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Abstract Perturbations in sarcomeric function may in

part underlie systolic and diastolic dysfunction of the

failing heart. Sarcomeric dysfunction has been ascribed to

changes in phosphorylation status of sarcomeric proteins

caused by an altered balance between intracellular kinases

and phosphatases during the development of cardiac

disease. In the present review we discuss changes in

phosphorylation of the thick filament protein myosin

binding protein C (cMyBP-C) reported in failing myocar-

dium, with emphasis on phosphorylation changes observed

in familial hypertrophic cardiomyopathy caused by muta-

tions in MYBPC3. Moreover, we will discuss assays which

allow to distinguish between functional consequences of

mutant sarcomeric proteins and (mal)adaptive changes in

sarcomeric protein phosphorylation.
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During recent years it has become increasingly evident that

cardiac cMyBP-C exerts an important role in the regulation

of sarcomere function with consequences for in vivo car-

diac performance. The functional role of cMyBP-C is

tightly regulated by kinase-mediated phosphorylation. The

most important kinase which is known to phosphorylate

cMyBP-C in vivo is protein kinase A (PKA), which is

activated upon stimulation of the b-adrenergic receptors

during increased stress as occurs during exercise. At the

sarcomere level, b-adrenergic receptor activation reduces

the sensitivity of myofilaments to calcium, reduces passive

stiffness and increases the kinetics of cardiac contraction

due to PKA-mediated phosphorylation of the three sarco-

meric target proteins, cardiac troponin I (cTnI), titin,

and cMyBP-C. Although cTnI exerts a ‘‘dominant’’ role

in the reduction of myofilament Ca2?-sensitivity upon

PKA-mediated phosphorylation, recent studies indicated a

modulatory role for cMyBP-C in this process (Cazorla

et al. 2006; Cuello et al. 2011; Kooij et al. 2010b). The

most important regulatory role of cMyBP-C seems to be

the effect on cross-bridge kinetics of sarcomere contraction

(Stelzer et al. 2006a, 2006b). Involvement of cMyBP-C

and its phosphorylation in stretch activation has been

demonstrated in mice by Stelzer et al. (2006b, 2007).

This stretch activation might play an important role in

the development of systolic pressure (Steiger 1977; Stelzer

et al. 2006a). It has been proposed that cMyBP-C acts as a

structural constraint limiting cross-bridge formation and

that phosphorylation of cMyBP-C accelerates cross-bridge

kinetics which is required for enhanced rates of relaxation

and force development in diastole and systole, respectively.

cMyBP-C phosphorylation in end-stage heart failure

Systolic heart failure (SHF or heart failure with reduced left

ventricular ejection fraction) is the end-stage of various

cardiac diseases (e.g., ischemic heart disease, valve defects)

and is characterized by ineffective functioning of the heart

which then cannot supply sufficient blood to meet the

body’s demands. The body tries to compensate for the

reduced cardiac output by sympathetic stimulation, in an
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attempt to maintain vital organ perfusion via an increase in

heart rate and cardiac contractility. Because of the chronic

nature of the disease, this leads to a prolonged increase in

catecholamine levels in the serum. This in turn results in

the down-regulation and desensitization of the beta-

adrenergic receptor (Bristow et al. 1982) and reduced

phosphorylation of downstream PKA target proteins in the

end-stage failing heart (El-Armouche et al. 2004; Schw-

inger et al. 1999). In addition to reduced PKA signaling,

increased activity and expression of protein phosphatase 1

(PP1) has been reported in a swine model of post-myo-

cardial infarction (MI) cardiac remodeling (Duncker et al.

2009) as well as in patients with heart failure (Neumann

et al. 1997). PP1 dephosphorylates many PKA target pro-

teins and its activity is indirectly regulated by PKA via

phosphorylation of the PP1 inhibitor protein. In addition to

the changes in PP1 expression/activity, a decreased activity

of this endogenous inhibitor of PP1 was observed in heart

failure patients (El-Armouche et al. 2004).

