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Regulator of G protein signaling (RGS) proteins are critical negative molecules of G
protein-coupled receptor (GPCR) signaling, which mediates a variety of biological
processes in bone homeostasis and diseases. The RGS proteins are divided into nine
subfamilies with a conserved RGS domain which plays an important role in regulating the
GTPase activity. Mutations of some RGS proteins change bone development and/or
metabolism, causing osteopathy. In this review, we summarize the recent findings of RGS
proteins in regulating osteoblasts, chondrocytes, and osteoclasts. We also highlight the
impacts of RGS on bone development, bone remodeling, and bone-related diseases.
Those studies demonstrate that RGS proteins might be potential drug targets for
bone diseases.

Keywords: bone homeostasis, osteoclast (OC), osteoblast (OB), chondrocyte, GPCR (G protein coupled receptor),
bone development, regulator of G protein signaling (RGS)
INTRODUCTION

Bone homeostasis is dynamically maintained by the processes of bone formation and resorption,
which initiates with the osteoclasts-derived resorption of the calcified bone matrix and is followed
by the osteoblast-regulated bone formation (1, 2). Any malfunctions in osteoclast and/or osteoblast
formation will cause changes in the bone mass and defective skeletal integrity (3). In addition,
chondrocytes contribute to skeletal development through endochondral ossification, abnormality of
chondrocyte formation and function can also cause bone-related diseases such as bone dysplasia
and osteoarthritis (4).

G protein-coupled receptors (GPCRs) are located in the cell membrane that transmit signals into
the intracellular environment (5, 6). The GPCRs are activated by extracellular substances and further
promote the exchange of Ga (6). Ga dissociates from the Gbg dimer by transiting to the active GTP
form from its inactive GDP form (7). The active GTP-bound Ga and Gbg further trigger the
downstream signaling pathways (7). RGS proteins are the main negative regulators in GPCR
regulatory pathways (8). Those proteins negatively modulate the G protein signaling through the
stimulation of Ga-mediated GTP hydrolysis (9). Studies in human patients have shown that changes
in some RGS proteins are associated with numerous complex polygenic pathologies including
hypertension, atherosclerosis, cancers, immune disorders, heart and brain diseases (10–17).
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Those findings are further validated in gene conventional and
conditional knockout animal models. Moreover, the impacts of
RGS proteins on a variety of GPCR signaling pathways have been
determined in those animal models (9, 18). Up to now, the RGS
family members have been divided into nine subfamilies including
RZ (RGS17, 19, 20), R4 (RGS1-5, 8, 13, 16, 18, 21), R7 (RGS6, 7, 9,
11), R12 (RGS10, 12,14), RA (AXIN, AXIN2), GEF (p115-
RhoGEF, PDZ-RhoGEF, LARG), GRK (GRK1-7), SNX (SNX13,
14, 25), and others (RGS22, D-AKAP2) (19). Some RGS proteins
and their signaling pathways have been discovered to regulate
skeletal formation/remodeling, and the changes in these RGS
proteins leads to various bone diseases in human. In this review,
we summarized the recent research advances regarding RGS
proteins in the regulation of bone.
Frontiers in Endocrinology | www.frontiersin.org 2
ROLE OF RGS PROTEINS IN BONE

