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Abstract: The presence of additive manufacturing, especially 3D printing, has the potential to
revolutionize pharmaceutical manufacturing owing to the distinctive capabilities of personalized
pharmaceutical manufacturing. This study’s aim was to examine the behavior of commonly used
polyvinyl alcohol (PVA) under in vitro dissolution conditions. Polylactic acid (PLA) was also used
as a comparator. The carriers were designed and fabricated using computer-aided design (CAD).
After printing the containers, the behavior of PVA under in vitro simulated biorelevant conditions
was monitored by gravimetry and dynamic light scattering (DLS) methods. The results show that in
all the dissolution media PVA carriers were dissolved; the particle size was under 300 nm. However,
the dissolution rate was different in various dissolution media. In addition to studying the PVA,
as drug delivery carriers, the kinetics of drug release were investigated. These dissolution test
results accompanied with UV spectrophotometry tracking indirectly determine the possibilities for
modifying the output of quality by computer design.

Keywords: 3D printing; fused deposition modelling (FDM); computer aided design (CAD); erosion
test; dissolution study; dynamic light scattering (DLS)

1. Introduction

Among the challenges of pharmaceutical technology and drug development, the
desire to produce the perfect treatment fit for the individuals via the construction of
the drug delivery system is inevitable. The aspect of producing personalized medicine
with optimal pharmacokinetics and physicochemical properties engineered strictly to the
patient’s needs is gaining more and more attention. 3D printing can change the ways of
traditional drug production. The precedent of Spritam®, the first 3D printed pharmaceutical
product, shows the enormous potential which hides in so-called Additive Manufacturing
(AM) [1]. During this process, the number of unit operations is minimalized [2], and the
opportunity to fabricate every single prototype shaped according to the individuals’ profile
with only minimal human intervention can be the cause of the increased research activity
in this field [3]. An additional benefit of this type of manufacturing is the capability of
producing customized ways of medication for patients suffering from organ dysfunctions,
avoiding the slightest chance of reaching toxic doses in their body. Moreover, preferred
patient groups are pediatrics [4] and geriatrics [5] where therapeutic doses perform great
variance [6]. Further fields of interest can be the production of orphan drugs due to the low
amount of produced medication. With the utilization of 3D printing, these single batches
can be microfabricated without retooling all the manufacturing devices [7]. However,
revolutionizing pharmaceutical manufacturing also requires a new regulatory attitude [8].

A vast number of methods are available beyond 3D Printing, and few of them which
can be employed for tailored pharmaceutical manufacturing [9]. The most widely inves-
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tigated type of free form fabrication is extrusion printing, in which the technique can
be divided by the step of melting the used materials or not. The Pressure Assisted Mi-
crosyringe System (PAM) utilizes the components without melting them [10], while Fused
Deposition Modeling (FDM) uses the melted excipients to create the layer-by-layer struc-
ture of the 3D object [9]. The mixture of active pharmaceutical ingredients (API), polymers,
and other excipients gives a great opportunity to modify the viscosity of the preprinted
materials, and therefore there is no need for melting the semi-solid substrates [11]. Via
the formulation of the containers, several modified releasing strategies can be applied in
the same printlet. The idea of combining osmotic release items into a diffusible contain-
ing shell gives a great opportunity to tailor the released doses according to the patient’s
condition [12]. Moreover, the idea of producing “polypills” containing at least three or
more different APIs with different release profiles also seems to be reachable with this
technology [13]. In the case of harmonizing these strategies, a whole new dimension of
pharmaceutical engineering and manufacturing can be established [2]. Another approach
of this layering method is melting the thermoplastic polymers just above their melting
temperature, then the melted excipients adhere to the heatable printing bed [14]. Due to
the adaptability of the heat of the printing nozzle, the resolution of the printing is much
better than in the instance of PAM. The pre-designed modifications inside the CAD file are
easier to execute because of the better printing. The great variability of printable filaments
and the low cost of this type of manufacturing generated an enormous breakthrough in
the field of pharmaceutical manufacturing [15]. Among the most critical printing param-
eters, the infill and its patterns [16] and the height of the printed layers [17] can be an
outstanding opportunity to modify the release kinetics of the microfabricated drugs [18].
In the development of patient-friendly drug delivery, designing and producing various
geometries with a standard quality in order to maintain different kinetics is an important
objective [19]. FDM printing gives the chance to fabricate unique designs for each object,
and these delivery systems can be tailored to the individual’s preferences [20]. The FDM
extrusion-based technology includes a heating step in which the metal extruder can reach
high processing temperature, excluding the possibility of printing thermolabile API filled
filaments [21]. In order to formulate dosage forms suited for heat-sensitive APIs, novel
nanocomposites have been developed lately [22]. Thermostable APIs can be impregnated
onto the surface of the filament, which allows a minimal drug loading percentage [23,24].
The other and widely used method is hot-melt extrusion, where the parallelly co-rotating
extruders make the homogenous drug-loaded filaments ready for printing [25]. In most
studies, this preparation step was the basis of fabricating tablets and capsules having
different geometries containing variant drugs and doses [26–28].

