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Abstract

Various modeling techniques were used to understand fluidized bed granulation using a

two-step approach. First, Plackett-Burman design (PBD) was used to identify the high-risk

factors. Then, Box-Behnken design (BBD) was used to analyze and optimize those high-

risk factors. The relationship between the high-risk input variables (inlet air temperature X1,

binder solution rate X3, and binder-to-powder ratio X5) and quality attributes (flowability Y1,

temperature Y2, moisture content Y3, aggregation index Y4, and compactability Y5) of the

process was investigated using response surface model (RSM), partial least squares

method (PLS) and artificial neural network of multilayer perceptron (MLP). The morphologi-

cal study of the granules was also investigated using a scanning electron microscope. The

results showed that X1, X3, and X5 significantly affected the properties of granule. The RSM,

PLS and MLP models were found to be useful statistical analysis tools for a better mecha-

nistic understanding of granulation. The statistical analysis results showed that the RSM

model had a better ability to fit the quality attributes of granules compared to the PLS and

MLP models. Understanding the effect of process parameters on granule properties pro-

vides the basis for modulating the granulation parameters and optimizing the product perfor-

mance at the early development stage of pharmaceutical products.

Introduction

Granulation is defined as a process for size enlargement. In this process, small powder particles

are brought into contact with each other to form a semi-permanent aggregation in which the

original particles can still be distinguished [1]. Unlike high-shear granulation and screw granu-

lation, in which the wet granules are transferred to a drying unit, fluidized bed granulation is a

one-step continuous operation including dry mixing, wetting, and drying. Therefore, it

reduces the number of unit processes, thus improving the production efficiency, reducing the

cost, and satisfying the cGMP requirements [2]. Fluidized bed granulation has many
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advantages such as simple process and cost saving. Therefore, it is used widely in the chemical

and pharmaceutical industries, as well as in agriculture, but its applications are still guided

mostly by the empirical trial-and-error methods [3]. To better understand fluidized bed granu-

lation and achieve the desired target product profile, a quality by design (QbD) framework in

which the quality is a built-in property rather than a measured test of the final product, should

be emphasized and carried out. To provide a mechanistic basis for process understanding, a

design of experiment (DoE) approach is recommended. In this approach, a design space with

the desired characteristics is established, and the high-risk variables critical to the final product

quality are identified [4]. Granulation parameters should be properly controlled in order to

obtain high-quality granules. During fluidized bed granulation, the output is highly dependent

upon the energy and binder input, in that higher inlet air temperature and velocity and a lower

binder addition rate result in spray-drying rather than agglomeration. Conversely, with lower

inlet air temperature and velocity and a higher binder addition rate, there is a transition from

pneumatic delivery to de-fluidization. Improperly setting parameters, either spray-drying or

coating, may result in uncontrollable granulation behavior. Therefore, understanding the

operating mechanisms is a prerequisite for reliably obtaining proper quality granules in

granulation.

In fluidized bed granulation, the effects of binder properties and excipients on granulation

and the properties of granulation product have been studied [5, 6]. Various other operational

conditions and properties of granules have also been investigated by multilinear regression

analysis [7]. The granulation of cohesive Geldart group C powder was successfully carried out

using a Mini-Glatt fluidized bed using precoated nanosilica [8]. The common mechanisms for

the aggregation of powders were wetting and nucleation, consolidation and growth, and

breakage and attrition [9]. Moreover, the development of in-line process analytical technology

(PAT) has made it possible to understand the process and further elucidate the potential mech-

anisms in fluidized bed granulation using near-infrared (NIR) spectroscopy [10], spatial filter-

ing technology (SFT) [11], photometric imaging [12], and microwave resonance technology

(MRT) [13]. However, as these studies were conducted with different types of formulations

and granulation units, the operational parameters of fluidized bed granulation have not

received much recognition. Consequently, a comprehensive analysis of the granulation condi-

tions and granule properties and compactability may be of great significance. The wet granula-

tion in high-shear granulation and screw granulation has been studied extensively using DoEs

and other nonlinear modeling techniques [14,15]. However, DoE has been rarely applied to

better understand the effects of various variables on fluidized bed granulation characteristics

[16]. Moreover, other empirical modeling techniques have been rarely applied.

In the QbD approach, modeling-based product development has replaced experiment-

based product development [17,18]. Among the techniques used in statistical analysis, multi-

variate statistical technique allows a significant reduction in the number of experiments, and

the effects of independent variables within the process are widely evaluated [19]. During the

past decades, response surface methodology (RSM), partial least squares method (PLS) and

artificial neural network (ANN) of multilayer perceptron (MLP) have been well established as

modeling techniques and are the most relevant multivariate statistical techniques, providing

an alternative technique where the mathematical relationship between the parameters and

response of target is complex. To analyze different formulations, RSM, PLS and MLP are the

most popular techniques and widely used in pharmaceutical research. The system can attain

the best performance by using these techniques [3, 20–25].

RSM is a collection of mathematical and statistical techniques based on the fitting of a poly-

nomial equation to the experimental data. This is based on the fitting of mathematical models

such linear, square, polynomial, and others to the experimental results and further verifies the
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model using statistical techniques. The basic concept and application of RSM have been well

reported [26]. However, the quadratic polynomial equation has poor estimates for highly non-

linear processes [27]. To overcome this limitation of the method, MLP has been used in the

last few years in different processes because of its better estimates compared to RSM [28]. MLP

provides an accurate prediction without a clear definition of the relationship between the

input and output. Moreover, MLP has been investigated because of its easily understandable

architecture and simple mathematical form, which is a convenient tool for modeling and opti-

mization [29].