In end-stage failing human myocardium, reduced

phosphorylation of all PKA sarcomeric target proteins

has been reported. Total phosphorylation of cTnI was

decreased in end-stage failing myocardium (Bodor et al.

1997; van der Velden et al. 2003; Zaremba et al. 2007).

This decrease could at least partially be attributed to

reduced PKA-mediated phosphorylation, as phosphoryla-

tion of the PKA-specific sites Ser23/24 was lower in failing

compared to non-failing donor heart tissue (Hamdani et al.

2010; Messer et al. 2007; van der Velden et al. 2006). In

addition, phosphorylation of the giant protein titin is

reduced in patients with systolic and diastolic heart failure

(Borbely et al. 2009; Kruger et al. 2009).

As indicated above, the other main target of PKA in the

sarcomere is cMyBP-C and in cardiac tissue from end-

stage heart failure patients its phosphorylation is also

decreased (El-Armouche et al. 2007; Jacques et al. 2008;

Zaremba et al. 2007), irrespective if the underlying cause

of heart failure (Copeland et al. 2010; Hamdani et al.

2010). Using 1D gel electrophoresis and staining with

the phospho-specific stain ProQ Diamond we observed

reduced phosphorylation of cMyBP-C in end-stage heart

failure patients with ischemic (ISHD) or idiopathic (IDCM)

cardiomyopathy (Fig. 1a). Protein phosphorylation can be

studied by a number of methods, one of which is 2D gel

electrophoresis. This technique is based on the iso-electric

point of a protein, which is reciprocally correlated to the

amount of phosphorylation. With this method, it was shown

that the cMyBP-C protein spots separated on the 2D gel

(Fig. 1b) were shifted to the basic side (higher pI) in failing

compared to donor cardiac samples in support for decreased

cMyBP-C phosphorylation in both ischemic and idiopathic

heart failure (Fig. 1c). Another method to quantitatively

study protein phosphorylation is by phosphate affinity gel

electrophoresis, in which the degree of phosphorylation

is inversely related to the migration speed in the gel

(Kinoshita et al. 2006). In human donor heart tissue, it was

shown that most of the cMyBP-C exists in mono-, bi-, tri-,

or tetra-phosphorylated forms with very little of the

unphosphorylated form, while in hearts from end-stage

heart failure patients the unphosphorylated form is pre-

dominant, with only some mono-phosphorylated cMyBP-C

(Copeland et al. 2010). Protein phosphorylation can also be

studied by using phosphorylation site-specific antibodies.

cMyBP-C can be phosphorylated in vivo on at least three

sites, all of which are located in the cardiac isoform specific

M region, i.e., Ser273, Ser282, and Ser 302 (Barefield and

Sadayappan 2010). At least one other site should exist in

humans (Copeland et al. 2010) and multiple sites are pre-

dicted from studies in animal models (Yuan et al. 2006) or

on the basis of in vitro studies (Jia et al. 2010). Using

antibodies specific for these sites, it was shown that Ser282

phosphorylation was markedly reduced in end-stage failing

heart tissue (El-Armouche et al. 2007), as was phosphory-

lation of Ser273 and Ser302 (Copeland et al. 2010).

cMyBP-C in familial hypertrophic cardiomyopathy

(FHCM)

Another class of cardiac disease consists of the inherited

cardiomyopathies (Watkins et al. 2011). In these forms

of cardiomyopathy, cardiac dysfunction, and altered

morphology are caused by genetic mutations rather than an

external cause, such as coronary artery disease or hyper-

tension. FHCM is the most prevalent inherited cardiac

disease and has a prevalence of 1:500 (Maron 2004).

FHCM is most frequently caused by mutations in genes

coding for sarcomeric proteins (Richard et al. 2003).

Interest in cMyBP-C grew when it became apparent

that *40% of the FHCM causing mutations were located

in the MYBPC3 gene (Richard et al. 2003).

The sarcomeric phosphorylation pattern in HCM shows

a great deal of overlap with that in heart failure. Similar to

heart failure samples, phosphorylation of cTnI was found

to be reduced in FHCM (Hoskins et al. 2010; van Dijk et al.

