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Crosslinking oflymphocyte antigen receptors increases intracellular ionized cal-
cium ([Ca2+ ];) (1-4). Phorbol ester-mediated protein kinase C activation comple-
ments TCR crosslinking to cause IL-2 production (5) and cell proliferation (6). The
antigen receptor can be bypassed by calcium ionophores and phobol esters that act
synergistically to induce proliferation of lymphoid cells (7-9). These observations
indicate that an increase in free ionized calcium ([Ca" ];) and activation of protein
kinase C (PKC),' which binds and is activated by phorbol esters (10), are essential
early components in the activation of lymphoid cells . This physiologic state is nor-
mally produced by a biologic cascade: antigen binds to its clonally distributed specific
receptor in the cell membrane, engaging and activating a presumptive GTP binding
protein which, in turn, stimulates membrane phosphodiesterase. Phosphodiesterase
hydrolyses membrane phosphatidyl inositol bis-4,5-diphosphate (PIP2) producing
water soluble inositol tris phosphate (IP3) and membrane soluble diacyl glycerol
(DG) (11) . IP3 causes Cat+ release from the rough endoplasmic reticulum, elevating
[Ca2+ ] ; (12) . The combination of increased [Ca2+ ]i and DG produces PKC activa-
tion (13) . IP3 may contribute to Ca2 ` influx (14) . It is metabolized to inositol (1,
3-5) tetrakisphosphate (IP4) (15), which also may be involved in the influx of ex-
tracellular Ca2 + (16, 17).
The cytoplasmic ionic environment, including calcium, is tightly regulated in resting

cells . Resting [Ca2+ ] ; is maintained at 100 mM (4), in contrast to the extracellular
Ca2+ of 1 mM. Since calcium cations cannot be metabolized, and significantly
elevated [Ca2+ ] ; levels are toxic to cells, energy must be expended to maintain the
4-log calcium concentration gradient across the membrane . Calcium is removed from
the cell by Ca2+-H+ ATPase (18-22), present in the membrane of the cell and the
endoplasmic (sarcoplasmic) reticulum . A Na'-Ca2+ antiporter is often present in
the membrane of nonexcitable cells in addition to the Ca2+ -H + ATPase (23-25) .
Since these are the only active Ca2+ transporting systems known they are consid-
ered responsible for regulation of resting [Ca2 +] ; .

I Abbreviations used in this paper: DG, diacyl glycerol; IP3, inositol tris phosphate; PIP, phosphatidyl
inositol bis-4,5-diphosphate; PKC, protein kinase C .
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IONOMYCIN-INDUCED [Ca 2, ] ; LEVELS IN T AND B LYMPHOCYTES

There is a 70-mV gradient in electrical potential (Y) across the lymphocyte cell
membrane (26-29) . Since the cytoplasm is negative with respect to extracellular space,
this would force Cal' into the cell through an electrically open Call channel, aug-
menting the concentration gradient . Calcium channels in neural and muscle cells
are voltage dependent, being triggered by depolarization (30-32) . There is no con-
vincing evidence for this type ofcalcium channel in lymphocytes, however, and the
relationship between [Ca2+]i and aY in these cells is not well understood .
Nothing is known about [Ca2+ ]i regulation above the resting level of 100 nM. A

useful approach to this question is to insert a fixed Cal' influx into the cell mem-
brane with a calcium ionophore and observe cell responses after various manipula-
tions . We have combined this strategy with the measurement of [Ca2+]i by indo-1
(4, 33, 34), `Y by oxonol fluorescence (1, 35), and surface markers by immunofluores-
cence in the flow cytometer. In this paper, we report that ionomycin induces different
[Ca" ]i levels in peripheral T and B lymphocytes and we explore the basis of this
phenomenon .

Materials and Methods
Animals and Cell Preparation .

	

6-8-wk-old BALB/c mice were obtained from the Small An-
imal Section, Veterinary Resources Branch, NIH. Spleen and/or mesenteric lymph node cells
were removed and single cell suspensions were made in serum free medium containing 1
mg/ml BSA .

Reagents.

