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Genetic relatedness to sisters’ children has
been underestimated

Alan R. Rogers

Department of Anthropology, University of Utah, 270 S 1400 E, Salt Lake City, UT 84112, USA

Males of many species help in the care and provisioning of offspring, and these

investments often correlate with genetic relatedness. For example, many human

males invest in the children of sisters, and this is especially so where men are less

likely to share genes with children of wives. Although this makes qualitative

sense, it has been difficult to support quantitatively. The prevailing model pre-

dicts investment in children of sisters only when paternity confidence falls

below 0.268. This value is often seen as too low to be credible; so investment

in sisters’ children represents an unsolved problem. I show here that the prevail-

ing model rests on a series of restrictive assumptions that underestimate

relatedness to sisters’ children. For this reason, it understates the fitness

payoff to men who invest in these children. This effect can be substantial,

especially in societies with low confidence in paternity. But this effect cannot

be estimated solely from confidence in paternity. One must also estimate the

probability that two siblings share the same father.
1. Introduction
In species with male parental care, it makes sense that males would direct that

care towards offspring with whom they share genes. Male dunnocks, for

example, often provision the young of several females, and the rate at which

they provision each clutch closely matches their likely share of its paternity

[1]. Similarly, many human males invest in the children of sisters rather than

in those of wives, and this practice may be most widespread where extramarital

mating is common [2–6] (but see [7–9]).

This human example was first approached in a quantitative way during the

1970s. In that decade, quantitative models were introduced by Alexander [10]

and Greene [11,12]. I will refer to these as models A74, G78 and G80, respect-

ively. Their common goal was to specify conditions under which men are

genetically closer to sisters’ children than to those of wives. The point at

which they are equally close is called the ‘paternity threshold’ [11]. These

authors assumed that selection would favour investment in sisters’ children

only when paternity confidence is below this threshold. The three models dis-

agreed about its numerical value. The lowest value—0.268—was that of the G78

model. This model has become enshrined in the literature.

The others have been less influential. The A74 model was used in two pub-

lications [4,13] and the G80 model (without attribution) in one [14], but neither

has been used since the 1980s.

The G78 model, on the other hand, continues to influence thinking. Anthro-

pologists have extended it to various types of relative [2,15] and across

several generations [5,6]. It also shows up in economic literature ([14]; [16],

pp. 1923–1924). It is used in recent literature to argue that transfers to sisters’ chil-

dren compromise the reproductive interests of husbands ([17], p. 109; [18], p. 157).

It is not clear, however, that the paternity threshold provides a useful way to

think about paternal investment. In the first place, it is hard to believe that paternity

certainty is often as low as the model requires [4,5]. Furthermore, many forms of

parental investment may exhibit decreasing returns to scale. In other words, the

benefit from an additional unit of investment in any given offspring may decline

with each unit invested. Where this is so, we might expect men to distribute
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Figure 1. Effect of average paternity confidence ð�pÞ on the average probability ð�hÞ that two sibs share a father. In the shaded regions, men share more genes with
the child of a sister than with that of a wife. Paternity thresholds of several models are indicated by filled circles. For these thresholds, the value of �p is shown in
parentheses. (a) Paternity confidence constant across families. Curves G78 and G80 represent the models of Greene [11,12]. The other two curves assume that
women have five extrapair mates, with whom the frequency of mating is either even (E5) or uneven (U5). (b) Paternity confidence varies among families. Curve A74
shows the Alexander model. The other curves assume that b ¼ 1 and that, for each family, p is drawn from a Beta distribution with mean �p. Labels show the
variance of this distribution as a fraction of the maximum possible variance, �pð1� �pÞ. Curve UB shows the upper bound, at which the paternity threshold reaches
its maximal value, 0.5.
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investment among multiple offspring, weighting that invest-

ment in favour of those with whom they are most likely to

share genes. Furthermore, the optimal behaviour of males will

depend in part on the responses of females. Neither of these

complexities is accomodated by the paternity threshold model.

They are central, however, to recent game theoretic analyses

[19,20]. Those show that selection can favour investment in sis-

ters’ children even when paternity confidence is well above the

paternity threshold. Yet, these models also use the G78 model

in calculating fitness payoffs ([19], supplementary material,

p. 8; [20]). That model thus continues in importance.

In what follows, I argue that all three models (A74, G78

and G80) make restrictive assumptions. Some of these have

been acknowledged [4,11,12], but others seem not to have

been noticed. All of them distort our views about the related-

ness of men to sisters. These distortions may have biased the

conclusions of all the work mentioned earlier.