In our previous study, a multivariate statistical analysis model was successfully applied for

modeling the granule yield in wet granulation [15]. Although the effects of process parameters

on granule properties have been studied, a further detailed study is required to better under-

stand the mechanisms involved during the granulation. Therefore, in this study, the critical

factors for product variability affecting the characteristics of granules prepared by fluidized

bed wet granulation were evaluated. In industrial pharmaceutical applications, it is common

to use a mixture of different types of powder. MCC and lactose were selected because they rep-

resent commonly used excipients. The properties of these materials reflect the typical range of

characteristics of pharmaceutical powders. Although a mixture of MCC and lactose was used

in this study, the experimental design techniques and analysis methodologies are general and

can be used for other powder systems.

In the first step, a Plackett-Burman design (PBD) combined with multivariate data analysis

was performed to identify the high-risk variables affecting the properties of granules. In the

second step, a Box-Behnken design (BBD) together with the RSM, PLS, and MLP was used to

investigate the effects of high-risk variables. A combination of different process parameters

with a predictable granulation behavior was determined using this procedure. The statistical

model was experimentally tested to validate its robustness and accuracy within the design

parameters.

Materials and methods

Materials

Sieved α-lactose monohydrate (Pharmatose1 150M) supplied by DMV-Fronterra (Nether-

lands) and microcrystalline cellulose (MCC PH101) procured from Guangda Technological

Development (China) were used as the fillers. A mixture of lactose and MCC in a ratio of 2:1

(wt/wt) was used as the granulation powder. Polyvinylpyrrolidone (PVP) (Plasdone K29/32)

binder was kindly donated by Ashland Chemical Inc. (China). A two-component system

water-PVP K29/32 (Plasdone) was used as the binder solution. Magnesium stearate (Sino-

pharm Chemical Reagent, China) was used as the lubricant during tableting.

Characterization of primary materials

The particle size of lactose and MCC mixture was determined in triplicate using a Mastersizer

2000 laser diffraction particle size analyzer (Malvern Instruments Ltd., UK). The viscosity of

the binder solution was measured experimentally using a rotary rheometer (MCR 101, Anton

Paar, Austria) utilizing the cone and plate geometry (1˚/50 mm) at a constant shear rate of 1 s-

1 and a temperature of 25˚C [30].

Experimental design

PBD (1st step) for the screening of high-risk factors. The PB DoE was performed and

analyzed using the JMP software (version 10, SAS Inc., USA). In the preliminary experiments,
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the five factors investigated were: inlet air temperature (X1), atomization air pressure (X2),

binder solution rate (X3), binder concentration (X4), and binder-to-powder ratio (X5). The

independent and response variables selected in this design are listed in Table 1. Three center

points were added to evaluate the potential curvature of the results. A total of fifteen experi-

ments were conducted for five factors at three levels of each variable (Table 2). To minimize

the effect of unexplained variability caused by the systematic errors, all the experiments were

carried out at random.

BBD (2nd step) for the evaluation of high-risk factors. Based on the preliminary PBD

screening experimental data, three variables (inlet temperature X1, binder solution rate X3,

and binder-to-powder ratio X5) were selected as the high-risk factors. The BBD in RSM was

performed for the evaluation study using the JMP software (version 10, SAS Inc., USA). The

BBD in RSM is widely used for fitting a second-order model [31–33]. In this study, three-level

Table 1. Processing conditions and values for the variables in the Plackett-Burman experimental

design.

Factors (Independent variables) Level in the experiments Test

formulation

Low (-1) Medium (0) High (+1) T1 T2

Inlet air temperature X1 (˚C) 50 65 80 60 70

Atomization air pressure X2 (bar) 0.6 1.0 1.4 1.0 1.0

Binder solution rate X3 (g/min) 5.8 14.5 23.2 8.7 17.4

Binder concentration X4 (%) 10 15 20 15 15

Binder-to-powder ratio X5 (%) 8 11.5 15 10 14

Responses (dependent variables)

Flowability (HR) Y1

Temperature (T) Y2 (˚C)

Moisture content (MC) Y3 (%)

Aggregation index (AI) Y4

Compactability (Com) Y5

https://doi.org/10.1371/journal.pone.0180209.t001

Table 2. The Plackett-Burman experimental design and response variables.