	

Indo-1 acetoxymethyl ester (indo-1/AM ; membrane permeant), indo-1 pentapotas-
sium salt (membrane impermeable), bis-(1,3-dibutylbarbiturate) trimethine oxonol [di-BA-
C4(3), and bis-(1,3-dibutylbarbiturate) pentamethine oxonol [di-BA-C4(5)] were purchased
from Molecular Probes, Inc. (Junction City, OR) . A new pH indicator dye, carboxy SNRRI
( 3H-Benzo[c]xanthene,7-(2',4'-Dicarboxyphenyl)-10-dimethylamino-3-one), was generously
supplied by Dr. Richard P. Haugland, Molecular Probes, Inc. (Haugland, R. P, Y. Ishida
and T. M. Chused, manuscript in preparation) . The calcium ionophores, ionomycin (36)
and A23187 (37), nigericin, gramicidin, valinomycin, and monensin were obtained from
Calbiochem-Behring Corp. (LaJolla, CA) . Adenosine 5'-triphosphate was from Sigma Chem-
ical Co. (St . Louis, MO). Biotinylated anti-Ly-2, avidin-phycoerythrin (PE) and PE-conjugated
anti-L3T4 were purchased from Becton-Dickinson Monoclonal Center, Inc. (Mountain View,
CA) . Other reagents, antiThy-1 .2 (J1j) (38), anti-B220 (RA3-3A1/6.1) (39), anti-heat stable
antigen (Ml/69) (40), anti-Ly-1 (53-1 .3), anti-IAb'd'9IEd'k (M5/114) and anti-rat Ig x chain
(MAR-18.5) (41) were prepared from culture supernatants or ascites in our laboratory and,
when required, conjugated with biotin or FITC . PE conjugation of anti-rat x chain (clone
MAR18.5) was performed by Molecular Probes, Inc . Rabbit complement (LowTox-M) was
obtained from Cedarlane Laboratories, Ltd. (Hornby, Ontario, Canada) . Serum-free medium
used all experiments was prepared by mixing Iscove's medium and F-12 nutritional mixture
(Gibco Laboratories, Grand Island, NY) as described previously (42) .

Cell Separation .

	

B cells were prepared by treatment ofwhole spleen cells with antiThy-1.2
(Jlj) plus anti-Ly-1 (53-7 .3) and T cells by exposure to anti-B220 (RA3-3A1/6.1), anti-HSA
(Ml/69), and anti-la (M5/114) on ice for 30 min followed by anti-rat x chain (MAR18.5)
for 30 min . After washing, cells were resuspended with 10 times diluted rabbit complement
in medium 199 containing 517o FCS and were incubated for 30 min at 37'C . Ionomycin "sen-
sitive" and "resistant" (see below) peripheral lymphocytes were separated by a modified Per-
coll gradient method . Whole spleen and/or lymph node cells were incubated with 1 tLM
ionomycin for 20 minutes at 37°C and placed on a discontinuous ionomycin-Percoll gradient
(40, 50, 60, 70, and 80% Percoll containing 1 wM ionomycin) . Separation was carried out
at 2,000 g for 10 min at 20'C . The most dense cells, recovered from beneath the 80% Percoll
layer (fraction 7) were greatly enriched in resting T cells (>98% of recovered cells expressed
Thy-1 and either L3T4 or Ly-2 ; B cell contamination was <1%) . All fraction 7 cells were
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ionomycin sensitive. Most ofthe B cells and a minor portion of T cells were recovered from
the middle layer, between 40 and 60% Percoll (fractions 4 and 5), and all were ionomycin
resistant .

Preparation of Plasma Membrane Vesicles.

	

Inside-out plasma membrane vesicles were pre-
pared by a modification of the method of Scully et al . (43). 10 9 cells were suspended in 3
ml of lysis buffer (10 mM Tris HCl, pH 7.4, 2 MM MgC12 , 1 mM NaHC03, 0.5 mM CaC12)
containing 1 mg/ml ofindo-1 pentapotassium salt (membrane impermeable) at 0°C and dis-
rupted in a Dounce homogenizer (10-20 strokes) . The whole cell lysate was centrifuged 800
g for 10 min to remove nuclear debris . The supernatant was placed on 40% Percoll (diluted
with Cat' and Mgt'-free HBSS, pH 7.4) and spun at 27,000 g for 1 h (44, 45). The visible
band with a density of -1.03 (determined by density marker beads ; Pharmacia Fine Chem-
icals, Piscataway, NJ), which contained a relatively high number of inside-out membrane
vesicles, was collected .

Measurement of[Caz`];, 4' andpHi .