This article will not try to explain investment by males in

sisters’ children. It will deal only with questions of relatedness,

a more limited project that may prove useful in the larger one.
2. Material and methods
Most quantitative work on this subject has used the coefficient of
relatedness. I work instead with the coefficient of kinship ([21],

p. 121)—the probability that two genes, drawn at random from

each of two relatives, are copies of the same gene in some

given ancestral generation. In the absence of inbreeding, the coef-

ficient of kinship equals half the coefficient of relatedness. We are

interested in two of these coefficients, which describe the genetic

kinship of a man to the children of (i) his wife and (ii) his sister.

These coefficients depend on two probabilities, which may

vary among families. The first of these—p, or paternity confi-

dence—is the probability that a child’s father is his mother’s

husband. The other is h, the probability that two siblings share

the same father. The value of h is relevant because it affects the

genetic relatedness of a man (Ego) to his sister’s children. This

value depends on paternity confidence, but not that provided

by Ego’s wife. It depends instead on the paternity confidence

provided by Ego’s mother to her husband. The value of h also
depends on the number of a woman’s husbands [20]. I assume

throughout that women have only one. Finally, I assume that

Ego does not know values specific to his own family and must

rely instead on population averages, �p and �h.

Within a family, the coefficient of kinship of Ego with his

wife’s child is f1 ¼ p=4, whereas that with his sister’s child is

f2 ¼ ð1þ hÞ=16. A man shares more genes with the child of a

sister than with that of a wife when f2 . f1, or equivalently

when h . 4p� 1. This condition refers to an individual family,

but also holds on average if p and h are replaced by �p and �h.

The shaded regions in figure 1 show the combinations of �h and
�p that satisfy this inequality.

Consider a family within which the probability of paternity is

p. With probability p2, two random siblings were fathered by the

husband, and with probability (1 2 p)2 neither was. In the second

case, both may have been fathered by the same extrapair1

male. Let b represent the conditional probability of this

event, given that neither sib was fathered by the husband.

With these definitions,

h ¼ p2 þ ð1� pÞ2b: ð2:1Þ

For an average family,

�h ¼ p2 þ ð1� pÞ2b

¼ �p2þVp þ ð1� pÞ2b ð2:2Þ

where the overbars represent averaging over families, and

Vp ¼ p2 � �p2 is the variance among families in p.
3. Results
This section will (a) derive the assumptions that underlie the

three published models, and then relax assumptions involving

(b) the distribution of sexual access among extrapair mates

and (c) the variation of paternity confidence among families.

(a) Assumptions of the classical models
The three models make differing claims about �h:

A74 : �h ¼ �p; ð3:1Þ



Table 1. Assumptions that underlie each model. The models differ with
respect to assumptions about two parameters: Vp (the variance across
families in paternity confidence) and �b (the mean probability that two
siblings share an extrapair father, if neither was fathered by the mother’s
husband). The first of these ranges from 0 to �pð1� �pÞ and the second
from 0 to 1. Each model can be derived by setting each parameter either
to its highest or its lowest feasible value. The A74 model can also be
derived from assumptions that imply intermediate values of the two
parameters. ‘Upper bound’ (UB) is the model with the highest possible
paternity threshold.

assumption

model abbreviation Vp
�b

Greene [11] G78 0 0

Greene [12] G80 0 1

Alexander [10] A74 �pð1� �pÞ 0

upper bound UB �pð1� �pÞ 1

rspb.royalsocietypublishing.org
ProcR

SocB
280:20121937

3

G78 : �h ¼ �p2 ð3:2Þ

and

G80 : �h ¼ �p2þð1� �pÞ2: ð3:3Þ

Each of these results can be derived by setting �b and Vp

to values at the edges of their feasible ranges—that is, by

setting each parameter either to its highest or its lowest

feasible value.