RGS proteins are widely associated with bone development and
remodeling under physiological and pathological conditions (10,
20, 21). Osteoblasts and osteoclasts are the two main constituents
that can be affected by RGS proteins (Figure 1). Studies have
shown that a group of RGS proteins such as RGS2, RGS4, RGS16,
AXIN1, AXIN2, and G protein-coupled receptor kinase 2
(GRK2) are mainly expressed in osteoblasts or osteoprogenitor
cells (22–27), while RGS10 and RGS18 are mainly expressed in
osteoclasts and macrophages (28, 29). Interestingly, RGS12 is
expressed in both osteoblasts and osteoclasts according to our
findings (Table 1) (35, 37). Since several RGS protein functions
have been summarized in detail in previous publications, in this
FIGURE 1 | Roles of RGS proteins in bone cells. Osteoblast lineage cells drive bone development whereas the osteoclast lineage cells promote bone remodeling.
The balance between the osteoblasts and osteoclasts leads to bone homeostasis. The box indicated the known functional RGS proteins are expressed in the
osteoclast lineage cells and osteoblast lineage cells (Red, osteoclast solely, Blue, osteoblast solely, Green, both osteoclast and osteoblast).
April 2022 | Volume 13 | Article 842421
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review, we mainly focused on summarizing the latest
publications on RGS proteins in bone cells including
osteoblasts, osteoclasts, chondrocytes as well as animal bone
phenotypes, and diseases.
RGS PROTEINS IN OSTEOBLASTS

A few RGS proteins have been recently reported to modulate the
functions of osteoblasts and bone formation (30). RGS12 is the
largest protein in RGS protein family, which is highly expressed
in osteoblasts and gradually increased during osteogenesis (37).
Our laboratory found that the loss of RGS12 in osteoblasts
precursor cells leads to decreased osteoblast differentiation,
maturation, and mineralization. Mechanistically, the loss of
RGS12 in osteoblast precursors represses the activation of
GTPase and impairs the main sources of calcium entry
through the blockage of L-type calcium channel (37). RGS16 is
a conserved protein in R4 RGS subfamily. RGS16 is also a
peripheral membrane protein, which showed high transcript
expression in osteoblasts from calvaria bone (24). Interestingly,
the RGS16 mRNA expression of calvarial osteoblasts is decreased
in the acid medium, which prolongs the response of ovarian
cancer G protein coupled receptor 1 (OGR1) to stimulate bone
erosion (24). This study suggested that osteoblastic RGS16 plays
a critical role in regulating the response of OGR1 to metabolic
acidosis and subsequent bone resorption (24). AXIN2 has been
identified to dominantly express in the suture stem cells from
calvarial bone and act as a key player in skeletal formation (39).
The knockout of AXIN2 promotes the downstream Rap1b
expres s ion through ac t iva t ion of canonica l bone
morphogenetic protein (BMP) signaling, which is critical for
craniofacial bone development (39). Consistently, the global
AXIN2 KO mice increased osteoblast functions by indicating
Frontiers in Endocrinology | www.frontiersin.org 3
enhanced mineral appositional rates (MAR) and bone formation
rates (BFR) in 6- and 12-month-old mice (26). Similarly, the loss
of AXIN2 in periodontal ligament progenitor cells results in a
significant decline in osteogenic activity (as reflected by ALP) in
alveolar bone (40). Thus, recent findings demonstrate that
RGS12, RGS16, and AXIN2 are major players in osteoblasts,
which enriches the theory of the regulation of osteogenesis by
RGS proteins.
RGS PROTEINS IN CHONDROCYTES

Chondrogenesis mainly contributes to the production of
hypertrophic chondrocytes and initiation of subchondral bone
formation (43). RGS proteins have been found to play an
important role during chondrogenesis (32). RGS10 in
chondrocytes can promote the expression of earlier markers
such as Col2a1 and Sox9 (32, 44). Moreover, RGS10 induces
chondrogen i c d i ff e r en t i a t i on th rough inc r ea s ing
glycosaminoglycans (GAG) synthesis, alkaline phosphatase
(ALP) activity, and Col10 expression (32). Similarly, the
overexpression of RGS5 in chondrocytes can also enhance the
GAG synthesis, cell proliferation, and PTHrP-induced cAMP
levels (32, 33). Moreover, RGS5 induces the expression of Indian
hedgehog (Ihh, an early marker of post-mitotic chondrocytes) to
stimulate chondrogenesis (32). Besides these RGS proteins, we
recently found that RGS12 is located in the mitochondria of
primary chondrocytes and controls chondrocyte homeostasis.
The knockout of RGS12 leads to decreased mitochondrial
functions as reflected by the decreased number of
mitochondria, mitochondrial membrane potential, and
increased apoptosis and cell death. We also found that RGS12
enhances the phosphorylation of ATP5 to further affect the
mitochondrial functions and maturation of chondrocytes. Due
TABLE 1 | The impact of RGS proteins on bone homeostasis.