	

Single cell measurements of [Ca" ] ;, 4', and pH ; were
carried out indirectly using flow cytometry and specific indicator dyes, indo-1 for [Ca2+ ] ;,
di-BA-C 4(3) for T, and SNRF1 for pH i . Indo-1 AM, di-BA-C 4 (3), di-BA-C 4(5), and SNRF1
were dissolved in DMSO at 1-2 mM and stored at -20°C. Cells were loaded with 1 AM
indo-1 AM, 0.2 AM di-BA-C 4 (3), 0 .5 AM di-BA-C4(5), or 3 AM SNRF1 for 45 min (indo-1
AM and SRNF1) or 10 min . [di-BA-C4(3) and di-BA-C4(5)] at 37'C in serum-free medium .
For double loading with indo-1 and di-BA-C4(5), di-BA-C4(5) was added to the medium
during the final 10 min of indo-1 loading . Loaded cell suspensions were maintained under
5% C02 at room temperature until use . Under these conditions, indo-l-loaded cells were
stable for at least 3 h. Loaded cells were diluted to 1-2 x 10 6 cells/ml with warm medium
and brought to 37'C before flow cytometric analysis. For multicolor analysis combined with
measurement of [Ca2* ] i or Y, cells loaded with the indicator dye were incubated on ice with
individual antibodies for 20-30 min . After two washings, cells were resuspended to serum-
free medium, warmed as usual, and analyzed by flow cytometry.

Flow Cytometry.

	

Cells were analyzed with a modified FAGS-II (Becton-Dickinson Im-
munocytometry Systems, Sunnyvale, CA) equipped with an argon ion laser (model 2025 ;
Spectra Physics, Mountain View, CA) and a krypton laser (model 164-01 ; Spectra Physics) .
The argon laser was operated at 150 mW in all band UV mode for into-1 excitation, 500
mW at 514 nm for SNRF1, or 500 mW at 488 nm for di-BA-C 4 (3) . The krypton ion laser
was operated at 40 mW at 482 nm to excite FITC and PE or 170 mW at 567 nm for di-BA-
C4(5) . For ratio measurement of indo-1 and SNRF1, emissions were measured simultane-
ously at two wavelengths. A 22-nm bandpass filter centered at 485 nm (485/22) and a 25-nm
bandpass filter centered at 404 (404/25) were used for indo-1 . For SNRF1, 575/30 and 670/13.5
filters were used . In measuring [Ca2. ] ;, the ratio of linear fluorescence at 485 nm to that
at 404 nm was calculated by the data acquisition program . For pHi, the ratio of 575-670
nm fluorescence was similarly determined . For multicolor studies, all parameters including
ratio were recorded in list mode and reprocessed using a PDP 11/84 computer (Digital Equip-
ment Corp., Maynard, MA) with programs developed in our laboratory. The sample tube
and nozzle area were maintained at 37 °C, except for membrane vesicle experiments, by an
airstream incubator (ASI-400 ; Nicholson Precision Instruments, Gaithersburg, MD) .

Calibration .

	

Calibration of [Ca2' ] ; was described previously (4) . Calibration of pHi was
carried out as follows : SNRF-1-loaded cells were suspended in pH standard buffers containing
145 mM KCI, 15 mM NaCl, 20 mM K-Hepes, 2 .5 wg/ml nigericin, and 10 mM sodium
azide for 30 min at room temperature and warmed to 37°C 10 min before analysis . After
measurement ofSNRF1 fluorescence, pH of individual samples was measured directly with
a pH meter (model 3500 ; Beckman Instruments Inc ., Palo Alto, CA) . Calibration was car-
ried out at the end of every experiment .

15Ca Efflux .

	

Purified T or B cells were loaded with 10 gCi/ml 45Ca (New England Nu-
clear, Boston, MA) for 30 min at 37 °C . Loaded cells were washed twice with warm serum-
free medium immediately before the experiment using a Beckman Instruments Inc . Microfuge
B and were resuspended in fresh medium . Recording of time was begun at the end of the
final resuspension . 50-wl aliquots were removed from each tube every 0.5 or 1 min and placed
on 200 Al of silicon fluid mixture (84% silicon fluid [Siliconoel DC 550, Serva Feinbiochemica,
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New York, NY] plus 16% paraffin oil, Saybolt Viscosity 125/135 [Fisher Scientific Co., Fair
Lawn, NJ]) using 400-1tl microfuge tubes (Beckman Instruments Inc .) and centrifuged within
20 s . Supernatants were removed from each tube, mixed with 2 ml of Aquasol (NEN Re-
search Products, Boston, MA), and counted in a liquid scintillation counter. All experiments
were carried out with duplicate samples . The percentage efflux was calculated by dividing
counts of samples by the total count o£ control tubes . 45Ca was released linearly during the
first 5 min of incubation, after which the rate gradually decreased due to the recycling of
the radioactive Ca2 ' . The efflux rate observed during the initial 5 min was used to calculate
calcium turnover.

Meaurement ofATP-dependent Ca' Accumulation into Membrane Vesicles.