Beside producing drug-loaded filaments, another way to place API into the delivery
system is printing separate capsule or carrier parts then filled and assembled in the post-
printing phase [29–31]. There was only one previous formulation which aimed at printing
a capsule which can be filled with liquid or solid API and excipients mid-printing [32].
Since, in case of this study, the basis of the formulation strategy is a thin-walled carrier, the
buckling behavior of the printed structures should be monitored in order to ensure the
desired quality [33].

Several types were previously microfabricated: immediate-release tablets [34], fast-
disintegrating tablets and orodispersible films [35], floating drug delivery systems [27,36],
pulsatile drug release tablets [30], biphasic and multi-active solid dosage forms, and zero-
order release tablets [37]. Overcoming the difficulties of on-demand manufacturing of
personalized carriers can lead to the spread of the clinical application of pharmaceutical
additive manufacturing [38]. The reproducibility of dose dispensing and carrier filling is
promising for the future [39].

Polyvinyl alcohol (PVA) is a non-toxic, hydrophilic, synthetic, biodegradable polymer
produced via the hydrolysis of vinyl acetate [40], which is the most widespread supporting
material in the field of fused deposition modeling. The variants of PVA are usually chosen
as supporting structure due to its good solubility in water. The spread of biodegradable
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excipients in the industrial production not only decreases the ecological footprint [41] but
is also an adequate step towards a sustainable, zero-waste manufacturing [42]. Polyvinyl
alcohol is used primarily in topical pharmaceutical and ophthalmic formulations [43]. It
has also been used as an emulsifier in the formulation of drug loaded micro sponges [44].
In solid dosage forms PVA is used in coating formulations for tablets as a film forming
polymer [45]. In this study our aim was to characterize the erosion of water-soluble PVA-
based 3D printed systems with particle size analysis of colloidal PVA particles which
appeared during in vitro mimicked dissolution conditions. The effect of pH, and the
presence of bile salts were also simulated. An additional objective was to evaluate the
effect of orifice numbers on the riboflavin release as a function of time. The optimal setting
of this adjustment through CAD design ensures a perfect dose release which is inevitable
for personalized therapy. The results of these investigations are intended to promote the
spread of the 3D printed production of fillable water-soluble shells. With the opportunity of
mixing different API between different layers of the carrier, the individualized medication
can gain more emphasis.

2. Materials and Methods

Two commercially available biodegradable polymers were used as printing filament:
the water-soluble polyvinyl alcohol (PVA) fiber (Orbi-Tech advanced, Leichlingen, Ger-
many) and the water-insoluble polylactic acid (PLA) fiber (bq Easy Go, Madrid, Spain). The
PVA filament has a diameter of 1.75 mm and a melting point of 183 ◦C, density: 1.13 g/cm3.
According to the manufacturer’s specification, the orange PLA fiber had a diameter of
1.75 mm and a density of 1.24 g/cm3 (ASTM D792), while the melting point temperature is
between 145 and 160 ◦C. As model API riboflavin (Hungaropharma, Budapest, Hungary)
was used. Polyethylene glycol 300 (Sigma Aldrich, St. Louis, MO, USA) was applied as the
dispersing agent of the API containing liquid filled into the 3D printed carriers.

