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SUMMARY

Here, we present a computational pipeline to obtain quantitative models that
characterize the relationship of gene expression with the epigenetic marking
at enhancers or promoters in mouse embryonic stem cells. Our protocol consists
of (i) generating predictive models of gene expression from epigenetic informa-
tion (such as histone modification ChIP-seq) at enhancers or promoters and (ii)
assessing the performance of these predictive models. This protocol could be
applied to other biological scenarios or other types of epigenetic data.
For complete details on the use and execution of this protocol, please refer to
Gonzalez-Ramirez et al. (2021).1
BEFORE YOU BEGIN

Timing: 60 min

In brief, our protocol consists of the use of available epigenetic information (such as ChIP-seq sam-

ples of histone modifications) at enhancers and promoters, and RNA-seq data, to construct gene

expression predictive models in mouse Embryonic Stem Cells (mESCs). As an example, we employ

a combination of post-translational histone modifications (i.e., H3K27me3, H3K27ac, H3K4me3 and

H3K4me1). For simplicity, we will focus on chromosome 19 (mouse assembly: mm10), rather than the

full genome, which would require higher computation time.

This section includes the minimal software and hardware requirements, the installation procedures,

as well as the format of the files to be processed throughout this protocol.
Hardware

This bioinformatic pipeline is designed to be run in command line under UNIX operating systems

(e.g., Linux or macOS). However, users fromWindows platforms can reproduce likewise this protocol

by running virtual machines (e.g., Oracle VM VirtualBox, https://www.virtualbox.org), containers

(e.g., Docker, https://www.docker.com), or emulation software (e.g., Cygwin, https://www.

cygwin.com). Recommended computational requirements: 8 GB of RAM and 50 GB of storage.
STAR Protocols 4, 101948, March 17, 2023 ª 2022 The Author(s).
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Install R, RStudio, python, GCC, and make

Timing: 30 min

1. R is a freely available language and environment for statistical computing and graphics.2 We

recommend to download and install the latest version of R, which can be found in https://cran.

r-project.org/.

2. RStudio is an integrated user-friendly development environment for R.3We recommend to down-

load and install the latest version of RStudio, which can be found in https://www.rstudio.com/.

3. Python is a scripting, general-purpose, high-level, and interpreted programming language.4 We

recommend to download and install the latest version of Python, which can be found in https://

www.python.org/.

4. GNU Compiler Collection (GCC) is an optimizer compiler produced by the GNU project initially

developed to handle C and C++ programming language compilation in Linux platforms, which

can be found in https://gcc.gnu.org/.

5. GNU Make is a tool to control the generation of executables and other non-source files of a pro-

gram from source code files, which can be found in https://www.gnu.org/software/make/.

Download this protocol and our dataset from GitHub

Timing: 10 min

6. Clone our GitHub repository (�400 MB), by running the following command on your terminal.
% git clone https://github.com/margonram/gene_expression_prediction
Note: This repository includes the following input data and scripts needed to learn and eval-

uate two predictive models of gene expression from epigenetic information at enhancers or

promoters in mESCs. Output folders for the storage of future results and graphics are also pro-

vided inside the repository.

a. Examine the data/ folder contents.

i. It contains two BED files (Enhancer_gene_chr19.bed and Promoter_ge-

ne_chr19.bed) of the active and repressed (poised) regulatory elements (enhancers

and promoters, respectively) found in mESCs. On each line of both files, the first three col-

umns represent the coordinates (in mm10) of the regulatory element (chromosome, start

position and end position), while the fourth position contains the name of the target

gene linked to the current region.

Note:We provide as well the full lists of active and repressed (poised) regulatory elements for

all chromosomes in mm10 (Enhancer_gene.bed and Promoter_gene.bed), in case the

reader would like to run this protocol genome-wide. Chromatin state and Hi-C interaction

data were combined in our previous publication to generate these lists.1
% head -5 data/Enhancer_gene_chr19.bed

chr19 10012600 10014600 Fen1

chr19 10012600 10014600 Fth1

chr19 10012600 10014600 Incenp
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His

H3K

H3K

chr19 10012600 10014600 Tmem258

chr19 10129000 10130600 Fen1

% head -5 data/Promoter_gene_chr19.bed

chr19 10202800 10205000 Fen1

chr19 10202800 10205000 Tmem258

chr19 10239600 10241200 Myrf

chr19 10304200 10305600 Dagla

chr19 10456200 10458400 Lrrc10b

%

06

06

06

06

06
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ii. Moreover, it contains the file gene-FPKMs.txt with the expression of all 25,457 genes

measured by FPKMs (Fragments Per Kilobase of transcript per Million mapped reads) in

mESCs from a previously published paired-end RNA-seq experiment of our lab.5

Note: It is worth mentioning that files encoding other units of expression, such as RNA-seq tag

normalized counts or microarray normalized signal intensities, would be likewise useful for this

purpose.6
head -5 gene-FPKMs.txt

10005C13Rik 0.0740133

10009B22Rik 31.9622

10009E02Rik 0.137977

10009L18Rik 0.274511

10010B08Rik 18.0307
ton

27

27
iii. Finally, BAM files of mapped reads for chromosome 19 (mm10) of the ChIP-seq experi-

ments used in here are provided so the reader will be able to exactly reproduce this pro-

tocol. Total number of reads of each BAM file is shown below:
e mark Mapped reads Histone mark Mapped reads

ac 652,175 H3K4me3 1,108,480

me3 704,903 H3K36me3 762,963
b. Examine the scripts/ folder.

