900 3,937 29,319 14.8941 0.0038
CS2007 Compiled by Collins et al. [24] 1,004 8,323 16.5797 0.0165

Homo sapiens Human STRING with experimental CS≥ 900 4,943 16,931 6.8505 0.0014
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Figure 1: Diagram of the OMmethodology pipeline. A Reference Set of an organism is used to create a network model, and the respective
OMmatrix is obtained, using the topological properties.)e threshold (OMTHR) is calculated using the ROC curve and choosing the value
that best separates interaction distributions from noninteraction distributions. )e OM THR is then applied to denoise a lower-confidence
Data Set network of the same organism, using the respective OM matrix.
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sum of the CC of the total number of nodes connected to
both i and j:

NCij �
CC (Γ(i)∩ Γ(j))

CC (Γ(i)∪ Γ(j))
, (6)

where Γ(i) is the set of neighbours of i.

2.3. Organization Measurement Matrix. In Figure 1, we
summarize the pipeline of the proposed OM methodology.
Once the PPI network (Reference Set) for the organism is
constructed, its respective adjacency matrix is built, followed
by its transformation into a weighed matrix, the OMmatrix.
)e OMmatrix is used to find distribution trends that allow
to distinguish between interactions and noninteractions.)e
weights for interactions and noninteractions are calculated
using topological measures and using the information about
the interactions of the network.

)e adjacency matrix of the PPI network A, with N

proteins and M interactions, is defined as adjA � [a(i, j)],
where a(i, j) � 1, if there is an interaction in A between
nodes i and j. Otherwise, a(i, j) � 0. A topological measure
is applied to A to determine a weight for each (i, j) to
transform the adjacency matrix A into a transformed
matrix Aw � [aw(i, j)], where aw(i, j) is the weight of (i, j)

in A, calculated using the topological properties of the
network.

)e weight aw(i, j) represents the strength value of the
edge (i, j) per the topological measure used and aims to
capture patterns associated with the network that can de-
velop signatures that identify the PPI network of each or-
ganism.)is weight was used to characterize interaction and
noninteraction distributions of the PPI network to de-
termine the separation border between them.

2.4.OrganizationMeasurement6resholdValueDetermination.
One of the assumptions made in this work is that the PPIs in
the reference datasets are true. )is assumption can be made
because of the sparsity of protein interaction networks and
the rigorous criteria chosen to filter TP interactions.
However, the same cannot be said for the noninteractions, as
the presence of the FN PPI is highly likely.

)e value that best distinguishes both interaction and
noninteraction distributions was called the OM threshold
value. First, we collect protein interaction data of a specific
organism, and then a network is built (Figure 1). Next, the
respective adjacency matrix is constructed, followed by its
transformation into a weighted matrix, the OM matrix,
using the topological measures of interest. Finally, the
ROC curve is calculated and used to determine the op-
timal cutoff, corresponding to the threshold value that
separates the interaction distributions from non-
interaction distributions. We considered as the optimal
cut the point closest to (0,1) in the ROC curve, where
sensitivity equals specificity. Different topological mea-
sures were tested, and the respective cutoff values were
determined. )e outcomes of these experiments are de-
scribed in Results and Discussion.

2.5.OrganizationMeasurementMethodology toFindSpurious
and New Interactions. An accepted assumption in network
topology-based approaches is that interacting proteins in a
local community and closer to one another in the network
are most likely involved in similar functions, or part of the
same pathways [39–41].)e use of topological measures that
capture this information should be prioritized, as they are
expected to better grasp patterns in incomplete networks,
thus allowing the approximation of incomplete input net-
works to the real networks.

From each reference set (Reference Set) PPI network, we
calculated its adjacency matrix. )en, after calculating the
respective weights, the adjacency matrix is transformed into
a weighted matrix. Finally, the threshold that best separates
PPIs and non-PPIs was determined through finding the
optimal cutoff of the ROC curve. )is threshold was applied
to detect spurious and missing PPIs in the network (Data
Set), to obtain a better approximation of the true network. In
the example network shown in Figure 1, there are five nodes
representing five different proteins, in addition to six edges
that could represent the interactions between them (Data
Set). Assuming the example network approximates the
current knowledge on a given biological network, not all true
interactions are represented and the existence of the FP is
expected. Once the threshold value is calculated, using the
reference set (Reference Set), it is applied to the OM matrix
of the Data Set, to identify FP and FN interactions. FP
interactions are then removed from the network, whereas
FN interactions are added.