2.1. Design

Autodesk Fusion 360 (Autodesk Inc., San Rafael, CA, USA) was used during the plan-
ning phase of the experiment which exported the prepared structure into a stereolithogra-
phy file. Further settings should be applied during the slicing. This is an algorithmical step
in which the slicing program Ultimaker Cura (Ultimaker, Geldermalsen, Holland) divides
the designed object into several, well defined horizontal slices. The exported g-code file
includes not only the coordinates the extruder is going to follow but all the other printing
parameters which can be set, e.g., printing temperature, bed temperature, cooling fan
speed, printing resolution, and the infill percentage.

The PVA and PLA-based carriers were designed as a 9.75 mm high by 9.6 mm in
diameter. The structure of the wall was built by concentric movements making 1-mm-thick
sides to the printed object. Each carrier was designed to have a hollow structure with
approximately 0.4 mL reservoir volume. During the examination of the effects of holes,
1-mm-diameter orifices were designed into the cylinder mantle and top (Figure 1), equally
divided around the circumference of the prototype. There was a version of carrier without
orifices in order to investigate only the release-modifying effect of the wall. Carriers were
also made of PVA and PLA containing 2 or more orifices (Figure 2). The distance between
the orifices is the circumference of the cover circle divided by the number of holes. The
printer process parameters were set as the following: print speed, 20 mm/s; travel speed,
120 mm/s. The layer parameters were set as a 0.16 mm layer height with a 0.2 mm layer
thickness. The printing temperature was 200 ◦C, accompanied by a 50 ◦C bed temperature
in order to ensure the perfect bonding to the plate. The infill percentage was set to 100%,
with maximum cooling fan performance (5000 rpm).
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2.2. FDM Printing

The applied 3D printer was Creality Ender 3 (Creality 3D Technology Co., Shenzhen,
China), with an MK-10 hot-end with a 0.4-mm-diameter nozzle. The heated print platform
was customized with 3M blue tape. The temperature during the printing was checked by
FLIR with CAT S61 (Caterpillar, Deerfield, IL, USA) The frames were layered on each other
with pre-selected points where the temperature was indicated. The visual investigations
of the printlets were executed using a Keyence VHX-7000 digital microscope (Keyence
International, Mechelen, Belgium).

2.3. Preparation of Riboflavin Containing Liquid Fill

In every instance, 20 mg/g concentration of riboflavin-PEG 300 (polyoxyethylene gly-
col) dispersions were created manually in 10-g-sized batches. The samples were prepared
before filling at room temperature with light-protection. The dispersion was applied into
the vehicle using a 5 mL syringe (Chirana T. Injecta, Stará Turá, Slovakia) applied with
a 23-gauge syringe needle. The filling was monitored by the comparison of the mass of
the empty and the filled prototypes. In the instance of carriers without orifice, the filling
process should be executed during the printing. The filament extrusion was stopped at 80%
of the progress, and the dispersion was filled with the 5 mL syringe. After the application,
the printing was continued, and the container was closed.

2.4. Physical Characterisation of 3D Printed Carriers

The 3D printlets are not yet subject to pharmacopoeial requirements; therefore, for the
determination of mass uniformity and friability, the tests were performed as described in
Chapter 2.9.5 (uniformity of mass of single-dose preparations) and Chapter 2.9.7 (friability
of uncoated tablets) of the 9th European Pharmacopoeia for uncoated tablets, with an
analytical balance (n = 20; Sartorius LA 230S, Sartorius AG, Göttingen, Germany) and
tablet friability apparatus (Erweka AR, Langen, Germany). The printlets’ dimension (n = 20;
Mitutoyo Absolute, Mitutoyo Corporation, Kawasaki, Japan,) and mechanical strength
(n = 10; Erweka TBH 200 TD type, Erweka AR, Langen, Germany). The average values
with standard deviation were recorded at each parameter test.