Member Family Ga GAP activity Additional domain(s) Bone cell type and function Potential association with
GPCRs in bone

REF

RGS2 R4 Gaq AH Osteoblast differentiation PTH1R (10, 23, 30)
RGS4 R4 Gai/o and Gaq/11 AH Osteoblast differentiation GPRC6A (10, 23, 31)
RGS5 R4 Gai/o and Gaq/11 AH Chondrocyte differentiation PTH1R (10, 32, 33)
RGS10 R12 Gai/o and Gaq/11 Osteoclast differentiation CasR, OGR1 (10, 28, 30, 34)

Chondrocyte differentiation N/A (32)
RGS12 R12 Gai/o PDZ, PTB, RBD, GoLoco Osteoclast differentiation CasR, OGR1 (10, 21, 30, 35,

36)
Osteoblast differentiation,
maturation

N/A (37)

Chondrocyte maturation N/A (38)
RGS16 R4 Gai/o and Gaq/11 AH Osteoblast differentiation OGR1 (24)
RGS18 R4 Gai/o and Gaq/11 AH Osteoclast differentiation CasR, OGR1 (10, 29, 30)
Axin1 RA N/A CC, DAX, GSK3b BD. b-catenin

BD
Osteoblast differentiation N/A (25, 30)

Axin2 RA N/A CC, DAX Osteoblast differentiation N/A (26, 39–41)
GRK2 GRK N/A S/T kinase, PH, CC Osteoblast differentiation PTHrP (27, 42)
April 2022 | Volume
AH, amphiphatic helix; S/T kinase, serine/threonine kinase domain; PH, pleckstrin homology domain; PDZ, domain present in PSD-95; PTB, phosphotyrosinebinding domain; b-catenin
BD, b-catenin binding domain; RBD, Raf-like Ras; GoLoco, G protein regulatory motif; DAX, domain present in disheveled and axin; GSK3b BD, GSK3b-binding domain; CC, coiled coil
motif; PTH1R, parathyroid hormone 1 receptor; CasR, calcium-sensing receptor; OGR1, ovarian cancer G protein-coupled receptor 1; PTHrP, Parathyroid hormone-related peptide; REF,
reference; N/A, not applicable.
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to the mitochondrial dysfunction, the RGS12 conditional
knockout mice in chondrocytes resulted in abnormal
endochondral ossification and bone defects (38). Thus, RGS10,
RGS5, and RGS12 have been demonstrated to mainly regulate
the function of chondrocytes.
RGS PROTEINS IN OSTEOCLASTS

Osteoclasts are regulated by numerous GPCRs such as optomotor-
blind-related gene-1 protein (ORG1) and calcitonin receptors,
which play critical roles in skeletal development (45–47). During
the last ten years, RGS10, RGS12, and RGS18 have been reported to
be involved in osteoclast differentiation and/or function as reviewed
in reference (30). Our recent studies explored the function of RGS12
in regulating inflammation mediated osteolysis. We found that
RGS12 was expressed at the highest level in monocytes cells
compared with other immune cells in the blood, suggesting that it
may have an important regulatory effect on the function of
monocytes (48). The conditional knockout of RGS12 in
monocytes/macrophages led to increased bone mass accompanied
by decreased osteoclast number and activity but no alteration in
osteoblast number or bone formation activity. Conversely, the
forced overexpression of RGS12 resulted in the upregulation of
osteoclast numbers and bone resorption activity. By analyzing the
LC/MS data in RGS12 deficient osteoclasts, we identified the Nrf2, a
major regulator of oxidative stress, was controlled by RGS12.
Moreover, we found the RGS12 promoted the degradation of
Nrf2 by activating 26S proteasome and further activated the
RANKL-induced phosphorylation of ERK1/2 and NF-kB (36).
Thus, our study discovered a novel signaling pathway of RGS12
in controlling the cellular redox and osteoclast functions.
EFFECTS OF RGS PROTEINS IN
BONE HOMEOSTASIS