2008; van Dijk et al. 2009b). Cardiac MyBP-C phosphor-

ylation was also lower in FHCM patients (Hoskins et al.

2010; Jacques et al. 2008; van Dijk et al. 2008; van Dijk

et al. 2009b), and Copeland et al. (2010) showed a

shift towards unphosphorylated and mono-phosphorylated

cMyBP-C similar to end-stage failing myocardium.

The lower cMyBP-C phosphorylation in FHCM hearts was

found in patients in whom no mutation was found in the

genes coding for cMyBP-C, b-myosin heavy chain and

troponin T. Figure 2a shows protein data from patients

(NYHA class II) who underwent myectomy surgery to
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restore left ventricular outflow and from explanted heart

samples of end-stage failing FHCM patients. In the Neth-

erlands two founder mutations in MYBPC3 account for

35% of all HCM mutations (Alders et al. 2003). Although

these mutations are predicted to result in truncated

proteins, no mutant protein was found, indicating haplo

insufficiency rather than a toxic peptide as the cause of

FHCM (van Dijk et al. 2009a). In this patient population

cMyBP-C protein levels were 33% lower than donor levels,

but surprisingly relative phosphorylation of cMyBP-C was

not different between patients and donors, whereas cTnI

phosphorylation was notably reduced (van Dijk et al.

2009a) (Fig. 2b). The observation that cMyBP-C phos-

phorylation was similar in patients with MYBPC3 muta-

tions compared to donors may be explained by an altered

stoichiometry between kinase activities in the cardiac cells

and cMyBP-C protein levels. The reduction in cMyBP-C

protein level may match the reduction in kinase activities

in FHCM with MYBPC3 mutations.

In both end-stage failing and most FHCM hearts

phosphorylation was markedly lower than in donor hearts.

It has been debated whether donor hearts truly represent

the normal situation and can therefore be used as controls

(Jweied et al. 2007; Marston and de Tombe 2008). Espe-

cially the fact that many donors receive positive inotropic

support and may have brain damage leading to a cate-

cholamine surge is of concern to studies of protein phos-

phorylation, as these conditions would lead to enhanced

PKA activity. Furthermore, it has recently been shown

that different tissue procurement strategies can affect the

phosphorylation of sarcomeric proteins (Walker et al.

2011). Noteworthy, in the latter study cMyBP-C phos-

phorylation did not change with different procurement

strategies.

The observation that cMyBP-C is less phosphorylated

in a host of different cardiac disease states does not

directly establish the functional consequences of lower

phosphorylation of cMyBP-C. To study the functional

consequences of cMyBP-C phosphorylation, either trans-

genic animal models can be used or studies can be

performed by modulating phosphorylation in vivo or in

vitro.

A B

C 
Increasing pI

Fig. 1 Cardiac MyBP-C phosphorylation in end-stage heart failure.

a Samples from donor, end-stage heart failure patients with IDCM

or ISHD cardiomyopathy were analyzed for cMyBP-C and cTnI

phosphorylation with ProQ Diamond stained gels and normalized to

total SYPRO-stained cMyBP-C. Phosphorylation of cardiac cMyBP-

C and cTnI is higher in donor compared to the ISHD and IDCM

samples. Phosphorylation in the groups was normalized to donor,

which was set to one. Figure adapted from Hamdani et al. (2010)

with kind permission from Springer Science ? Business Media.

b Representative 2D-gels from donor and IDCM, showing a shift of

cMyBP-C towards higher pI spots (left) in IDCM compared with

donor, indicating less phosphorylation. Figure adapted from Copeland

et al. (2010) with permission from Elsevier. c Quantification of the

different spots from 2D gel analysis showing similar shifts in cMyBP-

C phosphorylation in IDCM and ISHD compared to donor. *P \ 0.05

versus donor in one-way ANOVA followed by post-test Bonferroni;
#P \ 0.05 versus IDCM in one-way ANOVA followed by post-test