2.5. PVA-Based Carrier and Drug Release Study

The dissolution tests were performed using a Hanson SR-8 Plus™ Dissolution Test
Station (Hanson Research, Los Angeles, CA, USA) with the paddle (USP 30 dissolution
apparatus II) method at a rotation speed of 50 rpm, in 37 ± 0.2 ◦C medium of 500 mL
volume. At predetermined time-points, 5 mL of samples were withdrawn and filtered
through 10 µm pore size membrane full-flow filters from the media by Hanson® AutoPlus
Multifill collector (Hanson Research, Los Angeles, CA, USA). After every sampling, media
replacement was accomplished with 5 mL of fresh buffer solution. The dissolution tests
were performed in triplicates in the instance of every samples.

2.5.1. Study of PVA-Based Carrier Erosion

The erosion and dissolution of empty PVA-based carriers were characterized by gravime-
try, and to trace the number and particle size of PVA colloidal-sized aggregates dispersed in
various dissolution media, the DLS (dynamic light scattering) method was utilized.

To evaluate the effect of ionic strength and surface-active agents on degradability, the
erosion studies of the empty carriers were conducted in aqueous media of pure demineral-
ized water, pH = 1.2 HCl, pH = 6.8 phosphate buffer and pH = 6.8 tris-(hydroxymethyl)-
aminomethane (TRIS) buffer with or without sodium salt of bile acids (cholic acid and
deoxycholic acid sodium salt 1:1 mixture (Sigma-Aldrich, St. Louis, MO, USA). The erosion
of the carriers was tracked visually (Olympus Stylus TG-4 digital camera, Olympus Corp.,
Tokyo, Japan).

The erosion of the PVA-based carriers was tracked visually.
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Filtered erosion samples were measured with the instrument Zetasizer Nano ZS™
(Malvern Instruments Ltd., Malvern, UK) for the derived count rate (DCR) and particle size.
The Zetasizer® instrument was equipped with a He-Ne laser (wavelength 633 nm, 4.0 mW)
and an avalanche photodiode served as a detector at a detection angle of 173◦ (backscatter
mode). Transmittance values for DLS were quantified by Agilent 8453 UV-Visible Spec-
trophotometer (Agilent Technologies Ltd., Santa Clara, CA, USA) at wavelength 633 nm.
Measurement settings: automatic mode, NIBS (none-invasive-back-scattering) 173◦, 30 sub
runs/measurements; run duration: 10 secs, automatic laser position selected at 4.65 mm
from the bottom of the cuvette; attenuation: attenuator 9 was selected automatically. Three
measurements with 30 runs were performed for each sample, and the mean ± SD values
are reported for all DLS parameters in this article.

The weight of the 3D printed PVA carriers was determined on an analytical balance
(Sartorius LA 230S, Sartorius AG, Göttingen, Germany), which will give the initial weight
(Wi) during the calculation. The carrier was then placed in the apparatus used in the
in vitro dissolution test described above. The test was also performed under the conditions
mentioned above. The dissolution medium was pH = 1.2. The printlets were taken out 5, 15,
30, 60, 120, and 240 min later; the dissolution medium was removed by vacuum filtration
using a PyrexTM borosilicate glass filter. The residue was stored in an oven (6030 Heraeus
Instruments GmbH, Hanau, Germany) at 70◦ C for 48 h. Dry printlet mass (Wdry) was then
determined (Sartorius LA 230S, Sartorius AG, Göttingen, Germany). The weight loss by
erosion of carriers was calculated by Equation (1) respectively [46]:

weight (%) =
wdry

wi
× 100 (1)

Wdry—mass of the dried printlet; Wi—initial mass of the printlet.