3. Results and Discussion

)e OM methodology was tested with different topological
measures and was evaluated using three different scenarios.
)e following sections will describe the results obtained with
the experiments made.

3.1. Analysis of Different Topological Measures to Identify the
Optimal6resholdValue. A key component of the proposed
method is the determination of the threshold value to
discriminate between protein interaction and nonprotein
interaction distributions. As such, we decided to test the OM
methodology with different topological measures to de-
termine which better discriminates PPI from non-PPI. )e
four topological measures used were the JC measure, the
BETW measure, the Katz measure, and the proposed new
measure, the NC measure. Figure 2 shows the ROC curves
when using this methodology with four different topological
measures for the Yeast and Human organisms, and Figure 3
shows the same information, but after data normalization
between 0 and 1. Table 2 shows the respective AUC values
obtained. Best results were achieved when using the OM
methodology with the JC and NC measures.

In addition to testing the OM methodology with these
measures, we calculated the cutoff values for both the op-
timal cut and the accuracy cut, using the JC and NC
measures, those that previously gave better results. )e
optimal cut calculates the point closest to (0,1) in the ROC
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Figure 2: OMmethodology ROC curves. ROC curves are obtained by OM application with JC, BETW, KATZ, and NCmeasures in (a) Yeast
and (b) Human datasets.
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Figure 3: OM methodology ROC curves with normalized data. ROC curves are obtained by OM application with JC, BETW, KATZ, and
NC measures in (a) Yeast and (b) Human datasets after data normalization between 0 and 1.

Table 2: AUC in Yeast and Human datasets.

Topological measures
Yeast AUC Human AUC

Not normalized Normalized Not normalized Normalized
JC 0.9462 0.9460 0.8438 0.8458
BETW 0.7142 0.7676 0.7659 0.8004
KATZ 0.7151 0.7714 0.7258 0.7944
NC 0.9534 0.9526 0.8708 0.8700
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curve, where sensitivity equals specificity, whereas the ac-
curacy cut calculates the maximum accuracy and the re-
spective cutoff value. In the following experiments, to
determine the OM THR, we calculated the cutoff values for
the optimal cut, obtaining good results.

Tables 3 and 4 show the obtained results for the Yeast
and Human organisms. We can observe that the NC
measure gave a slightly better result than JC, and so we will
describe further the experiments using the NC measure.

3.2. Evaluation of the Organization Measurement Method-
ology in Different Scenarios. To assess whether the OM
methodology is sensitive to the network topology, we ap-
plied it to a randomly generated protein network, with the
same number of nodes and edges as its respective reference
sets (for Yeast and Human). If the OM methodology can
distinguish between interactions and noninteractions in the
reference datasets but fails to do so in the random networks,
one can assume that it captures the inherent topological
structure of a real network.

To further evaluate the performance of the OM
methodology, two other experiments were performed.
First, while maintaining the same number of nodes (pro-
teins), we randomly added incrementing percentages of
edges (protein interactions), 20%, 40%, 60%, and 80%, not
belonging to the reference set network, building four
networks, and removed the same percentages of edges from
the reference set network, building four more networks.
)is was performed for the Yeast, Human, and CS2007
reference set networks. After each addition or removal, we
used the OM methodology to denoise the networks. To
further assess the ability of the proposed methodology for
network denoising, we also determined the percentage of
inserted TN removed from the respective CS2007 per-
turbed networks and the percentage of TP retrieved from
the respective CS2007 perturbed networks. A thorough
description of the results of these experiments is shown in
the following sections.

3.3. Organization Measurement Methodology Performance
Comparison: Random Network versus Reference Set Network.
)e only criterion selected to generate the random networks
was that the resulting randomize networks were required to
comprise the same number of nodes and edges. )us, we
generated 10 networks for each organism to be tested using
the NC measure.

Figure 4 shows the ROC curves, the curves for the sep-
aration of classes (PPI and non-PPI), and the accuracy curve,
when applying the OMmethodology with the NC topological
measure to one of the Yeast (Figure 4(a)) and Human
(Figure 4(b)) random networks generated with the same
number of nodes and edges as the respective reference sets.
Analysing their ROC curves, we can see a clear distinction in
performance between the application of the OMmethodology
to the random network (Figure 4) and the subsets of the real
networks (Figure 2). )e AUC obtained after using the
proposed method in all 10 random networks generated was
close to 0.5 for both organisms (Yeast and Human), while for

the subsets of the Yeast network and Human network, the
AUC was 0.9534 and 0.8708, respectively.