Bonferroni analysis
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Transgenic animal models

The effects of cMyBP-C phosphorylation on its physio-

logical function have been demonstrated with transgenic

animal models. It has been established that cMyBP-C is

vital for normal cardiac performance as complete knock-

out of cMyBP-C (Carrier et al. 2004; Harris et al. 2002) or

homozygous expression of a mutated MYBPC3 gene,

resulting in less than 10% expression of truncated cMyBP-

C (McConnell et al. 1999; Sadayappan et al. 2005), both

led to a dilated and dysfunctional heart with cardiomyocyte

disarray and fibrosis. Sadayappan and colleagues provided

evidence that apart from cMyBP-C expression level also its

phosphorylation is essential for cardiac performance. They

showed that transgenic expression of wild-type cMyBP-C

could rescue the phenotype of mice carrying homozygous

mutated MYBPC3, while expression of cMyBP-C protein

in which the three well-known phosphorylation sites

(Ser273, 282, and 302) were replaced by unphosphorylat-

able alanines (cMyBP-CAllP-) did not correct dysfunction

(Sadayappan et al. 2005). Furthermore, transgenic expres-

sion of cMyBP-C in which the known phosphorylation

sites were replaced by the negatively charged aspartic acid

(cMyBP-CAllP?), to mimic constitutive tri-phosphoryla-

tion, was able to rescue the phenotype of the null mutant

(Sadayappan et al. 2006). Cardiomyocytes isolated from

cMyBP-CAllP- mice showed a reduced stretch activation

after PKA treatment compared to mice expressing wild-

type cMyBP-C (Tong et al. 2008). In addition, the hearts of

these animals showed an attenuated dobutamine-induced

(Dob) contractile reserve compared with animals express-

ing the wild-type protein. To further elucidate the role

of the individual phosphorylation sites in cMyBP-C,

Sadayappan et al. (2011) used a transgenic mouse model

in which the Ser282 site was either converted to an

alanine or to an aspartic acid and bred into the cMyBP-C

null mutant. This revealed that phosphorylation of the

Ser302 depends on Ser282 phosphorylation, while the

Dob-induced increase in cardiac contractility was depen-

dent on all three sites being phosphorylated (Sadayappan

et al. 2011). Taken together this illustrates the vital role of

cMyBP-C phosphorylation for its physiological function

and a proper cardiac performance.

Phosphorylation of cMyBP-C is not only important in

contraction, but also seems to exert a protective effect

against protein degradation as a canine model of low flow

ischemia showed cMyBP-C dephosphorylation and degra-

dation (Decker et al. 2005). Similar degradation was seen

in a mouse model of ischemia–reperfusion, in which

cMyBP-C was protected against degradation in mice with

cMyBP-CAllP? (Sadayappan et al. 2006). cMyBP-CAllP?

also protected against ischemia–reperfusion injury, as the

ischemic area and apoptosis were reduced and fractional

shortening was increased compared with wild-type

cMyBP-C (Sadayappan et al. 2006, 2009).

Modulation of cMyBP-C phosphorylation

Kinases

To establish which kinases are responsible for cMyBP-C

phosphorylation, both in vivo and in vitro studies have

been used. The first clue that PKA could phosphorylate

cMyBP-C was the observation that phosphorylation of

cMyBP-C was increased after beta-adrenergic receptor

stimulation in rat hearts (Jeacocke and England 1980) and

frog atria (Hartzell and Titus 1982). In a follow-up study

it was shown that PKA could phosphorylate isolated

A 

B 

Fig. 2 Cardiac MyBP-C phosphorylation in FHCM. a Phosphoryla-

tion status of cMyBP-C and cTnI was assessed by ProQ Diamond

stained gels and signal was normalized to the SYPRO Ruby stained

cMyBP-C and a-actinin band respectively as described before

(Zaremba et al. 2007). Phosphorylation status of cMyBP-C and cTnI

was lower in cardiac tissue obtained from myectomy operation from

FHCM patients (NYHA class II) and in cardiac tissue obtained from

explanted hearts from end-stage FHCM patients (NYHA class IV)