2.5.2. Riboflavin Release

The riboflavin concentrations of the dissolution samples were measured by UV-
spectroscopy (Agilent 8453 UV-Vis spectrophotometer; Agilent Technologies, Waldbronn,
Germany) at 267 nm.

Numerous theories and kinetic models describe and applied for the characterization
of drug dissolution profile [47]. Since the shape of the investigated curves was different,
the Weibull distribution function (1) was used for the characterization of the dissolution
profile of the riboflavin loaded PVA or PLA-based 3D printlet [48].

Mt = M∞

[
1 − e−(

t−t0
τd

)
β
]

(2)

Mt—the percentage of the dissolved API at time; M∞—the infinite concentration of
the API in percentages; t0—dissolution lag time; β—curve shape parameter; τd—time in
minutes when 63.2% of the API has been dissolved.

Where Mt is the percentage of the dissolved active pharmaceutical ingredient at time
t, M∞ is the infinite concentration (%) of the drug, t0 is the dissolution lag-time, β is the
shape parameter of the curve, and the τd represents the time (minutes) when 63.2% of the
drug has been dissolved.

3. Results and Discussion

There are several formulations printed with polyvinyl alcohol, due to its soluble
character [21,23,29,32]. However, there is extended research available in connection with
the API–PVA formulations [49]; the erosion of PVA itself has not yet been described.

3.1. The CAD Design and the Tracking of the Printlet

The printing process (Figure 1) was captured by a FLIR thermal camera in order to
obtain information about the already printed layers, while the upper ones are printed on
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the structure. The pinpoint set onto the carrier indicates that while significant heat comes
from the nozzle and the heated bed towards the printlet, the state of the solidified layers is
extremely acceptable. The temperature of the printed wall has not reached the 50 ◦C, and
this phenomenon means that the filling of thermolabile API can be accomplished during
the process.

3.2. Physical Characterisation of 3D Printed Carrier Systems

To guarantee the reproducibility of the manufacturing quality, the investigation of
physical characteristics was executed on the printlets. As there is currently no official
description in the pharmacopeia for the study of 3D printed carriers, we performed the
study according to the pharmacopoeial description (Ph. Eur. 9.) of uncoated tablets.

The measurement results are shown in Table 1. For uniformity of mass, the standard
deviation was minimal, well below the 5% allowed in the pharmacopeia. To check the print
settings, it is also important to check the height and diameter of the 3D printed carrier. The
measured values were close to the original value of the set parameters. The pharmacopoeia
concedes a 1% weight loss for friability when testing uncoated tablets. Compared to this
value, both PVA and PLA-based printlets had very low friability values, as shown in the
data in Table 1. Besides replicability, these results indicate a good opportunity to produce
fillable carriers not just for immediate usage but stock can be also piled from them. Due
to the structure of the carriers, the weak point of this CAD design is the last layer of the
wall around the hollow and the first layer of the closing top area of the printlet. The joint
section of the two different layers ruptures if the hardness tests are executed. However, the
lowest value of the hardness test performed was 205 N, while the highest was 350 N for
PVA. The standard deviation surpasses the 5% limit; however, with the values oscillating
in this territory, the mechanical behavior of the carriers shows no diverse differences.

Table 1. Physical characteristics of 3D printed carriers.

PVA Carrier PLA Carrier

Weight (g) (n = 20; mean ± SD) 0.42 ± 0.007 0.49 ± 0.004
Height (mm) (n = 20; mean ± SD) 9.75 ± 0.053 9.75 ± 0.036

Diameter (mm) (n = 20; mean ± SD) 9.66 ± 0.298 9.66 ± 0.239
Hardness (N) (n = 10; mean ± SD) 212.63 ± 75.87 300.0 ± 1.00

Friability (%) 0.016 0.024

Digital microscopic images show the one-orifice PVA and PLA-based carrier (Figure 1).
It is clear from the images that the layers formed according to the design file during FDM
printing processes. The top view shows the designed orifice that plays an important part
in the filling and dissolution of the active ingredient. Figure 2 shows the cross-section view
of the biodegradable polymer carriers containing multiple drug delivery orifices design for
3D printing and the prepared prototypes.