Run Independent variables Dependent variables

Mode X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4 Y5

PB-1 0 65 1.0 14.5 15 11.5 1.07 24.4 5.29 7.2 0.5293

PB-2 −−−+− 50 0.6 5.8 20 8.0 1.35 26.0 4.84 4.0 0.5018

PB-3 +−−−+ 80 0.6 5.8 10 15.0 1.39 31.2 3.66 6.3 0.4484

PB-4 +−+++ 80 0.6 23.2 20 15.0 1.03 29.3 4.31 7.9 0.4728

PB-5 −+++− 50 1.4 23.2 20 8.0 1.06 21.8 7.72 6.7 0.3588

PB-6 −−+−− 50 0.6 23.2 10 8.0 1.14 20.6 7.56 4.8 0.3553

PB-7 +++−− 80 1.4 23.2 10 8.0 1.06 28.1 4.9 4.6 0.4129

PB-8 −+−−+ 50 1.4 5.8 10 15.0 1.18 21.9 4.72 3.5 0.5841

PB-9 0 65 1.0 14.5 15 11.5 1.05 25.2 7.58 7.1 0.5372

PB-10 0 65 1.0 14.5 15 11.5 1.03 26.4 4.72 7.1 0.5539

PB-11 −−+−+ 50 0.6 23.2 10 15.0 1.01 23.0 6.86 9.0 0.5114

PB-12 −+−++ 50 1.4 5.8 20 15.0 1.24 26.1 4.41 3.2 0.7602

PB-13 +−−+− 80 0.6 5.8 20 8.0 1.31 33.5 3.01 3.8 0.4832

PB-14 ++−−− 80 1.4 5.8 10 8.0 1.34 29.7 3.43 2.8 0.5436

PB-15 +++++ 80 1.4 23.2 20 15.0 1.01 27.9 5.38 8.3 0.5944

https://doi.org/10.1371/journal.pone.0180209.t002
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and three-factor parameters with physical interpretation were defined by PB screening and

used as the inputs for the DoE to model the agglomeration process. Fifteen runs, including

three replicated center points, were used for each design in randomized order to study the

effects of the three variables on the five response variables. The ranges of all the related param-

eters are shown in Table 3 (S1 and S2 Tables).

Preparation of granules

The granulation and drying were performed in a lab-scale batch fluidized bed granulator

(FLZB 1.5, Chanse Ltd., China). The product chamber was made up of a conical cylinder with

inner diameters of 16.0 cm and 33.0 cm at the bottom and top, respectively. The vertical height

of the container was 54.0 cm. At the bottom of the container, an air distributor with a uniform

distribution mesh made of a stainless steel plate was installed. At the top, a wind filter-bag was

placed to prevent the flying of fine powder. A binder spray nozzle with 1.0 mm inner diameter

was placed at 35 cm above the distributor. A binder solution was drawn and controlled using a

peristaltic pump (Longer, China). The batch size was fixed at 300 g. A dehumidifier was cou-

pled to control the humidity of the inlet air in the range 40–50%. The inlet fluidizing air veloc-

ity was adjusted manually in the range 40–90 m3/h to maintain the same level of fluidization

state in each experiment about 25 cm above the bottom of the container, making it possible to

have the same trajectory of particles during the granulation [34]. From the processing perspec-

tive, a constant inlet fluidizing air was inferior than a constant level of fluidization state. The

main disadvantage of the constant inlet fluidizing air method was that it was prone to pneu-

matic delivery and entrainment at the early stage [35]. At the end of granulation, a de-fluidized

phenomenon may occur due to large aggregations. Therefore, a constant inlet fluidizing air

was not an efficient method to control the particle growth during the granulation in pharma-

ceutical manufacturing.

The particles were sieved using an 80-mesh (178 μm) sieve to prevent the cohesion between

particles. After the sieving, the undersized fraction was reserved for the experiments. Before

the experiments, MCC and lactose powders were mixed at a constant inlet fluidizing air (40

m3/h) for 5 min to achieve a uniform mixing effect. Experiments were carried out according to

Table 3. The Box-Behnken design and results of the response variables.

Run Independent variables Dependent variables

X1 X3 X5 Y1 Y2 Y3 Y4 Y5

BB-1 50 14.5 8.0 1.3 23.6 6.28 4.8 0.390

BB-2 50 23.2 11.5 1.35 24.1 9.49 7.6 0.340

BB-3 80 5.8 11.5 1.34 32.5 3.27 4.2 0.533

BB-4 65 14.5 11.5 1.02 27.3 4.51 6.7 0.690

BB-5 80 14.5 8.0 1.05 29.8 3.75 5.9 0.482

BB-6 65 14.5 11.5 1.03 25.8 4.15 6.6 0.602

BB-7 65 23.2 8.0 1.15 27.1 6.05 6.0 0.416

BB-8 65 14.5 11.5 1.02 26.9 4.78 5.9 0.618

BB-9 65 5.8 8.0 1.49 29.4 3.82 3.8 0.485

BB-10 50 14.5 15.0 1.07 24.1 5.10 9.6 0.611

BB-11 65 5.8 15.0 1.26 32.3 3.28 4.4 0.599

BB-12 50 5.8 11.5 1.22 28.6 3.60 7.4 0.636

BB-13 80 23.2 11.5 1.01 30.2 4.49 7.6 0.420

BB-14 65 23.2 15.0 1.01 26.7 7.33 11.4 0.428

BB-15 80 14.5 15.0 1.02 30.0 3.32 8.1 0.522

https://doi.org/10.1371/journal.pone.0180209.t003
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the design listed in Tables 2 and 3. Once the binder solution was consumed, the drying phase

(inlet air temperature at 40˚C) started and proceeded for 3 min to dry the surface moisture of

the granules. After the granulation, the granules were collected and characterized.

Property characterization

Flowability of granules. The flowability of granules was characterized by Hausner ratio

(HR) following the literature [36]. The bulk granules were weighed and poured into a 100 mL

graduated cylinder. The bulk and tapped densities were determined using a tapping machine

(BT-100 Baite Corporation, China). As a surrogate for flowability, the HR was calculated from

the bulk density (ρb) and tapped density (ρt) as shown in Eq 1.