Previous studies regarding the regulation of RGS proteins in bone
have been reviewed by Keinan et al. (30). RGS proteins were selected
expressed in different tissues, RGS4, 7, 8, 11, and 17 were expressed
in brain, RGS5 was mainly expressed in heart, and RGS1 was highly
enriched in lung (49). According to previous studies, only few of
RGS subfamilies including R4 (RGS2,4,5,16,18), R12 (RGS10,12),
RA (AXIN1,2), and GRK (GRK2) were reported to express in bone
(Table 1) (10, 30, 42). Here, we summarize the latest findings of
RGS protein functions and regulatory mechanisms in
bone homeostasis.

RGS2 and RGS5 proteins belong to RGS R4 subfamily. A
study recently reported that RGS2 is expressed in rat cortical
bone and mouse calvarial bone (30). Additionally, Koh et al.
found that PTH also can induce RGS5 expression and activate
the calcium-sensing receptor (CASR) in responses to
extracellular calcium, and ablation of RGS5 in mice down-
regulates PTH plasma levels (50). By creating the transgenic
mouse with overexpression of RGS5 in the parathyroid gland, the
authors found that these mice showed hyperparathyroidism and
Frontiers in Endocrinology | www.frontiersin.org 4
increased bone mass. Further, the forced overexpression of RGS5
in parathyroid cells impaired CASR signaling and negatively
feedback on PTH secretion, demonstrating that RGS5 plays a
critical role in bone formation through regulating PTH and
CASR signaling (51).

AXIN1 and AXIN2 belong RA subfamily of RGS, which
regulate bone development through activating beta-catenin
signaling (26, 52). In Osx-Cre;AXIN1fl/fl cKO mice, osteoclasts
in the bone marrow cavity, ossification front, and subchondral
bone are significantly reduced due to the increased
osteoprotegerin (OPG) expression. AXIN2 global knockout
mice display increased bone mass and mechanical strength due
to the increased osteoblast differentiation and decreased
osteoclast differentiation (26, 41). Further, AXIN2 expressing
cells from tibia of AXIN2CreER;R26mTmG transgenic mice can
promote bone regeneration after skeletal injury (53).

RGS10 and RGS12 belong to R12 subfamily of the RGS
proteins. RGS10 knockout mice exhibit a serious osteopetrotic
phenotype as a consequence of dysfunctional osteoclasts through
impaired calcium oscillations/NFATc1 signaling pathway (28).
Compared to RGS10, conditional knockout of RGS12 in
osteoclast lineage (CD11b-Cre and Mx1-Cre) also caused
osteopetrosis phenotype. However, the mechanisms regulated
by RGS10 and RGS12 are different. The former associates with
calcium/calmodulin and PIP3 in an intracellular calcium-
dependent manner in osteoclasts and the latter controls
calcium oscillations by facilitating calcium influx and elevating
Nrf2/Keap1 expression to enhance osteoclast differentiation and
activity (28, 36, 54, 55). These studies demonstrate that different
RGS proteins play unique roles in bone homeostasis through
regulating different signaling pathways.
RGS PROTEINS IN
BONE-RELATED DISEASES

Several studies have demonstrated that mutation or malfunction of
RGS proteins can cause or contribute to bone-related diseases (30).
The study by Li et al. found that LINC00370 (Long Intergenic Non-
Protein Coding RNA 370) and RGS4 are both upregulated in
osteogenic induction adipose-derived stem cells. LINC00370 acts
as a sponge that can inhibit the expression of miR-222-3p, which
further upregulates RGS4 expression, osteoblast differentiation, and
prevents ovariectomized (OVX)-induced osteoporosis (31).
Different from RGS4, the deletion of RGS10 or RGS12 in
osteoclasts causes osteopetrosis phenotype through controlling the
calcium oscillations and oxidative stress mediated Nrf2/Keap1
signaling pathways in mice, indicating their positive regulation in
aging mediated osteoporosis (28, 55). These findings provide new
strategies that targeting RGS proteins may be promising to improve
bone mass and strength in osteoporosis patients.