compared to donor samples. Phosphorylation in the groups was

normalized to donor, which was set to one. b In a subgroup of FHCM

patients with MYBPC3 mutations (MYBPC3mut), the phosphorylation

status of cMyBP-C was similar between FHCM and donor samples,

while cTnI phosphorylation was lower. Phosphorylation was normal-

ized to donor, which was set to one. *P \ 0.05 versus donor in one-

way ANOVA followed by post-test Bonferroni analysis. Figure

adapted from van Dijk et al. (2009a) with permission
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cMyBP-C in vitro (Hartzell and Glass 1984). In agreement,

PKA incubation of skinned cardiomyocytes from end-stage

failing heart tissue showed a shift towards cMyBP-C forms

with a lower iso-electric point (increased pH) on 2D

gel electrophoresis, indicating increased phosphorylation

(Fig. 3a, b). In vitro phosphorylation of isolated cMyBP-C

by PKA in the presence of [32P] ATP, followed by prote-

olysis and sequencing could pinpoint the three phosphor-

ylation sites to the cardio-specific region between the C1

and C2 domains of the protein (Gautel et al. 1995;

Mohamed et al. 1998). Functionally it was found that

phosphorylation of cMyBP-C with PKA lead to changes in

thick filament structure and an increased level of weakly

bound cross-bridges at low Ca2?-levels, which could lead

to increased force generating cross-bridges during systole

(Levine et al. 2001).

An area that has received a lot of attention in the last

years, is the compartmentalization of PKA signaling, which

enhances its specificity. This spatial regulation is mediated

by so-called A-kinase anchoring proteins (AKAPs) that

bind PKA and are able to localize to specific subcellular

compartments (Fink et al. 2001; Ruehr et al. 2004). The thin

filament protein troponin T has been identified as a

sarcomeric AKAP, which provides a pool of PKA that can

quickly phosphorylate myofilament proteins upon activa-

tion (Sumandea et al. 2011). Recently, myomegalin was

shown to interact with cMyBP-C and act as an AKAP (Uys

et al. 2011).

To test the role of PKA-mediated cMyBP-C phosphor-

ylation in cardiac pathology, phosphorylation changes were

studied in remodeled myocardium of swine 3 weeks after

MI at baseline and upon in vivo administration of the

beta-adrenergic receptor agonist Dob (Boontje et al. 2011;

Duncker et al. 2009). At baseline there were no differences

in cMyBP-C and cTnI phosphorylation in the post-MI

animals compared with sham operated animals (Fig. 3c, d).

Dob administration had a discordant effect on the PKA

targets, as the increase in cTnI phosphorylation was

markedly attenuated in the post-MI hearts compared to

sham, while cMyBP-C was not different between post-MI

C D

A B
2 3 4 5 6 7 8 9 10

Increasing pI 

1 2 3 4 5 6 7 8 9 10

Fig. 3 PKA-mediated cMyBP-

C phosphorylation in vitro and

in vivo. a 2D-gel analysis of

cMYBP-C from IDCM

myocardium before and after

PKA treatment, showing an

shift towards lower pI species,

indicating increased

phosphorylation.

b Quantification of the changes

in phosphorylation after PKA

treatment. c, d Effect of high

and low dose Dob

administration (2 and 10 lg/kg/

min; Dob2 and Dob10) on the

phosphorylation of the PKA-

specific Ser23/24 cTnI site

(n = 5) and Ser282 cMyBP-C

site (n = 6) in sham and post-

MI remodeled myocardium

from pigs. cTnI phosphorylation

increased significantly in sham

animals but this increase was

attenuated in MI animals.

cMyBP-C was not different

between MI and sham animals.

Figure adapted from Boontje

et al. (2011) with permission

from Elsevier. *P \ 0.05, effect

of Dob in a 1-way ANOVA
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and sham hearts (Fig. 3c, d). This might be explained by

an increased activation of Ca2?-dependent calmodulin

kinase II (CaMKII) in post-MI myocardium (Boontje et al.