HR ¼
rt

rb
ð1Þ

Temperature of granules. The temperature (T) of granules was recorded using a temper-

ature probe inserted into the powder bed during the granulation. A thermocouple temperature

probe was used to measure the temperature profile every 10 seconds during the granulation

process. As the granulation liquid was gradually sprayed into the powders, the temperature of

the material first decreased to an equilibrium value and then increased slightly. The granule

temperature was considered to be the minimum value of the temperature curve.

Residual moisture content (MC) of granules. Approximately 2.0 g of each sample was

used to determine the residual MC using a Sartorius MA35 instrument (Sartorius scientific

Instrument, Germany) at a fixed temperature of 105˚C. The thermal balance of the granule

sample reached a constant weight at 5 min.

Granule size analysis. The size distribution of the dry granules in each batch was mea-

sured using a EML 200 digital plus T vibratory sieve shaker (Haver, Germany). The sieve anal-

ysis was performed using a series of sieves (90 μm, 125 μm, 180 μm, 250 μm, 355 μm, 425 μm,

710 μm, 850 μm, and 1180 μm). The granule samples (100 g) were placed on the shaker for 5

min at an amplitude of 1.5 mm. The amount of granules retained on each sieve was weighed to

determine the size distribution of the granules. The mean particle size (d50) was interpolated

by the cumulative particle size distribution, as shown in Eq 2. Furthermore, an aggregation

index (AI) was proposed to evaluate the aggregation behavior as shown in Eq 3.

d50 ¼

Xn

i¼1

miX

Xn

i¼1

mi

ð2Þ

AI ¼
d50

D50
ð3Þ

mi is the mass retained on the sieve interval Xi to Xi+1, X is the mean size of the size interval i.
d50 is the mean granule size, and D50 is the mean size of the initial powder.

Compactability (Com) of granules. The compaction properties of the granules were

tested by compressing the granules at different compression forces and determining the tablet

hardness at each compression force using an automated tablet hardness tester (Sotax HT10,

Switzerland). The granulated materials were compacted using a fully instrumented press

(Korsch XP1, Germany) using an 8.5 mm, round, flat-faced tool with a compaction pressure of

2.0–7.0 kN while the tablet weight was 150 mg. In this study, the granules in the range 125–
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1180 μm were required for tableting as the target product has good flow properties, resulting

in a high quality tableting behavior with a uniform tablet weight. The granule fraction of 125–

1180 μm was compressed to evaluate the deformation potential of granules, avoiding the

effects of fines and lumps. The upper punch, lower punch, and die-wall were lubricated with a

0.5% (w/v) magnesium stearate suspension in acetone prior to compaction. The thickness

(T, mm), diameter (D, mm), and crushing force (F, N) of the tablets were assessed to calculate

the diametral tensile strength (TS) as follows Eq (4):

TS ¼
2F

pDT
ð4Þ

The compaction profile was constructed using the TS value as the response variable, as a

function of compression force in a dependent variable. A compactability parameter was deter-

mined as the slope of the initial linear part of the compaction profile and applied to the statisti-

cal analysis [37].

Shape and surface morphology. The surface morphology of the agglomerates was investi-

gated by scanning electron microscopy (SEM) at an accelerating voltage of 20.0 kV (XL30 FEG

ESEM, Philips, Netherlands). The Samples were fixed using a double-side adhesive carbon

tape and sputter-coated with colloidal gold using a vacuum evaporator (EM ACE600, Leica,

Germany). The representative granules obtained from 125–1180 μm size fraction were used

for the morphological analysis in the two test formulations.

Data statistical modeling

Three in silico techniques were used for the modeling and optimization of fluidized bed granu-

lation: RSM, PLS and MLP.

RSM. A function of the independent variables was used to evaluate the properties of pre-

pared granules, and the function, which was used for fitting the data and predicting the

response, was a second-order polynomial model Eq (5) as follows [38]:

Y ¼ b0 þ
Xn

i¼1

biXi þ
Xn� 1

i¼1

i<j

Xn

j¼2

bijXiXj þ
Xn

i¼1

biiX
2

i þε ð5Þ

where X1, X2 and Xn are independent variables affecting the responses. Y, β0, βi, βii, and βij are

the regression coefficients for the intercept, linear, quadratic, and interaction terms, respec-

tively. n represents the number of variables in the equation, and ε indicates the experimental

error.

PLS. PLS modeling was carried out using SIMCA-P 11.0 (Umetrics, Umea, Sweden). PLS

modeling relates two data matrices, of independent and dependent variables, to each other

using a linear multivariate model [39]. Response contours were plotted for each of the depen-

dent variables, along with the two independent variables that were selected based on the Vari-

able Importance for the Projection (VIP) values. VIP values larger than 1 indicate important

variables whereas values lower than 0.5 indicate unimportant ones [40].