	

Aliquots of membrane
vesicles from the ionomycin-Percoll gradient were diluted with Cat' /EGTA buffers con-
taining 130 mM K' and 20 mM Na' at pH 7 .2 and analyzed by the flow cytometer. The
instrument was triggered by fluorescence so only inside-out vesicles containing sufficient volume
of the originally extracellular indo-1 pentapotassium salt were detected . In addition, since
ATP binding sites of Ca-ATPase are present on the inner surface of the plasma membrane,
only inside-out vesicles would be expected to accumulate Cat' upon addition of ATP. All
the indo-l-containing vesicles responded homogeneously to ATP, suggesting that they were
uniformly inside-out . Low level signals caused by debris were gated out allowing detection
of the fluorescence of the limited number of inside-out vesicles recovered . As Cat' accumu-
lation did not occur without Mgt' ATP (used at 1 mM), this process was regarded as ATP-
dependent active transfer of Cat' through the membrane . A total of 1,500-3,000 vesicles were
collected for each point.

Results

Kinetics of [Ca"], Response to Ionomycin.

	

The calcium ionophore, ionomycin,
specifically transfers calcium ion across the plasma membrane, elevating [Ca2 +] ; .

The response occurs fairly rapidly, reaching a maximum at 2 min and decreasing
slightly over the next 3 min to a steady level (Fig. 1), which is maintained unchanged
for at least 8 h (data not shown) .

The [Ca"], Response to Inomycin Is Heterogeneous . The [Ca2+ ]i distribution in spleen,
lymph node and peripheral blood lymphocytes treated with 0 .7 gM ionomycin was
bimodal (Fig . 2 a) . Simultaneous measurement of [Ca21 ]i and either T cell-specific
Thy-1.2 or B cell-specific B220 surface immunofluorescence in two-color flow cyto-
metric analysis ofwhole spleen or lymph node cells showed that >80 % of the T cells
had high [Ca21 ] ;, whereas [Ca2+ ] ; was low in all the B cells (Figs . 2, b and c) . Mea-
surement of purified T and B cell preparations confirmed this result . A small but
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FIGURE 1 .
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pendent [Ca 2* ] ; elevation . Thymo-
cytes loaded with 1 uM of indo-1/AM
at 37'C for 45 min were diluted to
106/ml in serum-free medium and
analyzed by flow cytometry. Resting
[Ca2 '] ; was stable at 100 nM . Record-
ingwas begun immediately after add-
ing 1 gM ionomycin . [Ca2 ' ] ; values
were calculated by the ratio of485-404
nm linear fluorescence . The mean of
10,000 cells at each time point is shown .
Areas surrounding the sample tubing
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and nozzle were maintained at 37°C .
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[Ca" ]i peaked at 530 nM and then
declined slightly to a stable level .
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FIGURE 2.

	

[Ca2* ]i response to ionomycin differs
between peripheral T and B cells . (a) Whole
spleen and lymph node cells loaded with 1 uM
indo-1/AM were treated with 0.7 wM ionomycin
for 15 min before determining [Ca2* ] ; by flow
cytometry. The [Ca2, ]i distribution of both cell
types was bimodal, with a larger fraction of high
[Ca2' ] ; cells in lymph node. The control [Ca2, ] ;
of both spleen and lymph node cells was -100
nM (top panel) . (b) Purified splenicT andB cells
were loaded with indo-1/AM and treated with 0.7
gM ionomycin for 15 min. 90% of the T cells
were a high [Ca2' ] ; peak while all of the B cells
formed a low [Ca2, ] ; group (middle panel) . (c)
Whole spleen cells were first loaded with indo-
1/AM at 37°C and then stained with FITC-
conjugated antiThy-1 or anti-B220 on ice. These
cells were rewarmed to 37'C and exposed to 0.7
gM ionomycin. The data were collected in list
mode and reprocessed . the Thy-1.2' T cells were
"sensitive" to ionomycin but the B220' B cells
were "resistant"(bottom panel) . The small fraction
of"resistant" Tcells are not seen in the lower left
panel because they are below the contour levels
shown. The indicated [Ca2 ' ]i is derived from a
computer program based on the calibration de-
scribed previously (4). The data in the upper two
panels were recorded at 1,000-channel resolution.
Both parameters are shown at 64 channel resolu-
tion in the bottom panels .

significant portion ofTcells consistently behaved thesame as B cells. We designated
these responses as ionomycin sensitive (high [Ca" .]i in response to ionomycin) and
ionomycin resistant (low [Ca" ]i) . All B cells appear to be ionomycin resistant, while
most T cells are ionomycin sensitive.

Effect of Ionomycin Dose.