3.4. Random Insertion of Edges. To evaluate the performance
of the OM methodology for denoising PPI networks, we
perturbed the networks of the reference sets by randomly
adding incrementing percentages of edges to the networks of
the Yeast and Human reference sets and the CS2007 ref-
erence set.

We created four noisy networks for each dataset, adding
20% more edges to the original network, followed by 40%,
60%, and 80%. )ese intervals were selected following the
research conducted by Fang et al. [23]. Figure 5 shows the
ROC curves when the OM methodology is applied to the
networks of the Yeast and Human reference sets and to the
four noisy networks generated from each of them. We can
observe a decrease in performance when we increase the
percentage of the random edges added.

To be able to compare the performance of the OM
methodology with that of other network-based methodol-
ogies proposed by other researchers, we also perturbed the
CS2007 network by randomly inserting edges in the same
proportions previously described. Figure 6 shows the
graphical representation of the resulting AUC values when
the OM methodology is applied to the four noisy networks
obtained from the CS2007 network and when MDS and IGS
methodologies are applied [23]. It can be observed that the
proposed OM methodology outperforms MDS and IGS
methodologies.

After denoising the networks with the OMmethodology,
we also calculated the percentage of FP interactions that
were removed (Table 5). We observe that the OM meth-
odology could remove 97% of the FP of the 20% added edges
and 89% of the FP of the 80% added edges.

3.5. RandomDeletion of Edges. To evaluate the performance
of the OM methodology for the identification of missing
interactions, four new networks were created for each
dataset (i.e., Yeast, Human, and CS2007 reference sets) by
removing increasing percentages of edges from the re-
spective reference set networks. Edge removal was per-
formed in the same proportion as edge addition: 20%, 40%,
60%, and 80%. By removing increasing percentages of edges
from the respective reference set networks, we are creating
smaller sparse networks and at the same time deteriorating
their inherent structure. )e results are shown in Figure 7,
presenting the ROC curves, when the OM methodology is
applied to the eight noisy networks referred previously, of
the Yeast and Human reference set networks.

)ese results show a scenario alike the one observed after
randomly adding edges, as greater reductions in the number
of edges result in greater performance drops, but the per-
formance drops are steeper in the Human organism.

Figure 8 shows a graphic of the AUC values, when the
OM methodology is applied to the four noisy networks
obtained from the CS2007 network, referred previously,
compared to the MDS and IGS methodologies [23]. )e OM
methodology has a better performance compared to the IGS
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Table 3: AUC, optimal cut, and accuracy cut values in Yeast.

Yeast AUC Optimal cut Accuracy cut

JC 0.9462
Sensitivity 0.9246 Accuracy 0.9123Specificity 0.9000
Cutoff 0.0008 Cutoff 0.0008

NC 0.9534
Sensitivity 0.9057 Accuracy 0.9282Specificity 0.9471
Cutoff 0.0021 Cutoff 0.0044

Table 4: AUC, optimal cut, and accuracy cut values in Human.

Human AUC Optimal cut Accuracy cut

JC 0.8438
Sensitivity 0.8069 Accuracy 0.8300Specificity 0.8531
Cutoff 0.0005 Cutoff 0.0005

NC 0.8708
Sensitivity 0.7989 Accuracy 0.8400Specificity 0.8735
Cutoff 0.0001 Cutoff 0.0014
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Figure 4: Continued.
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and MDS methodologies, except when 80% of the in-
teractions is removed from the CS2007 reference set, where
the application of the IGS gives better results. Further details
are shown in Table 6, where we can observe that 95% of the
TP removed could be detected when the OMmethodology is
applied to the perturbed network, when 20% of the in-
teractions of the reference set was removed, and 40% could
be detected when 80% was removed.

4. Analysis

Different topological measures were used to identify the
optimal threshold, with the Yeast and Human reference sets;
comparative testing showed (Figures 2 and 3 and Table 2) that
the best results were obtained using the JC and the NC
measures, and thus, we decided to use both in some exper-
iments of this work. JC is a widely known measure frequently
used in network denoising andmissing link prediction. It also
considers the neighbourhood information, which is aligned
with the “guilt-by-association” principle. )e same applies to
the NC index, proposed herein, where the concept of the CC
is also taken into account.