i. It contains a Python script named prepare_matrix.py to generate the matrices that

combine observed transcriptomic and epigenetic values necessary to learn the predictive

models afterwards. This folder also includes two R scripts named LM_enhancer.R and

LM_promoter.R to generate and evaluate the gene expression predictivemodels from en-

hancers and promoters, respectively, from previously generated matrices.

c. The results/ folder will store new data generated by the scripts of this repository in form of

plain text files.

d. The plots/ folder will store new graphics produced during the learning and evaluation steps

of the protocol in PDF format.
STAR Protocols 4, 101948, March 17, 2023 3
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Install SeqCode

Timing: 10 min

7. Clone the SeqCode GitHub repository (�20 MB) in your computer, by typing in your terminal the

following command.
Note: SeqCode full distribution contains the source code of the applications, the Makefile to

generate the binaries, and a set of automatical tests to check all programs work well in small

real datasets.

% git clone https://github.com/eblancoga/seqcode
% cd seqcode/

% ls
8. Enter into the seqcode/ folder and use Make to generate SeqCode binaries in the bin/ folder.

bin include LICENSE Makefile objects README.md src tests
% make clean

% make all

% ls bin/

buildChIPprofile matchpeaks produceTESmaps

combineChIPprofiles matchpeaksgenes produceTESplots

combineTSSmaps processmacs produceTSSmaps

combineTSSplots produceGENEmaps produceTSSplots

computemaxsignal produceGENEplots recoverChIPlevels

findPeaks producePEAKmaps scorePhastCons

genomeDistribution producePEAKplots
9. Users can run a set of Perl scripts in the tests/ folder to check SeqCode installation was cor-

rect.

10. Copy the binary files on a place that is accessible from your current working path.

CRITICAL: For further information on SeqCode functions, please access the user manual
and the examples of usage for graphical annotation of high-throughput data at http://

ldicrocelab.crg.es.
Download and process the chromInfo.txt file from UCSC genome browser

Timing: 5 min

11. Download the chromInfo.txt file (mouse, mm10) from UCSC Genome Browser7: http://

hgdownload.soe.ucsc.edu/goldenPath/mm10/database/chromInfo.txt.gz.
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Note: Information on the catalogue of chromosomes and their corresponding size is neces-

sary for running SeqCode on BAM files. Alternatively, we can use the BioMart tool from

Ensembl,8 or the NCBI datasets at https://www.ncbi.nlm.nih.gov/data-hub/genome to down-

load the same information.

12. Clean the chromInfo.txt file by removing alternative fragments of chromosomes and se-

quences of unknown location by running the following filter. The resulting ChromInfo.txt

file will be used throughout this protocol:
% zcat chromInfo.txt.gz | grep -v "_" | awk ’BEGIN{OFS="\t"}{print $1,$2}’ > \

data/ChromInfo.txt

% cat data/ChromInfo.txt

chr1 195471971

chr2 182113224

chrX 171031299

chr3 160039680

chr4 156508116

chr5 151834684

chr6 149736546

chr7 145441459

chr10 130694993

chr8 129401213

chr14 124902244

chr9 124595110

chr11 122082543

chr13 120421639

chr12 120129022

chr15 104043685

chr16 98207768

chr17 94987271

chrY 91744698

chr18 90702639

chr19 61431566
chrM 16299
Install R packages needed for this protocol

Timing: 5 min

13. To run our protocol, it is required to previously install the R packages caret9 and viridis.10
STAR Protocols 4, 101948, March 17, 2023 5
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Note: caret is an R package that implements the learning step of predictive modelling. In

addition to this, caret setup will initiate the installation of ggplot2,11 which is employed

to visualize the results of the evaluation, generating publication-ready plots. viridis is a

well-known package of graphical palettes that we will use to colour our plots. Open RStudio

and run the following commands.
install.packages(‘‘caret’’)
> install.packages(‘‘viridis’’)
KEY RESOURCES TABLE
GENT or RESOURCE SOURCE IDENTIFIER

osited data

ancer_gene_chr19.bed This protocol https://github.com/margonram/gene_
expression_prediction/blob/main/data/
Enhancer_gene_chr19.bed

moter_gene_chr19.bed This protocol https://github.com/margonram/gene_
expression_prediction/blob/main/data/
Promoter_gene_chr19.bed

e-FPKMs.txt This protocol https://github.com/margonram/gene_
expression_prediction/blob/main/
data/gene-FPKMs.txt