	

In view of this result, the effect of ionomycin dose on
[Ca2+ ] ; in T and B cells was examined (Fig . 3) . At concentrations of ionomycin <0 .1
g.M, corresponding to ti 150 nM [Ca21 ] ;, [Ca2+ ]; was similar in both . Above this
level, however, there was a significant difference between the two cell types. [Ca2+ ];

increased exponentially with increasing ionomycin in both but with a greater slope
in the T cells . For example, at 1 pM ionomycin mean [Ca2+ ]; was 2 .6 PM in T cells
but only 0.3 pM in B cells, nearly a tenfold difference . The range in which T cells
were more sensitive to ionomycin than Bcells includes the optimal dose for inducing
proliferation in this system, 0.5 gM .
A trivial explanation of the difference between T andB cell ionomycin sensitivity

would be differential uptake of the ionophore by the two cell types. That this was
not the case was demonstrated with a mono-carboxyl calcium ionophore, A23187
(46), which produced heterogenous [Ca2' ]i responses in the same manner as
ionomycin (Fig . 4 a) . Since A23187 itself is fluorescent (unlike ionomycin), we could
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FIGURE 3.

	

Response of T andB cells
to ionomycin. T and B cells were iso-
lated by cytotoxic elimination (see
Materials and Methods) . After indo-1
loading cells were treated with the in-
dicated dose of ionomycin and ana-
lyzed by flow cytometry.

measure its uptake . As shown in Fig . 4 b, A23187 fluorescence was unimodal, sug-
gesting that there is not a sufficient difference in ionophore uptake to account for
the 10-fold difference in [Ca2+ ]i between T and B cells . In an additional experiment,
A23187 and FITC-conjugated Thy-1 or B220 fluorescence were measured simul-
taneously. There was no difference in A23187 fluorescence between the T and B
cells (data not shown) .

Ionomycin Alters the Volume and Density of Tbut not B Cells .

	

When exposed to hypo-
tonic media T lymphocytes, but not B lymphocytes, exhibit a regulatory volume
decrease that requires the presence of extracellular Ca2+ (47) . For this reason we

FIGURE 4. The heterogenous
ionomycin response ofTand B cells
is not caused by difference in up-
take of ionophore . (a) [Ca2+1, of
whole spleen cells exposed to 2 wM
A23187 (solid line) compared tocon-
trol (dashed line) . A bimodal distri-
bution similar to that produced by
ionomycin was observed (top panel) .
(b) Fluorescence at 420 run of the
same cell suspension without indo-1
loading. 2 wM A23187 (solid line)
produces a unimodal distribution
displaced from the control (dashed
line) . The indo-1 ratio could be de-
termined in the presence of A23187
because its fluorescence is much
brighter and measured at some-
what different wavelengths than
that of A23187 (bottom panes. The
data were recorded at 1,000 channel
resolution .



compared theT and B cell effects of ionomycin on narrow angle forward light scatter
(LS), which is closely related to cell volume (48, 49). As shown in Fig. 5, ionomycin
decreased the LS of T cells but had no effect on B cells . This was not a direct effect
of ionomycin since it was not observed in calcium-free medium. LS equilibrium was
reached in 20 min, in contrast to the 5 min required for [Ca2' ]i equilibrium.
The decrease in T cell volume is presumably due to the selective loss of K+, pas-

sively followed by Cl- and H2O, caused by the T cell Cat+ -sensitive K' channel
(34, 50, and see below) . Since this should concentrate intracellular proteins, we rea-
soned that T cell density would be increased . This was the case, allowing efficient
separation of ionomycin-sensitive T cells from other spleen cells by an ionomycin-
Percoll gradient (described in Materials and Methods) . This technique was used
for such purification (see below) .
Minimal Efect of ionomycin on CytoplasmicpH.

	

Because ionomycin exchanges Ca"
for H' its effect on pHi was determined . The resting pHi of T cells was 0 .1 pH unit
higher than that of B cells. pHi increased slightly during the initial 5 min of ex-
posure to ionomycin but then returned to slightly below the resting level . This indi-
cated that both T and B cells could compensate adequately for the loss of H' in-
duced by ionomycin .
"Ca Effluxfrom TandB Cells.