2011).

Calmodulin kinase II was first found to phosphorylate

cMyBP-C as a Ca2?-calmodulin dependent kinase co-

purified with cMyBP-C isolated from chicken hearts

(Hartzell and Glass 1984), which was subsequently iden-

tified as CaMKII (Schlender and Bean 1991). Whereas

PKA could add 3 mol of phosphates per mole of cMyBP-

C, CaMKII could add only one (Gautel et al. 1995). Fur-

thermore, it seems that the site now identified as Ser282 is

the target site for CaMKII (Gautel et al. 1995) and that

this site needs to be phosphorylated first to facilitate

phosphorylation of Ser302 (Sadayappan et al. 2011). Func-

tionally, CaMKII phosphorylation seems to be important

in the frequency-dependent increase in force as this was

depressed in intact muscle treated with a CaMKII inhibitor

(Tong et al. 2004).

Protein kinase C can also phosphorylate cMyBP-C, as

revealed by in vitro phosphorylation studies with recom-

binant PKC in vitro (Lim et al. 1985; Venema and Kuo

1993) or by PKC stimulation in intact cardiomyocytes

(Venema and Kuo 1993). The phosphorylation sites of

PKC on cMyBP-C overlap with those of PKA, as two of

the three PKA-sites were also phosphorylated by PKC

(Mohamed et al. 1998). PKC incubation combined with

phosphorylation site-specific antibodies revealed that

Ser273 and Ser302 are PKC target sites (Sadayappan et al.

2011). Protein kinase C is composed of a family of kinases,

of which in the heart PKC-a is known to be upregulated in

heart failure (Bowling et al. 1999). To study the effect of

different PKC isoforms on cMyBP-C and cTnI phosphor-

ylation, incubations with PKC-a and the novel–non Ca2?-

activated-PKC-e in skinned cardiomyocytes from failing

tissue were performed (Kooij et al. 2010a). Both isoforms

could phosphorylate cMyBP-C and cTnI, albeit with

different substrate affinities (Fig. 4). Phosphorylation of

cMyBP-C by another isoform of PKC, namely PKCf,

was shown by expressing a constitutively active form in

cardiomyocytes (Wu and Solaro 2007). PKC phosphory-

lation of cMyBP-C is proposed to cause a decrease in

actomyosin ATPase, which could be cardioprotective (Pyle

et al. 2003).

Recently, Protein kinase D (PKD) and p90 ribosomal S6

kinase (p90 RSK or RSK) are added to the gamut of

kinases able to phosphorylate cMyBP-C. PKD phosphor-

ylates cTnI at the same sites as PKA (Haworth et al. 2004),

while it phosphorylates cMyBP-C only at Ser302 (Bard-

swell et al. 2010). RSK on the other hand phosphorylates

cMyBP-C at Ser-282 (Cuello et al. 2011). Phosphorylation

of cMyBP-C with RSK was accompanied by a reduction in

Ca2?-sensitivity of force development and acceleration of

cross-bridge kinetics, independent from cTnI phosphory-

lation (Cuello et al. 2011).

Phosphatases

In contrast to the extensive body of work published about

kinase-mediated phosphorylation of cMyBP-C, only a

limited number of studies have focused on the effects

of phosphatases. As was mentioned above, cardiac PP1

expression and activity is increased in heart failure

(Neumann et al. 1997). Purified cMyBP-C that was first

phosphorylated by PKA, was subsequently dephosphoryl-

ated by 30–40% by incubation with the catalytic subunit of

PP1 (Schlender et al. 1987). The same extent of dephos-

phorylation was seen after incubation of skinned donor

heart tissue with PP1 (Yang et al. 2008; Zaremba et al.