MLP. The ANN-MLP neural network was further considered as a good method for data

set modeling to provide a nonlinear relationship between the input and output variables. The

ANN-MLP architecture consisted of an input layer, an output layer, and a hidden layer. As

shown in Fig 1, the independent input data were transmitted from the input layers to the out-

put layer through the hidden layers in a single-hidden-layer feed-forward approach. The archi-

tecture of the MLP was multiple input-multiple output type. A commercial ANN software,

Statistica 10 (StatSoft Inc., USA) was developed using a personal computer to design neural
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networks. The experimental data fed in the neural network were categorized into three sets:

training (70%), testing (15%), and validation (15%). The input layer had three neurons because

of three input variables X1, X3, and X5, whereas the output layer had five neurons. The connec-

tion between the neurons of the successive layers in an MLP network was established by con-

nection weight (ωij) and bias (θj). The transition of data from the input variables to the hidden

layer was obtained using the weights. Then, a neuron input (Ij) was generated using the sum of

these weight outputs (Xiωij) and bias term (θj) using Eq 6:

Ij ¼
X

Xioij þ yj ð6Þ

This neuron input was then passed through the output neuron along with a sigmoid trans-

form function. The network was trained using the backpropagation algorithm, through 1000

epochs, with learning rate 0.3 and momentum 0.5.

Results and discussion

Material properties

The mean particle diameter (D50) of the lactose and MCC mixture was 52.31 μm, where those

of D10 and D90 were 14.284 μm and 124.81 μm, respectively. The granulation liquid viscosities

were 2.6 mPa.s, 17.2 mPa.s, and 25.9 mPa.s for 10%, 15%, and 20% concentrations of the PVP

K29/32 solution, respectively.

Fig 1. MLP neural network architecture used for modeling granule properties.

https://doi.org/10.1371/journal.pone.0180209.g001
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PBD screening study to identify the high-risk factors

PBD is a widely used screening design for the identification of high-risk factors that cause vari-

ability in product quality. The effects of the five factors considered in this study were statisti-

cally analyzed using PBD to identify the potential high-risk factors of the process in fluidized

bed granulation.

Fig 2 shows the standardized Pareto charts of the main effects and their interactions. As

shown in Fig 2a, the flowability (Y1) negatively correlated with the binder solution rate (X3)

and binder-to-powder ratio (X5). As shown in Fig 2b, the temperature (Y2) positively corre-

lated with the inlet temperature (X1) and negatively correlated with the binder solution rate

(X3). The screening results of moisture are shown in Fig 2c, showing the opposite condition.

For AI (Fig 2d), two variables, the binder solution rate (X3) and binder-to-powder ratio (X5),

were significant factors with a positive effect. In the result of compactability (Y5), only one var-

iable, binder-to-powder ratio (X5), was significant with a positive effect as shown in Fig 2e.

Because of the nonsignificant effect of other factors on all the responses, the atomization air

pressure (X2) and binder concentration (X4) were fixed at 1.0 bar and 15%, respectively, for

the next stage of BBD.

Mathematical modeling for granulation

The significant factors selected from PBD, namely, the inlet temperature (X1), binder solution

rate (X3), and binder-to-powder ratio (X5) were considered for further analysis using BBD.

The levels selected for the factors were set based on the previous PBD.

A multiple regression analysis was generated for each response variable by the polynomial

relationships shown in Table 4 (S1 File). The parameter estimates are listed with the correla-

tion coefficient (R2) and probability value (P). The sign and magnitude of the model parameter

estimate are associated with the relative effects of each factor on the response. A larger magni-

tude of the model parameter indicated a more pronounced effect on the response, and the

parameter estimate sign indicated that the independent and response were positive or negative

correlation [37].

As mentioned previously, in this study, two other models MLP and PLS were also used. In

this study, the MLP network was proposed based on the sigmoid activation function with

three neurons in the hidden layer for the five responses. The learning rates were set to 0.1, 0.2,

and 0.3 and the simulation momenta were set to 0.3 and 0.5 [24]. To investigate the results of

the MLP simulation, three figures of merit were calculated, namely training, testing, and vali-

dation R2 values. This was done for each different learning rate and momentum. The R2 values

for training, testing, and validation all increased with the increasing learning rate and momen-

tum within the chosen ranges. When the learning rate was 0.3 and the momentum was 0.5, the

R2 values for training, test and validation were 0.9, 1.0 and 0.6, respectively, which meant that

the simulation result was more reliable. The error for the training set was 2.09, for the test set

was 3.44, and for the validation set was 6.46 (S2 File). The R2Y (cum) value, i.e., the correlation

between the measured and predicted values for the response under study, and the Q2 (cum)

value, i.e., the correlation between the measured and cross-validated predicted response, can

be used to evaluate the veracity and quality of a PLS model. Higher R2Y (cum) and Q2 (cum)

values imply a better response, which can be fitted and predicted as a function of the descriptor

variables [41]. With the PLS model, the values of R2Y (cum) and Q2 (cum) were 0.58 and 0.31,

respectively. R2Y (cum) is the fraction of the variance of the Y variables that is explained by

the extracted components. In general, R2Y (cum) greater than 0.5 indicates a good fit. The PLS

model explained 58% of the variation of independent variables. Q2 (cum) is the fraction of the

total variation of the Y variables that can be predicted by the components. Q2 (cum) is also
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Fig 2. Standard Pareto chart showing the effects of various process factors on (a) flowability, (b) temperature,

(c) moisture, (d) aggregation index, and (e) compactability.

https://doi.org/10.1371/journal.pone.0180209.g002
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described as the cross-validated variance statistic, and is significant when larger than a critical

value (Q2 limit = 0.097) that corresponds to p< 0.05 [42]. Thus, the established PLS model for

the variability in the fluidized bed granulation process was acceptable (S3 File). The VIP values

and coefficients for the PLS model are shown in Fig 3. Contours were plotted for each depen-

dent variable, along with the two independent variables chosen based on their VIP values. It

can be seen that binder solution rate and inlet air temperature have more pronounced influ-

ences on granule properties and that binder-to-powder ratio was the least important factor for

granule properties. Therefore, the counter plot was based on binder solution rate and inlet air

temperature.