	

The different T and B cell responses to ionomycin
suggested that "Ca efflux be examined in the two lymphoid populations. In the ab-
sence of ionomycin, at resting [Ca" ]i , "Ca release was similar in T and B cells (Fig.
6 a) . However, after exposure to 1 pM ionomycin, efflux was more rapid in B than
T cells (Fig . 6 b), even though under these conditions B cell [Ca21 ]i is much lower
than T cell [Ca2' ] ; (Fig . 3) . This result indicated that the Cat' pump of B cells is

c

100
FIGURE 5 .

	

Ionomycin decreases the size of ionomycin-
sensitive T cells . Contour plots ofnarrow angle forward light
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scatter (x axis) versus [Ca l ' ]i (y axis) are shown . (a)
Resting spleen cells (toppaneo. (b) Spleen cells treated with
1 pM ionomycin . The light scatter, which depends on cell
size, of the ionomycin-sensitive, high [Cal ' ] ; T cells, was
reduced (bottom paneo .
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more active than that of T cells at elevated [Ca2+ ] ; . It provides an explanation for
the difference between T and B cell [Ca2+ ]i responses to ionomycin.

ATP-dependent Cat' Transport Differs in T and B Cell Plasma Membranes.

	

Although
a difference in "Ca efflux between T and B cells in the presence of ionomycin was
a consistent finding, the difficulty ofsuch experiments made it important to confirm
the result . Inside-out plasma membrane vesicles were prepared separately from T
and B cells recovered from an ionomycin-Percoll gradient . They were suspended
in graded Cat+ /EGTA buffers and the ATP-dependent accumulation of Cat+ was
determined (Fig. 7) . Such Cat+ accumulation was completely dependent on ATP.
Maximum [Ca2 +] occurred 3 min after adding Mgt+-ATP, decreased slightly over
the next 5 min, and was then stable for more than 30 min. Ca2+ accumulation was
significantly higher in B cell vesicles at external [Ca2+ ] levels above 100 nM, the
[Ca2+ ]i level of intact resting lymphocytes.

Relationship Between Y'- and Ionomycin-induced [Ca2+ ], Elevation .

	

Ionomycin hyper-
polarizedTcells, whereas B cells were more heterogenous and tended to depolarize,
as described by Wilson et al . (Fig . 8 and reference 35). At lowionomycin concentra-
tions, corresponding to [Ca2+ ]i of 150-200 nM, T cells depolarized slightly, then

Internal
Calcium 10000
(nM)

2 3 4 5 6

FIGURE 6 .

	

"Ca efflux splenic T and B cells . 10 8
cells/ml in serum free medium were labeled with
10-50 gCi of 45CaC12 for 1 h at 37°C, washed, and
resuspended in warm serum-free medium . Aliquots
were removed at the times indicated and superna-
tants were separated by centrifuging the cells through
a silicon oil mixture . (a) Percent 45Ca efflux of con-
trol T and B cells (lop paneo . (b) Percent 45Ca efflux
ofT and B cells treated with 1 gM ionomycin (bottom
paneo . Ionomycin increases the efflux rate in B cells
but does not change it significantly in T cells .

Calcium Uptake by Vesicles

	

FIGURE 7 .

	

B cell membrane vesicles
looooo,

	

accumulate Cat+ more effectively than
T cell vesicles . Inside-out membrane
vesicles containing free indo-1 were
prepared as described in Materials and
Methods. Vesicles were diluted into
graded Cat+/EGTA buffers . [Ca2+]i
was determined 15 min after addition

i

	

of 1 mm Mg2+ ATP to the membrane
vesicle suspension . Vesicles from B cells
established a steeper Cat+ gradient
than those from T cells, with the differ-
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Elevated [Cal' ]i hyperpo-
larizes T cells but depolarizes B cells .
(a) Ionomycin-Percoll gradient purified,
indo-1 loaded, T and B cells were
treated with doubling doses of iono-
mycin for 15 min at 37°C . %1' was de-
termined by fluorescence ofthe oxonol
dye, di-BA-C4 (5). Increasing B cell
[Cal' li caused substantial depolariza-
tion . As T cell [Ca2 +]i was increased
a slight initial depolarization was re-
placed by hyperpolarization. The con-
centration of ionomycin (pM) is indi-
cated . `Y calibration is approximate

o

	

and B cells were assumed to have the
same oxonol fluorescence/membrane
potential relationship as T cells .
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strongly hyperpolarized as [Ca" ]i exceeded 200-300 nM. By contrast, B cells
depolarized at [Ca2+ ] ; >200 nM. Calcium was essential for this reaction because
its removal from the medium completely eliminated T cell hyperpolarization (data
not shown). Wilson et al . demonstrated that quinine, which has relative specificity
for Ca2+ -sensitive K+ channels inhibited the ionomycin dependent hyperpolariza-
tion of T cells . Thus T cells, but not B cells, demonstrated Ca2+ -sensitive K+
channels that increased T when [Ca2+ ] ; was elevated.
We then considered the opposite relationship : the effect of T on [Ca2 +]i . As the

T cell Ca2+ -induced hyperpolarization was counteracted by increasing [K+].be-
fore exposure to ionomycin, the T cell [Ca2+ ] ; was dramatically reduced and the
difference between T and B cell [Ca2+ ] ; was greatly decreased (Fig. 9) . This obser-
vation indicated that hyperpolarization enhanced the T lymphocyte [Ca2+ ]i re-
sponse to ionomycin.