Because b is a probability, it must lie between 0 and 1, and

so must its average, �b. This average equals 0 when women

never mate with the same extrapair male twice, or (equiva-

lently) when each woman has an infinite number of such

mates. On the other hand, �b ¼ 1 when no woman has more

than a single extrapair mate. The variance, Vp, must lie

between 0 and �pð1� �pÞ. It attains the lower value when all

women have the same fraction of extrapair matings. The

upper value occurs when p ¼ 1 for a fraction �p of women

(who always mate with their husbands), and p ¼ 0 for the

rest (who never do). In summary, �b lies within the range

[0,1] and Vp within ½0; �pð1� �pÞ�.
Consider what happens when we substitute these upper

and lower feasible values into equation (2.2). The result

equals equation (3.1) when �b ¼ 0 and Vp ¼ �pð1� �pÞ, equals

equation (3.2) when �b ¼ Vp ¼ 0, and equals equation (3.3)

when �b ¼ 1 and Vp ¼ 0. Thus, models A74, G78 and G80

can each be derived by setting �b and Vp equal to values at

the limits of their feasible ranges. The A74 model also holds

if p � 1
2 and b ¼ p/(1 2 p) within each family, for then

equation (2.1) reduces to h ¼ p, and averaging over families

gives �h ¼ �p (equation (3.1)).

These results are summarized in table 1. For the G78

model, the assumptions discussed above are necessary as

well as sufficient. Those for the A74 and G80 models are suf-

ficient, but may not be necessary: they may hold also under

other assumptions. None, however, have ever been

described. The assumptions discussed earlier are the only

ones under which these models are known to hold. Let us

ask now what happens when these assumptions are relaxed.

§3b considers the possibility that siblings share paternity

through an extrapair male.

(b) Extrapair paternity
This section focuses on the probability, b, that two siblings

share a father, given that neither was fathered by their

mother’s husband. It will be useful to simplify the other

parts of the model; so let us follow Greene [11,12] in assum-

ing that p and b are constant across families. In this context,

there is no distinction between values for families and

averages across families; so I omit the overbars.

It is easy to derive the minimum and maximum feasible

values of h. Equation (2.1) implies that h increases with b, for

any given p. Consequently, the minimum h occurs when b ¼
0 and the maximum when b ¼ 1. These correspond to curves

G78 and G80 in figure 1a. These curves provide lower and

upper bounds on the value of h, provided that p and b are con-

stant across families. When families vary, however, we will see

below that �h can be even larger than G80 would imply.

Between the two extremes, b ¼ 0 and b ¼ 1, the value of b
will vary in response to the number of extrapair partners and

the distribution of matings among them. To model this effect,

let gi represent the fraction (among all extrapair matings of a
given woman) of matings with the ith male. Then gi
2 is the

probability that two sibs were both fathered by this male, if

neither was fathered by the husband. In these terms,

b ¼
Xk

i¼1

g2
i ¼

1

k
þ kVg; ð3:4Þ

where k is the number of males, 1/k is the mean of the gi and

Vg ¼ k�1
P

i g2
i � 1=k2 is the variance.

If the wife visits extrapair partners with equal frequency,

then b ¼ 1/k, and h ¼ p2 þ ð1� pÞ2=k. This reduces to

model G80 if the wife has just a single extrapair partner, and

to model G78 if she has an infinity of them. In addition to

these curves, figure 1a also includes model E5, in which the

wife allocates matings evenly among five extrapair partners.

For a given value of p, the figure shows that h declines as

sexual partners become more numerous, because offspring

are then less likely to share paternity through an extrapair male.

When extrapair males receive uneven allocations, Vg is

large, increasing both b and h, and making siblings more

similar. This makes intuitive sense: variation in gi implies

that a small number of males enjoy disproportionate

mating success; so random pairs of offspring are likely to

share paternity through one of these favoured males. To illus-

trate this effect, figure 1a includes curve U5, representing the

case of five extrapair males who get sexual access in pro-

portion to 1, 1
2,

1
4,

1
8 and 1

16. Because of this unevenness, curve

U5 is higher than E5.

As each of the curves in figure 1a passes from the shaded

to the unshaded region, �p passes what Greene ([11], p. 153)

called the ‘paternity threshold’—the ‘p below which a male

is more related to his sister’s offspring than to his spouse’s’.

Because of the slope of the boundary, the smallest and largest

thresholds are those for the lowest and highest curves on the

page. These two extremes—models G78 and G80—imply

thresholds of 0.268 [11] and 0.382 [12].

So far, we have seen that relatedness to sisters (and thus to

sisters’ offspring) increases if the mother has a small number

of extrapair partners or allocates matings unevenly among

them. Furthermore, the figure shows that these effects

can be quite large. §3c considers another influence—variation

among families in paternity confidence.
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(c) Variation in paternity confidence
The fraction of children fathered by the current husband will

ordinarily vary among families. In such cases, p and h are

random variables, and attention turns to their averages, �p
and �h. To obtain an upper bound on �h, assume that b ¼ 1

for all women. Then equation (2.2) becomes

�h ¼ 1� 2�pð1� �pÞ þ 2Vp:

When the variance (Vp) among families is large, �h will

also be large. To illustrate this effect graphically, I assume

that p is drawn randomly for each family from a beta distri-

bution with mean �p. In figure 1b, the curves labelled 0.1,

0.5 and 0.9 refer to models with increasing variance among

families. The larger the variance, the higher the probability

ð�hÞ that two siblings share a father.