Moreover, RGS proteins are also involved in inflammation
mediated bone diseases. Periodontitis and arthritis are
inflammatory diseases that mostly affect both immunity and
bone homeostasis (56, 57). The study by Zhang et al.
demonstrated that the inhibition of AXIN1 increases bone
April 2022 | Volume 13 | Article 842421
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formation and reduces the inflammatory cytokine and the
osteoblastic apoptosis triggered by porphyromonas gingivalis
lipopolysaccharide (58). Yang et al. report that the decreased
RGS10 can prevent inflammation and osteoclasts mediated bone
erosion in bacteria-induced inflammatory lesions (34). Similarly,
the conditional knockout of RGS12 in macrophages can prevent
osteoclast differentiation and M1 macrophage polarization and
activation in ligature-induced periodontitis mouse models (48).
As for arthritis studies, RGS proteins regulate immune responses
through several signaling pathways. For example, Hu et al.
demonstrated that the inhibition of RGS1 can prevent
inflammation and angiogenesis in rheumatoid arthritis through
suppressing Toll-like receptor signaling (59). Interestingly, we
have demonstrated that RGS12 can directly interact with NF-kB
through its PTB domain to activate inflammatory responses in
rheumatoid arthritis (21, 60). In addition, the loss of RGS12 in
macrophages can inhibit osteoarthritis progression by decreasing
the ubiquitination levels, which further inhibit the degradation of
IkB (16). These studies suggest that the RGS proteins may have
multiple functions, which are involved in the regulation of not
only bone cells, but also immune cells mediated osteolysis.
CONCLUSION AND PERSPECTIVES

RGS proteins are critical for bone homeostasis by regulating not
only the GPCR signaling pathways but also other important
pathways including calcium signaling, BMP signaling, Indian
hedgehog signaling, NF-kB signaling, Keap1-Nrf2 signaling, and
Wnt/beta-catenin signaling pathways (12, 21, 30, 61, 62).
Currently, there are limited studies regarding RGS proteins
that were reported to regulate bone metabolism. Those RGS
proteins are from subfamilies of R4, R12, RA, and GRK (Table 1)
(30). The RGS proteins from other five RGS subfamilies have not
been reported to regulate bone development and/or homeostasis.
It is possible that those RGS proteins have no or lower expression
in bone and/or no effect on bone. Additionally, the same RGS
protein may contain various biological functions in different
Frontiers in Endocrinology | www.frontiersin.org 5
tissues and cells such as RGS12. Since the relationship between
RGS proteins and bone is well-reviewed by Keinan et al. (30), this
review mainly discussed the most recent findings on RGS
proteins in bone.

Although extensive progress has been made in understanding
how RGS proteins affect bone homeostasis, the following
important questions remain to be determined: 1) subfamily
members have similar protein domains and/or structure, so,
what are the interactions of the same subfamily members? Are
there mutually antagonistic or complementary functions
between them? 2) What are the specific functions of RGS
protein domains? Does the purified domain possess biological
activity in bone? 3) What is the relationship between RGS
proteins and osteoimmunology? Thus, the function of RGS
proteins needs to be further studied using conditional or
multiple RGS knockout animal models in specific bone cell
lineages. Finally, due to the importance of RGS proteins in
bone, development of agonists or antagonists of RGS proteins
to specifically target particular bone cell lineages will provide us
with new therapeutic candidates for bone-related diseases.
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