Discussion
Calcium is a primary intracellular messenger in the activation of both T and B

lymphocytes. It differs from most other molecules used by cells to transduce signals
in that it cannot be metabolized to an inactive form but must be regulated by energy-
requiring pumps that extrude it from the cell or sequester it within cell compart-
ments. We have used calcium ionophores, particularly ionomycin, to investigate lym-
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FIGURE 9 .

	

Effect of T on ionomycin
induced [Ca21 ]i elevation . Ionomycin-
Percoll gradient-purified, indo-1 load-
ed, Tand B cells were exposedto iono-
mycin (0 .125 [short dash], 0 .25 [longdash],

and 0 .5 pM [solid] for T cells ; 2 .0 AM
for B cells) in the presence ofincreasing
[K' ]o (5, 18 .7, 37 .5, 75 mM). As the
cells were depolarized, the [Ca2 ` ]i
level decreased substantially. The effect
was more pronounced at higher initial
[Ca21 ]; . `P calibration is approximate.
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phocyte calcium management . The data presented show that ionomycin rapidly
produces a stable [Ca" ]i elevation in lymphocytes (Fig . 1) . However, there was a
bimodal [Ca" ]i distribution in sleen and lymph node cells treated with ionomycin.
This heterogeneity was caused by a difference between T and B cells, most of the
former being sensitive to ionomycin and all of the latter resistant (Fig. 2) . The differ-
ence between T and B cells was apparent at ionomycin doses above 0.1 uM, corre-
sponding to a [Ca2+ ]i of 150 nM, and the difference increased to 10-fold at 1.0 PM
ionomycin (Fig . 3) . Thus, the mechanisms responsible for the T-B heterogeneity
are active in the physiological range of [Ca2+ ]i elevation. The trivial explanation
of differential ionophore uptake by T and B cells was excluded (Fig . 4) . Measure-
ment of pHi showed that the effects of ionomycin were transient and could not ac-
count for the subset differences observed .
[Ca2+] i elevation decreased the size of the ionomycin-sensitive T cells (Fig. 5),

increasing the density of these cells sufficiently for them to be separated on a Percoll
gradient (Ishida, Y., and T. M. Chused, manuscript in preparation) . This technique
proved ofvalue for the rapid preparation of ionomycin-sensitive Tcells andionomycin-
resistant B cells . It should be noted that this process was completely reversible upon
removal of ionomycin. The behavior of cells purified in this manner could not be
distinguished from those obtained by the conventional antibody and complement
method .
B cell "Ca efflux increased in the presence of ionomycin while T cell efflux did

not (Fig . 6), leading to a lower [Ca" ]i level in B cells than T cells at the same
ionomycin dose. This suggests that the B cell Ca2+ pump is more active than the
T cell pump at elevated [Ca" ]i . This was confirmed by directly examining the
ability of inside-out T and B cell vesicles to develop a Ca2+ gradient (Fig . 7) . B cell
vesicles were two to three times more active than T vesicles . This could represent
an intrinsic difference between T and B cell Ca2+ pump activity or an effect of `P
on Ca2+ pump activity (see below), since the Na'-K+ ATPase would be expected
to establish a K+ gradient in the vesicles .

Simultaneous examination of [Ca2+ ]; and `P showed diametrically opposite re-
sponses in T and B cells (Fig . 8) : B cells depolarize with [Ca2+ ]i elevation while T
cells hyperpolarize. The T cell response depends on a Ca2+-sensitive K+ channel
that is not present in B cells . Activation of this channel increases the K+ perme-
ability of the membrane, shifting `P closer to the K+ equilbrium potential of -87
mV. The ionic basis of the B cell depolarization is not yet known, but presumably
reflects the activity of a Ca'-sensitive Na' and/or C1- channel(s) . The crucial ob-
servation is that `P affects [Ca2 + ]i (Fig . 9) . Depolarizing ionomycin-treated T cells
by increasing [K+]o markedly reduced their [Ca2+ ]i . An effect of T on [Ca2,1, was
also apparent in B cells but was more limited, perhaps because they were depolar-
ized by the ionomycin-elevated [Ca2+ ]i .
There are three possible explanations for an effect of `P on ionomycin-induced