Effects of various factors on granule flowability. HR provides an indication of the flow

behavior; it also provides a measurement of the packing behavior of granules. The flowability

of powder materials was classified from excellent (1.00–1.11), good (1.12–1.18), fair (1.19–

1.25), to passable (1.26–1.34) [43].

The results indicate that a rather wide HR in the experimental setting range was obtained in

the range 1.01–1.49 (Table 3). The statistical analysis results in RSM show that three factors

significantly affected the granule flowability (Table 4). By increasing X1, X3 and X5, the HR of

granules was decreased. The interaction effects of X1 and X3 were favorable for reducing the

HR value. The contour plots generated using the RSM, PLS and MLP are shown in Fig 4.

These plots were useful in studying the effects of two factors on the response at one time.

Moreover, the interaction effects of the factors in RSM and MLP were also included. The

results of the three models indicate that HR is mostly affected by the X3 (Fig 4a and 4c). The

elliptical of the contour plot showed the significance of the interaction parameters on the

response. MLP predicted a more complex effect of the investigated factors with a minimum

value of HR (Fig 4c). In the upper right corner of the Fig 4a and 4c, the minimum HR values

were observed after applying constraints to X1 (>65˚C) and X3 (<15 g/ml). Better flow proper-

ties of the granules could be related to smoother granule surfaces, corresponding to the higher

degrees of granule circularity.

Effect of various factors on granule temperature. Relatively low values of granule tem-

perature (T), ranging from 23˚C to 32˚C, are shown in Table 3. Granule T affects the ability of

the binder liquid to evaporate and the aggregation of the particles. Granule T is very impor-

tant, not only impacting granule nucleation and growth, but also causing drug instability. If

Table 4. Statistical analysis of variance (ANOVA) of the response (Y1-Y5) results.

Factors HR (Y1) T (Y2) MC (Y3) AI (Y4) Com (Y5)

Coefficient P-Value Coefficient P-Value Coefficient P-Value Coefficient P-Value Coefficient P-Value

Intercept 1.02 <0.0001 26.67 <0.0001 4.48 <0.0001 6.40 0.0001 0.64 <0.0001

X1 -0.07 0.0375 2.76 <0.0001 -1.21 0.0008 -0.45 0.2754 -0.01 0.8824

X3 -0.10 0.0079 -1.84 0.0006 1.67 0.0002 1.60 0.0073 -0.08 0.0039

X5 -0.08 0.0191 0.40 0.1572 -0.11 0.5420 1.63 0.0069 0.05 0.0297

X1X3 -0.12 0.0170 0.55 0.1668 -1.17 0.0042 0.80 0.1844 0.05 0.1002

X1X5 0.05 0.1868 -0.08 0.8342 0.19 0.4615 -0.65 0.2665 -0.05 0.1031

X3X5 0.02 0.5221 -0.83 0.0597 0.46 0.1108 1.20 0.0691 -0.03 0.3128

X1
2 0.04 0.2472 0.09 0.8060 0.11 0.6651 0.50 0.3979 -0.07 0.0355

X3
2 0.16 0.0051 2.09 0.0020 0.62 0.0524 -0.20 0.7268 -0.09 0.0144

X5
2 0.04 0.2713 0.12 0.7551 0.02 0.9381 0.20 0.7268 -0.07 0.0351

R Square 0.94 0.98 0.97 0.91 0.93

RMSE 0.06 0.68 0.47 1.04 0.05

https://doi.org/10.1371/journal.pone.0180209.t004
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the temperature is low, there can be poor evaporation efficiency, inducing larger lumps and

causing further overwetting and de-fluidization. There are few reports about the temperature

of granules during granulation. From the point of view of processing, it is reasonable to control

the temperature of granules at around 30˚C during the granulation process [44].

Fig 3. (a) VIP and (b) coefficients for the PLS model.

https://doi.org/10.1371/journal.pone.0180209.g003

The usefulness of different models for processing design and controlling of granulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0180209 June 29, 2017 12 / 25

https://doi.org/10.1371/journal.pone.0180209.g003
https://doi.org/10.1371/journal.pone.0180209


Fig 4. Contour plots showing the effects of X1 and X3 on HR obtained by using: (a) RSM, (b) PLS, and

(c) MLP (X5 = 11.5).

https://doi.org/10.1371/journal.pone.0180209.g004
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From the regression equation in Table 4, it is evident that X3 had direct negative and qua-

dratic effects on the granule T while X1 was able to increase granule T. Fig 5 shows contour

plots for the combination of parameters of X1 and X3 at the medium value of X5 (11.5%). Simi-

lar results were obtained in all three models. Fig 5 shows that the inlet air temperature remark-

ably affected the temperature of granules with a synergistic effect, whereas the rate of

granulation liquid was less important with a negative effect. Granule temperature decreased by

increasing the rate of granulation liquid and decreasing the inlet air temperature. This is

because a high amount of liquid was input, and heat was absorbed due to liquid evaporation.