)e OMmethodology was then applied to the Yeast and
Human datasets, using the JC and the NCmeasures and after
analysing Tables 3 and 4, where the AUC values and the
cutoff values for both the optimal cut and the accuracy cut
for the Yeast and Human reference sets obtained are shown;
it can be seen that the NCmeasure performed better than the
JC measure at discriminating between protein interactions
and noninteractions, and for this reason, the NC measure
was used in the evaluation of the OM methodology.

)ree different scenarios were considered to evaluate the
OM methodology. )e first one uses randomly generated
protein networks, with the same number of nodes and edges
as their respective reference sets (Yeast and Human). Ob-
serving Figure 4, we can see that the AUC, obtained when
applying the OM methodology to one of the random net-
works, was close to 0.5 for both organisms (Yeast and
Human), while for the Yeast and Human reference sets, the
AUC was 0.9534 and 0.8708, respectively (Figure 2), which
shows that OM is sensitive to the inherent topological
structure of a real network. )ese results show that the OM
methodology cannot distinguish between interactions and
noninteractions in random networks but can capture the
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Figure 4: OM methodology application with the NC topological measure, to Yeast and Human random networks. OM methodology
application ROC curves, curves for the separation of classes (PPI and non-PPI), and accuracy curve with the NC topological measure in one
of the random networks generated with the same number of nodes and edges as the Yeast (a) and Human (b) reference sets.
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inherent rules of biological networks, not present in random
networks.

)e second scenario used to evaluate the performance of
the OM methodology consists in applying OM to networks
obtained from the two Yeast and Human reference sets,
where the number of nodes (proteins) was maintained, but
where a random percentage of edges (proteins interactions),
20%, 40%, 60%, and 80%, not belonging to the reference set
network, was added, and the third scenario is similar to the
second but instead of adding, the same random percentages
of edges were removed from the reference set network.

In the second scenario (random insertion of edges), as
expected, greater increments of random edges resulted in
greater performance reductions (Figure 5).)e performance
reductions were steeper in Human, which could be attrib-
uted to one major reason: the percentage of FN is most likely
greater in the Human interactome than in the Yeast
interactome. )us, it could be argued that the Yeast refer-
ence set is a more reliable, better representation of the actual
Yeast interactome, than the Human reference set is of the
real Human interactome. When we add these percentages of
random edges, the inherent structure of these biological
networks becomes deteriorated because we are probably
adding TN.

In the third scenario (random deletion of edges), greater
reductions in the number of edges result in greater per-
formance drops compared to the second scenario, but the
performance drops are steeper in the Human organism
(Figure 7). )is could be explained by the fact that we are
removing TP from both networks. However, since the Yeast
network seems to be a closer representation of its true
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Figure 5: Application of the OM methodology with the NC topological measure, when an increasing percentage of edges was added
randomly to the Yeast and Human reference set networks. ROC curves of the reference sets and the other 4 networks, when 20%, 40%, 60%,
and 80% of edges were added to the reference set network for Yeast (a) and Human (b).
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Figure 6: Application of the OM methodology with the NC to-
pological measure, when an increasing percentage of edges was
added randomly to the CS2007 reference set network compared to
the MDS and IGS methods. AUC values of the 4 CS2007 perturbed
networks when 20%, 40%, 60%, and 80% of random edges were
added to the reference set networks, using OM, IGS, and MDS
methods.

Table 5: Percentage of FP removed after applying the OM
methodology to the noisy networks of the CS2007 dataset.

% added # FP added # FP removed % FP removed
20 1,665 1,607 97
40 3,329 3,114 94
60 4,994 4,560 91
80 6,658 5,926 89
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network than the Human network, the accentuated de-
terioration in the structure of the Human network could
explain this behaviour.

So, when comparing the results between edge addition
and edge removal in Yeast and Human reference sets
(Figures 5 and 7), we witness that the overall performance
reductions were quite dissimilar. Adding just 20% more
edges contributed to a reduction of approximately 0.08 in
AUC for Yeast and 0.06 AUC for Human. Further addition
of edges beyond this point did not decrease the AUC sharply.
Contrarily, after removing 20% of the existing edges, the
AUC decreased by roughly 0.02 for both Yeast and Human,
with greater performance drops after each percentage of
edge removal.