3.3. Erosion of the PVA Carrier

As earlier mentioned PVA is commonly referred to as a water-soluble excipient, but
PVA forms a physical hydrogel in an aqueous medium [50]. Of course, concentration
conditions must be taken into account. Dilution of a physical hydrogel with water gives a
colloidal solution. During the studies, our aim was to follow the behavior of the printed
PVA carrier through the simulated circumstances of the GI tract. The third figure (Figure 3)
shows what happens to a PVA-based carrier contacting aqueous medium. The colloidal
dissolution/erosion of PVA is a consecutive process. The digital microscope image in the
figure shows the wall of a PVA carrier located in a 90-minute release medium (pH = 1.2).
Erosion and gel state of PVA can be observed. The solid-state wall is eroded into physical
hydrogel state and very small fibers by the medium, forming a gel state before forming
the colloidal solution. In the case of water-soluble PVA, the weight of the carrier decreases
continuously (black line), while the DCR value determined from the release medium
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increases (red line, violet line). It is known in the literature that the increase in DCR is due
to an increase in the concentration of the dispersed particles and/or an increase in the size
of the dispersed particle [51].
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Since the particle size in the samples was below 300 nm (Figure 4) for the entire period,
the decisive process was the increase in the concentration of PVA in the dissolution medium.
The colloidal dissolved particles reach the colloid particle size interval and remain in this
state during at least 24 h.
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Comparing the derived count rates of each carrier dissolved in different media
(Table 2) shows that the highest proportion of the PVA walls are being dissolved dur-
ing the first 120 min in the case of demineralized water, pH = 1.2 solution. Comparing the
derived count rates of each carrier dissolved in different media (Table 2) shows that the
highest proportion of the PVA walls are being dissolved during the first 120 min in the
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case of demineralized water, pH = 1.2 solution. However, in the TRIS buffer (pH = 6.8),
used in order to avoid the PVA incompatibilities with inorganic phosphate [52], the erosion
and formation of colloidal solution process were much slower, and the presence of surface
active bile salts did not accelerate the progress. The visible tracking of the solid samples
also showed that the intact structure of the solid carriers did not disappeare during the first
two hours of the study, but as can be seen in the images and in the weight measurement, at
240 min the carrier is completely disintegrated into colloidal particles (Figures 3–5).

Table 2. The percentages of derived count rates (DCRt /DCR1440min × 100) of various dissolution media (carrier = PVA;
n = 3; mean ± SD).

Medium 5 min 15 min 30 min 60 min 120 min 1440 min

pH = 1.2 1.83 ± 0.92 15.94 ± 1.26 36.3 ± 1.4 75.15 ± 0.92 94.79 ± 0.66 100 ± 1.18
pH = 6.8 (Phosphate) 4.49 ± 0.46 19.77 ± 0.38 57.83 ± 1.28 83.21 ± 0.42 85.76 ± 1.01 100 ± 1.49

pH = 6.8 (TRIS) 0.55 ± 0.15 2.81 ± 0.4 10.95 ± 2.61 19.33 ± 0.11 36.0 ± 0.43 100 ± 1.01
pH = 6.8 (TRIS) + 10 mm BS 1.0 ± 0.1 3.57 ± 1.56 7.4 ± 1.02 13.8 ± 1.12 25.7 ± 1.54 100 ± 6.9

Demineralized water 2.37 ± 1.0 10.97 ± 0.76 30.01 ± 0.61 50.76 ± 0.8 73.89 ± 0.52 100 ± 0.54
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3.4. Riboflavin Release