On the other hand, it was expected that preheated air was the source of energy. At a higher

inlet air temperature, heat was more rapidly transferred to the granule material, resulting in a

high granule T.

Effects of various factors on granule residual MC. The values of MC ranging from 3.0%

to 9.5% are shown in Table 3. This indicates the differences in the moisture retention capacity

of different batches of granules. Relatively low MC values were obtained for all granulates,

except for granulate BB-2 (Table 3). Heated air with low relative humidity encounters the sur-

face of the fluidized wet particles that transfer heat into the solid by conduction. Then the

moisture on the surface or migrating from the inner core is transported away by air convec-

tion. A multi-faceted effect of MC could be applied to the material properties. Electrostatic

forces are weakened by increasing moisture content because of the conductive properties of

water, while friction and interlocking caused by surface roughness, are also decreased by

moisture through the lubricant effect [45]. However, increasing the moisture content can

strengthen the liquid bridges formed between particles by increasing the thickness of the liquid

layer. Furthermore, moderate moisture contributes to the compactibility of tablet without cap-

ping, lamination or breaking up. However, there is no standard moisture content that has

been universally accepted for pharmaceutical processes. In fact, the amount of material MC

depends on the properties of materials and the preparation process.

According to the results of the statistical analysis obtained by RSM, X1 and X3 showed the

most significant effects on MC (Table 4). MC was also significantly influenced by the interac-

tions between X1 and X5. The plots showed the effects of X1 and X3 on MC (Fig 6). It can be

concluded that an increase in X3 and a decrease in X1 resulted in a higher MC of granules in

both the models (RSM, PLS and MLP). An opposite effect of these factors was observed on

granule temperature. This was expected. An increase in X1 facilitated the evaporation of the

liquid as well as promoted heat transfer from air to the granules. The results are consistent

with those of other groups: The inlet air temperature is directly proportional to the MC of

granules [46].

Effects of various factors on AI of granules. The AI results show that a large granule size

ranging from 4 to 11 was obtained from fluidized bed granulation with appropriate operating

parameters (Table 3). Parameter estimation in RSM indicates that the most effective operating

parameters to control powder aggregation were X3 and X5 in which a wide range of granule

mean size form ~200 μm to 600 μm was obtained.

Fig 7 shows the contour plots of the response variables. These plots showed a variation in

the response with respect to each factor. A high X3 would result in a large size of granule sam-

ples (Fig 7). The increase in the size of granules can be attributed to the increase in the avail-

ability of granulation liquid with a higher X3; more droplets were distributed in the powder

surface to accelerate the aggregation between particles. A higher X3 led to a larger number of

droplets sprayed. Therefore, more binder dispersed on the particle surface, and larger moist

zones were available for bridge formation, thus forming agglomerates within a short period of

time [47]. The size increase and growth showed a different sensitivity to X1 and X3 during the
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Fig 5. Contour plots showing the effects of X1 and X3 on granule temperature obtained by using: (a)

RSM, (b) PLS, and (c) MLP (X5 = 11.5).

https://doi.org/10.1371/journal.pone.0180209.g005
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Fig 6. Contour plots showing the effects of X1 and X3 on granule residual MC obtained by using: (a)

RSM, (b) PLS, and (c) MLP (X5 = 11.5).

https://doi.org/10.1371/journal.pone.0180209.g006
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Fig 7. Contour plots showing the effects of X1 and X3 on AI obtained by using: (a) RSM, (b) PLS and

(c) MLP (X5 = 11.5).

https://doi.org/10.1371/journal.pone.0180209.g007
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agglomeration in the RSM and MLP models (Fig 7a and 7c). The contour plot obtained by PLS

model (Fig 7b) shows that X1 has only a small effect on powder aggregation behavior.

Effects of various factors on granule compactability. The TS increased with the increase

in compaction pressure. In a relatively low compaction pressure (2.0–7.0 kN), a linear relation-

ship was obtained. The statistical analysis results show that X3 and X5 significantly affected the

granule compactability (Table 4). However, the results obtained using PBD were interesting:

X5 was the only critical factor (Fig 4e). This is probably because the compactability of granules

is a complex process involving elastic–plastic deformation and is affected by many factors such

as particle size, granule solid fraction, and MC [48,49].

The contour plots generated using the RSM, and MLP models show that the compactability

increased from 0.4–0.6, but slowly decreased when the duration was extended with a high X3

(Fig 8). The plot from the PLS model shows that higher X1 leads to higher granule compact-

ability (Fig 8b), while RSM and MLP analyses predict higher compactability at relative lower

X1 (Fig 8a and 8c). X3 significantly affected the compactability in both the models. This may be

responsible for the effect of aggregation, indicating that a higher X3 produced softer tablets

with a low hardness. The amount of binder and concentration in granulation would affect the

granule aggregation. Because tablets are mainly bonded together with van der Waals attrac-

tion, an increase in the granule size would reduce the surface area of the contact, directly

affecting the crushing strength of the tablets [50]. A higher X3 led to a higher MC of granules

with a worse mechanical strength. This is probably because higher moisture levels remarkably

reduced the mechanical strength of the tablets, and the MC strongly affected the elasticity and

plasticity of granules during the compaction [51].