[Ca2 +]i elevations . An inside negative `P would drive Ca2+ ions through an electri-
cally open channel. However, the ionomycin-Ca2+ complex that traverses the mem-
brane is not charged and thus its motion should be independent of `P (51) . Further,
the force of `P on Ca2+ moving through an electrically open channel would be <1001o
of that provided by the 4-log Ca2+ concentration gradient across the cell membrane .
Thus a significant direct effect of `P on ionomycin-mediated Ca2+ influx is unlikely.
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A second possibility would be an effect of T on a calcium- and voltage-sensitive
ion channel. A calcium-sensitive, nonselective (i .e ., Ca" -carrying) cation channel
has been described in human neutrophils (52) . However, this channel opens more
frequently at a positive potential, like typical voltage-sensitive calcium channels, the
opposite of the behavior required to explain a greater Cat' influx at more negative
`P . An undescribed type of calcium-sensitive calcium channel whose open state was
favored by membrane hyperpolarization could account for our observations . None
of the currently available data exclude this alternative, although manipulation of
`Y in the absence of calcium ionophores has no effect on [Ca2+ ] ; .

The preferred interpretation is that T influences Ca21 pump activity. Our results
suggest there is inhibition of Ca2+ extrusion by membrane hyperpolarization and
augmentation by depolarization . The failure ofT cell Cat+ efflux to increase upon
exposure to ionomycin (Fig. 6) is particularly striking . Replacement ofsodium with
choline does not affect the [Ca2+ ]i response to ionomycin (data not shown) indi-
cating that T changes act on the Cat+ -ATPase pump rather than Na'-Ca2+ ex-
change . The influence of `Y on Cat + -ATPase has not been examined previously and
its effects on Na'-Ca2+ exchange are equivocal (22) . However, the resting `Y
generates a strong, 500,000 V/cm, electrical field in which the Ca2+ efflux mecha-
nism normally operates . Thus, alteration of `Y could affect these structures .
Augmentation of Ca2+ efflux by membrane depolarization provides a likely ex-

planation for the observation that lymphocyte membrane depolarization inhibits
[Ca2+ ] ; responses to crosslinking antigen receptor and, therefore, the ensuing cell
proliferation (53, 54, andIshida, Y., and TM. Chused, unpublished observations).
Since T cell hyperpolarization, produced by opening K+ channels, appears to aug-
ment [Ca2+]i responses, pharmacologic blockade of these channels would be ex-
pected to diminish [Ca2+ ]i and proliferative responses. This may be the basis of
reports that K+ channel blockers inhibit mitogenesis (55, 56).

Effects on [Ca2+ ]i similar to ours have been observed with a rat basophilic
leukemia cell line . Depolarization of these cells inhibits both antigen and ionophore
induced [Ca2+ ]i elevation (57) . Upon antigen activation this line depolarizes (58)
in the manner ofB lymphocytes, suggesting that it does not possess a calcium-sensitive
potassium channel. One group working with human Tcells did not observe an effect
of K+-mediated depolarization on ionomycin-induced [Ca2+ ]i increases (54) . While
the reason for this is not clear, a contributing factor may be that the experiments
were performed in PBS. We find that cell viability and responses are much stronger
and more consistent in complete medium .

In conclusion, the increased T cell [Ca2+ ]i response to ionomycin appears to be
due to an intrinsically less active Cat+ pump (or pumps), which is further inhibited
by the membrane hyperpolarization produced by a Cat+ -sensitive K+ channel.
[Ca2 +]i regulation ofT cells differs significantly from that of B cells. This may be
related to differences in T and B cell differentiation pathways and/or their modes
of antigen recognition.

Summary
Calcium management differs in T and B lymphocytes. [Ca2+ ]i elevation in re-

sponse to calcium ionophores is up to 10 times greater in T cells than B cells . There
is no difference between them in ionophore uptake . T cells, but not B cells, possess
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a calcium-sensitive potassium channel which produces membrane hyperpolariza-
tion at [Ca2+ ]i above 200 nM. This alters T cell density providing a rapid and easy
method of cell separation . In contrast, B cells depolarize when [Ca21 ] ; is increased .
Isolated B cell membrane vesicle ATP-dependent calcium pump activity is higher
than T cell vesicles . Membrane depolarization reduces the [Ca2+ ]i response to
ionomycin, most dramatically in T cells because they are hyperpolarized by increased
[Ca2+ ]i . The most likely basis of this behavior is an effect of membrane potential
on lymphocyte membrane calcium pump activity. This mechanism provides an ex-
planation of the inhibitory effect of membrane depolarization on T lymphocyte re-
sponses .

The authors greatly appreciate the excellent technical assistance of Ms. Elinor Brown .

Received for publication 21 December 1987 and in revised form 31 May 1988.
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