Figure 6 shows the release of riboflavin loaded PVA and PLA carriers in pH = 1.2 medium.
Carriers without drug delivery orifices were prepared from both biodegradable polymers
and dissolution studies were performed. In the case of PLA, which is insoluble in water, no
drug release was expected, while in the case of PVA, after a short time a practically linear
release of riboflavin was observed. If an orifice for drug release was formed on the support,
the drug delivery profile was completely changed, as shown in Figure 6. There were 1, 2,
3, or 4 orifices in the 3D printed carriers. The location and the number of the pores were
customized in the CAD design, so the indirect effect of the CAD modifications could have
been inspected. The PLA is water-insoluble, so erosion of the body does not affect drug
release. This case is clearly controllable by the number of carrier orifices, both the total
amount of liberated riboflavin and the rate of drug release.

The results of the model-dependent evaluation of the dissolution profiles are shown
in the third table. The correlations during the fits are between 0.9925 and 0.9999, so they
are considered adequate. The kinetic evaluation of the dissolution profiles (Table 3) of
riboflavin loaded PLA-based carrier system also show that increasing the number of orifices
in the carrier accelerated the dissolution and also increased the maximum amount of drug
released, i.e., the infinite value of M increased.
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In the instance of the PVA carrier, not only do the orifices play an important role in
drug release, but also erosion and deformation of the printed object. This is demonstrated
by the fact that the dissolution profile of drug loaded PVA-based systems differs from the
PLA-based system. Erosion of PVA is slower in time than the dissolution of riboflavin
(Biopharmaceutics Classification System I), so here the PVA carrier can slow drug release.
In contrast to the drug loaded PLA carrier, the presence of only one orifice in this system
meant almost 100% drug release, since, as our previous studies show, the skeleton was
completely dissolved in the first hours of dissolution. As the number of orifices increased,
as expected, the τd value decreased. It is also important to note that the maximum amount
of drug released in the case of PLA printlets is obtained in a shorter time, which is also
shown by the low tau values according to the Weibull model; however, due to the rigid,
water-insoluble wall, drug occlusion occurs. In the case of PVA carriers, the maximum
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amount of active ingredient available is higher; there is no such occlusion, but the value of
tau is higher compared to PLA, which is probably because the wall material forms a gel
not only towards the release medium but also towards the cavity.

Table 3. Kinetic parameters of dissolution estimated according to Weibull distribution function (pH = 1.2).

Filament Base PLA PVA

Number of orifices 1 2 3 4 1 2 3 4
M∞ (%) 20.46 40.52 72.15 85.28 100.00 100.00 99.92 100.00
t0 (min) 2.42 0.11 3.71 2.43 0.00 0.00 0.00 0.00
τd (min) 12.17 7.54 7.53 5.00 50.77 34.48 23.96 6.90

β 0.59 0.62 0.60 0.63 0.82 0.70 0.64 0.34
r 0.9991 0.9992 0.9999 0.9999 0.9947 0.9960 0.9925 0.9950

4. Conclusions

3D printing is going to change the ways of conventional drug manufacturing, and the
FDM method enables the researchers to produce high quality tailored dosage forms for
each patient according to their individual needs.

The results demonstrate that dissolution of tested PVA-based 3D printed placebo
carriers can be characterized with the appearance of colloidal particles under 300 nm.
According to the gravimetry and derived count rate data of the dynamic light scattering
method, due to the erosion in the dissolution media the carrier dissolved into colloid
state. The most commonly used supporting material can be upgraded into an important
excipient filament used in personalized therapy. Due to the characteristics of the polymer,
the phenomenon of “ghost tablets” can be abolished because the PVA-based dosage forms
biodegrade in the patient’s body in hours. The CAD design ensures the opportunity to
add drug-releasing holes into the surface of the carrier. Utilizing this effect, extremely
precise individualized treatment can be pharmaceutically engineered, and 3D printed to
any patients regarding their needs. With this novel method, standardized drug release
can be programmed into the CAD and gcode files of the carriers. The easy modification
opportunities ensure extremely wide range of personalized medication. The following
experiments would focus on the wider understanding of the behavior of the PVA and other
water-soluble filaments.
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