The maximal value of �h occurs when b ¼ 1 for all women,

and Vp is at its maximal value, �pð1� �pÞ. In this case, �h ¼ 1,

whatever the value of �p. The paternity threshold attains its

largest possible value, 1
2. This model is shown as curve UB

in figure 1b.
4. Discussion and conclusions
It has been understood for four decades that paternity cer-

tainty increases the relatedness of men to the children of

wives and sisters [10]. But relatedness to sisters’ children also

responds to other influences, which have not been appreciated.

It is greater when women have few extrapair partners and allo-

cate matings unevenly among them, and when paternity

confidence varies among families. Published models involve

restrictive assumptions about all these influences.

These assumptions underlie an old debate about the cor-

rect form of the relationship between paternity certainty and

relatedness to sisters’ children. Various authors disagreed

about which functional form was correct ([11], p. 153; [2],

pp. 151–152; [13], p. 321; [4], pp. 443–444). The present

work shows that all are correct—they simply involve

different assumptions.

When spelled out, these assumptions seem remarkably

restrictive. They include: (i) that paternity confidence is the

same in each family (G78, G80); (ii) that women never mate

twice with the same extrapair male (A74, G78); (iii) that

some women always mate with their husbands, but the rest

never do (A74); and (iv) that no woman mates with more

than one extrapair male (G80). Each of these assumptions is

unrealistic, and each biases estimates of genetic relatedness.

The assumptions (i) and (ii) of the G78 model both bias results

downward. Consequently, this model provides only a lower

bound on the relatedness of men to sisters’ children. Current

theory relies on this model, and thus underestimates the fitness
payoff to males who invest in such children. The upper bound

on relatedness occurs when assumptions (iii) and (iv) both

hold. At this upper bound, all siblings share paternity, because

no sibship has more than one biological father.

Presumably, real populations lie somewhere between these

extremes. This range of uncertainty implies that there is no

single paternity threshold—no single value of �p at which

men are equally related to children of wives and of sisters.

Instead, the paternity threshold varies among populations

between 0.268 (the lower bound) and 0.5 (the upper). Even

under the most generous conditions, the paternity threshold

requires a very low confidence in paternity.

The present results also bear on recent game-theoretic ana-

lyses. Fortunato & Archetti [19] studied the evolution of

monogamous marriage and ‘vertical transfer’ (i.e. investment

in the children of wives). In calculating fitness payoffs, they

used the assumptions of the G78 model. As we have seen,

this minimizes the payoff from investing in sisters’ children.

Consequently, their model may overstate the stability of verti-

cal transfers. Similarly, Fortunato [20] shows that selection can

favour investment in sisters’ children even when p . 1
2. This

conclusion is conservative because it also relies on the G78

model. Investment in sisters’ children would evolve even

more easily if the assumptions of this model were relaxed.

We can estimate men’s kinship,
�p
4, to wives’ offspring

directly from the population-wide average paternity confidence,

�p. But we cannot estimate kinship to sisters’ children from this

value alone. It may lie anywhere between the lower and upper

bounds, ð1þ �p2Þ=16 and 1
8. The difference between these

bounds decreases with increasing values of �p. Among the

Himba, for example, Scelza [22] estimates that �p ¼ 0:83. This

implies that kinship to sisters’ children is between 0.106 and

0.125, a range of 18 per cent. Had �p been lower—say 1
2—the

range of uncertainty would have been 60 per cent.

Without measuring, one cannot know where within this

range of uncertainty any real population lies. To remove the

uncertainty, we need separate estimates of paternity confi-

dence ð�pÞ and of the probability ð�hÞ that two siblings share

a father.

I am grateful for comments from Ryan Bohlender, Monique Borgerhoff
Mulder, Elizabeth Cashdan, Mark Flinn, Laura Fortunato, Henry
Harpending, Kristen Hawkes and Michael Lewis.
Endnote
1I use the term ‘extrapair’ rather than ‘extramarital’, because relation-
ships that produce children need not be sanctioned as marriages.
Nonetheless, I assume that one male is primary and refer to him as
the ‘husband’.
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