)e better performance observed for the Yeast inter-
actome could be explained by its smaller size compared to
the Human interactome, in addition to being relatively well
studied, meaning that input data quality plays an important
role in the performance of computational methods. Addi-
tionally, the negative impact on performance observed after
randomly adding edges suggests that the OM methodology
is very sensitive to high percentages of FP and FN.

To compare the performance of the OM methodology
with that of other network-based methodologies proposed
by other researchers, the CS2007 network reference set was
perturbed by randomly inserting edges in the same pro-
portions previously described in scenario 2 and by randomly
deleting edges in the same proportions previously described
in scenario 3. )e OM methodology was compared to the
MDS and IGS methodologies [23]. Figures 6 and 8 show the
AUC values when these methodologies were applied to this
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Figure 7: Application of the OM methodology with the NC topological measure, when an increasing percentage of edges is removed
randomly from the Yeast andHuman reference set networks. ROC curves of the reference set and the other 8 networks when 20%, 40%, 60%,
and 80% of edges were removed from the reference set networks for Yeast (a) and Human (b).
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Figure 8: Application of the OM methodology with the NC to-
pological measure, when an increasing percentage of edges was
removed randomly from the CS2007 reference set network. AUC
values of the 4 CS2007 perturbed networks when 20%, 40%, 60%,
and 80% of edges were removed from the reference set networks,
using OM, IGS, and MDS methods.

Table 6: Percentage of TP inserted after applying the OM
methodology to the incomplete networks of the CS2007 dataset.

% removed # TP removed # TP inserted % TP inserted
20 1,665 1578 95
40 3,329 2993 90
60 4,994 4011 80
80 6,658 2633 40
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dataset, and a general improvement in the performance can
be seen when the OM methodology is applied compared to
the MDS and IGS methodologies. When 80% of random TP
of network interactions is removed, the AUC of the IGS is
superior to the AUC of OM and MDS. )is could not mean,
in this case, that OM is worst since removing 80% of the TP
makes the model very close to a random network and a
denoising method, for consistency, should not be able to
detect the structure in such networks.

Further analysis was conducted for these last networks
with added random percentages of FP interactions. )e OM
methodology was applied, and the percentage of FP in-
teractions removed was calculated (Table 5). Interestingly,
most of the randomly inserted FP interactions were
promptly identified, even when the network was heavily
perturbed, with 89% of the FP removed after contaminating
the network with 6,658 random interactions. )ese results
suggest that the OM methodology can indeed capture the
inherent topology of biological networks. Interestingly, we
observed that the number of TP interactions identified after
randomly removing edges from the CS2007 dataset plum-
mets after removing 60% of TP (Table 6). Still, the OM
methodology seems to identify most missing links up to that
point. )ese findings suggest that the OM methodology can
assess whether the topological structure of a network is
according to the characteristic topology of biological
networks.

)e OM methodology could still work well in less-
studied interactomes, when the subset of the interactome of
interest is a representative sample of the structure of the
entire interactome, meaning that the percentage of FP and
FN cannot hide the inherent structure behind the biological
networks of the organisms.

5. Conclusions

Currently, low-throughput experimental methods are the
only effective way to validate protein interactions. While
high-throughput experimental methods to obtain PPIs exist,
the obtained results have very high noise. As such, com-
putational methods are required to speed up data acquisition
and to reduce the data contamination. Methods relying
exclusively on the topology of biological networks are
simpler and faster as it appears that the network topology
may reveal patterns or signatures associated with the kind of
organism and the type of interactions. If we can use, ef-
fectively, only the topology to denoise biological networks,
we have a simple computational method suitable for in-
complete interactomes, without the need for extra biological
knowledge.

)is paper introduced the OM methodology for
denoising biological networks, a methodology that (a) uses
exclusively the topology of the network, (b) enables, easily, to
separate the distributions of interaction and noninteraction
proteins in PPI networks, (c) does not use known distri-
butions as approximations, and (d) provides a topological
way of detecting FP interactions and finding new in-
teractions. )e main innovation of the OM methodology is
related to its ability to combine the advantages of using

exclusively the topology without taking approximations of
known distributions and without using external knowledge
to detect interactions that do not exist or to find new in-
teractions with a better performance than some documented
used methodologies. )is paper also introduced a new
network topologic measure, the NC measure, which is used
with the OM methodology and yielded better results,
compared to other known and current topological measures.

)e OM methodology can be explored in the future by
applying it in networks belonging to other domains, where
there is an inherent structure, to predict new interactions
and eliminate spurious interactions.
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