Evaluations of the prediction performance for the different models (RSM, PLS, and MLP)

were based on testing for correlations between measured and predicted values. Table 5 shows

the results for predicted and observed values using the different models (S3 Table). The MLP-

and PLS-based models exhibited similar sensitivity in observed vs. predicted correlations. It is

clear that using RSM-based evaluation results in a better correlation with the data than PLS or

ANN. This could be due to the fact that PLS and ANN functions may not suitable for modeling

a complex surface since they cannot detect slight changes in parameters and considerably

under/overestimate the values in those regions where the response function changes its sense

[52]. In this study, it has been shown that the nonlinear approach based on RSM is better at

generalization and prediction than the multiple linear technique PLS. However, this method

has some disadvantages. For example, the quadratic polynomial function gives poor estimates

for highly nonlinear processes and overlapping mean responses do not account for the uncer-

tainty in the DoE parameters [27,53]. The use of MLP also has some drawbacks in that specific

analytical formulae could not be obtained, the accuracy of the results are uncertain, and a

highly predictive model cannot be interpreted with respect to its physical meaning. Therefore,

there is no ideal model and the selection of appropriate model should be based on the experi-

mental data and consideration of how the model will be applied.

Model validation

Two test formulations obtained under the experimental conditions shown in Table 1 were pre-

pared and analyzed to assess the prediction ability and accuracy of the developed models using

RSM, PLS and MLP. Table 6 lists the experimental responses and predicted values using RSM,

PLS and MLP for test formulations T1 and T2. The values obtained from the RSM, PLS and

MLP were similar to the experimental data of the percentage prediction error (PE). High pre-

diction ability among these techniques indicates that the granulation could be controlled using

simple variables to achieve the desired granule properties.
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Fig 8. Contour plots showing the effects of X1 and X3 on granule compactability obtained by using:

(a) RSM, (b) PLS, and (c) MLP (X5 = 11.5).

https://doi.org/10.1371/journal.pone.0180209.g008
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However, in most cases, the PLS and MLP showed a significant deviation in prediction

according to the values of PE, indicating a better prediction ability of RSM than PLS and MLP.

The difference in prediction ability is due to the fact that the calculation criteria are different

in different models [54].

Shape and surface morphology

The investigated surface of the validated granules (125–1180 μm) using SEM showed a wrin-

kled surface with a narrow size distribution (Fig 9). Moreover, the formed granules were

almost spherical and porous shaped, indicating that distribution nucleation was the dominant

agglomeration mechanism at the investigated parameters [55].

Conclusions

The experimental data obtained in this study show that the high-risk factors in fluidized bed

granulation were successfully screened and identified using PBD and BBD. Furthermore, mul-

tivariate modeling was an efficient tool in the mechanistic understanding of the influence of

the investigated variables on the quality attribute of the prepared granules. A study on fluidized

bed granulation was successfully conducted using a two-step approach.

This study demonstrates the usefulness of the QbD methodology to fundamentally under-

stand the critical factors of fluidized bed granulation. The results of the statistical analysis

show that the RSM model had a better ability to fit the quality attribute of granules than the

PLS and ANN models. This study confirmed that RSM, PLS, and MLP are valid alternative

Table 5. Linear regression on the predicted vs. measured data.

RSM PLS MLP

Equation R2 Equation R2 Equation R2

Y1 y = 0.9391x+0.0704 0.9391 y = x-2E-14 0.4594 y = 0.9398x+0.1054 0.7399

Y2 y = 0.9793x+0.5774 0.9793 y = x+3E-05 0.7992 y = 0.9003x+3.332 0.6737

Y3 y = 0.9743x+0.1253 0.9743 y = x+3E-06 0.7919 y = 0.8521x+0.6943 0.8049

Y4 y = 0.9089x+0.6016 0.9089 y = x-3E-06 0.7217 y = 0.5380x+3.2099 0.5485

Y5 y = 0.9332x+0.0346 0.9332 y = x+3E-07 0.4620 y = 0.2664x+0.3429 0.3703

https://doi.org/10.1371/journal.pone.0180209.t005

Table 6. Experimental values (EV) and predicted values (PV) of response variables obtained for test formulations.

HR T MC AI Com

T1 EV 1.12 27.63 4.15 5.5 0.705

RSM PV 1.22 27.74 3.98 5.2 0.608

PE -8.93 -0.40 4.10 5.45 13.76

PLS PV 1.27 28.18 4.22 4.9 0.537

PE -13.39 -1.99 -1.69 10.91 23.83

MLP PV 1.31 29.90 4.22 5.6 0.488

PE -16.96 -8.22 -1.69 -1.82 30.78

T2 EV 1.01 27.41 5.26 8.4 0.493

RSM PV 0.96 27.41 4.67 8.3 0.579

PE 4.95 0 11.22 1.19 -17.44

PLS PV 1.04 28.55 4.96 8.2 0.518

PE -2.97 -4.16 5.70 2.38 -5.07

MLP PV 1.00 29.30 4.15 8.1 0.513

PE 0.99 -6.90 21.10 3.57 -4.06

https://doi.org/10.1371/journal.pone.0180209.t006
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approaches to modeling complex systems. These models were successfully used to develop flu-

idized bed granulation in the early formulation development stage and provide a useful tool to

predict the quality attributes according to different process parameters using a minimal

amount of experiments.
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