2007) as well as in skinned mice cardiomyocytes (Yang

et al. 2008). Incubations of donor tissue with a high con-

centration of PP1 resulted in almost complete dephospho-

rylation of cTnI, while cMyBP-C dephosphorylation was

moderate (Fig. 5). PP1 incubations led to the decrease of

the tri- and tetra-phosphorylated cMyBP-C and an increase

in the unphosphorylated form (Copeland et al. 2010).

Functionally, PP1 incubation in donor tissue resulted in a

marked increase in the Ca2?-sensitivity of force develop-

ment, which could be reversed by subsequent PKA incu-

bation (Neulen et al. 2007). Although in another study, PP1

incubation had no effect on Ca2?-sensitivity in donor cells,

but increased Ca2?-sensitivity after pre-incubation with

PKC (Belin et al. 2007). The effect of PP1 on Ca2?

-sensitivity is likely explained by the dephosphorylation of

TnI, rather than cMyBP-C phosphorylation (Duncker et al.

2009).

α
ε

BL

Fig. 4 Phosphorylation of cTnI and cMyBP-C by protein kinase C.

Phosphorylation of cMyBP-C and cTnI after incubation of failing

tissue samples with PKCa (n = 5) or PKCe (n = 2). Phosphorylation

was assessed by ProQ Diamond stained gels and normalized to total

SYPRO-stained cMyBP-C. Both PKC isoforms increased phosphor-

ylation of cMyBP-C and cTnI, albeit with different specificities.

*P \ 0.05 versus baseline. BL baseline. Figure adapted from (Kooij

et al. 2010a) with permission
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Alkaline phosphatase (AP) is a widely available phos-

phatase that is commonly used for in vitro dephosphoryl-

ation assays. AP mainly dephosphorylates troponin T in the

sarcomere, while cMyBP-C and TnI are significantly but

to a lesser degree dephosphorylated (Kooij et al. 2010a;

Zaremba et al. 2007) (Fig. 5). Functionally, incubation of

myofilaments from donor hearts with AP leads to a slight,

but significant increase in Ca2?-sensitivity of force devel-

opment and passive force (Kooij et al. 2010a), but the role

of cMyBP-C dephosphorylation herein is unclear.

Protein phosphatase 2a (PP2a) is able to dephosphory-

late cMyBP-C (Schlender et al. 1987), although incubation

of skinned cardiomyocytes with PP2a showed only a low

degree of cMyBP-C dephosphorylation (Zaremba et al.

2007). A proteomic study on rat cardiomyocytes showed

that the PP2a regulatory subunit B56a, is present in the

myofilaments after skinning and that B56a level decreases

after b-adrenergic receptor stimulation (Yin et al. 2010).

PP2a’s sarcomeric localization is regulated via its inter-

action with P21-activated kinase-1 (PAK1) (Sheehan et al.

2007). Cultured cardiomyocytes with increased PAK1

activity and thus sarcomeric localization of PP2a, had

lower phosphorylation of cMyBP-C and cTnI (Ke et al.

2004). Conflicting data is published about the effect of

PP2a incubation on skinned cardiomyocytes. While Belin

et al. (2007) found no changes on myofilament function

in either non-failing or failing rat cardiac tissue incubated

with PP2a, a recent paper by Wijnker et al. (2011) showed

an increased Ca2?-sensitivity of force development in

skinned cardiomyocytes isolated from human donor

hearts, but not from end-stage failing hearts. This effect

was attributed to dephosphorylation of cTnI, as PP2a did

not dephosphorylate cMyBP-C (Wijnker et al. 2011).

Further research is warranted to see if cMyBP-C is a target

of PP2a in vivo.

Employing kinases and phosphatases to specifically

phosphorylate or dephosphorylate cMyBP-C should help

to distinguish between functional consequences of mutant

sarcomere proteins and (mal)adaptive changes in sarco-

meric protein phosphorylation. While a number of kinases

have been identified that readily could phosphorylate

cMyBP-C, no specific phosphatase has been found that can

dephosphorylate cMyBP-C to a large extent. Whether

dephosphorylation pathways play a role in modulating the

(patho)physiological role of cMyBP-C warrants further

study.
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