27ac_mESC_chr19.bam This protocol https://github.com/margonram/gene_
expression_prediction/blob/main/data/
H3K27ac_mESC_chr19.bam

27me3_mESC_chr19.bam This protocol https://github.com/margonram/gene_
expression_prediction/blob/main/data/
H3K27me3_mESC_chr19.bam

36me3_mESC_chr19.bam This protocol https://github.com/margonram/gene_
expression_prediction/blob/main/data/
H3K36me3_mESC_chr19.bam

4me3_mESC_chr19.bam This protocol https://github.com/margonram/gene_
expression_prediction/blob/main/data/
H3K4me3_mESC_chr19.bam

omInfo.txt UCSC genome browser http://hgdownload.soe.ucsc.
edu/goldenPath/mm10/database/
chromInfo.txt.gz

tware and algorithms

R core Team2 https://www.R-project.org/

udio RStudio Team3 http://www.rstudio.com/

et R package Kuhn et al.9 https://CRAN.R-project.
org/package=caret

dis R package Garnier et al.11 https://CRAN.R-project.
org/package=viridis.

hon Van Rossum and Drake4 https://www.python.org/

C The GNU Project https://gcc.gnu.org

ke The GNU Project https://www.gnu.org/software/make

pare_matrix.py This protocol https://github.com/margonram/gene_
expression_prediction/blob/main/
scripts/prepare_matrix.py

_enhancer.R This protocol https://github.com/margonram/gene_
expression_prediction/blob/main/
scripts/LM_enhancer.R

_promoter.R This protocol https://github.com/margonram/gene_
expression_prediction/blob/main/
scripts/LM_promoter.R

Code Blanco et al.12 https://github.com/eblancoga/seqcode

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Other

Apple iMac (R) Intel (R) Core
i7 @ 3,5 GHz, 8 GB memory,
macOS Mojave

N/A N/A
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STEP-BY-STEP METHOD DETAILS

Construct the matrix of epigenomic and transcriptomic signal on the sets of enhancers and

promoters, and their associated target genes, respectively

Timing: 1 day

Prior to the generation of gene expression predictive models with this protocol, it is necessary to

build a table or matrix linking the epigenomic and transcriptomic information quantified on the reg-

ulatory elements and their associated target genes, respectively. The columns in this matrix will

represent the variables that we will use to learn and evaluate the predictive models. Each row con-

tains one target gene and the corresponding matching enhancer or promoter region (see an

example below). We have decided to place the expression of the target genes in the first column

(in FPKMs) and the count of reads of each type of epigenetic data (i.e., ChIP-seq of histone modifi-

cations) normalized by the sequencing depth at the regulatory regions of interest (i.e., enhancers or

promoters) in the following columns.

Optional: If you would like to apply our protocol on your own set of transcriptomic and epige-

nomic experiments, please follow steps 1–5 to build your matrix file linking expression and

epigenetic information. Alternatively, if you prefer just to see how the predictive model gen-

eration and training steps work on the sample data on chromosome 19 of mESCs from our

GitHub repository, you can go directly to point 6 of this protocol.

1. Select of a collection of epigenetic experiments.

Note: To run this protocol, users need to select which types of epigenetic information

(histone modifications, chromatin accessibility, etc.) are more interesting for them to

use as predictive variables to train computational gene expression predictive models.

This will depend on the question we are addressing. In our case, we aimed to study

(i) whether enhancer epigenetic landscape is capable of predicting gene expression as

previously shown for promoters, and (ii) compare differences in variable contribution be-

tween enhancer and promoter predictive models. As we are interested in ranking each

histone modification for their variable importance in the predictive models obtained in

mESCs, we employ a diverse set of ChIP-seq experiments from a heterogeneous panel

of histone modifications.

CRITICAL: In our previous publication we used up to ten different histone modifications.1
Here, for the sake of clarity, we selected the following histone modifications: H3K27me3,

H3K27ac, H3K4me3 and H3K36me3. Remarkably, other types of high-throughput informa-

tion such as ChIP-seq experiments of transcription factors and chromatin accessibility

data13–16 proved to be effective in the modelling of expression in other biological con-

texts. Therefore, our readers are encouraged to integrate such data into predictivemodels

alternative to the one with histone marks described along this article.
2. Collect the files of mapped reads.
STAR Protocols 4, 101948, March 17, 2023 7
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Note: From the collection of high-throughput experiments selected before, we need to obtain

files of reads in BAM/SAM format mapped on the appropriate genome assembly. In our

example, wemapped raw data files of each sample on the mm10 version of themouse genome.

Precomputed files of mapped reads can be retrieved from databases such as ENCODE,17 where

readers will find a vast catalogue of epigenetic data on mESC. Troubleshooting 1.

3. Calculate normalized count of reads at enhancers.

Note:We will use the recoverChIPlevels function from SeqCode12 to assign one value of

signal strength (i.e., average count of reads) for every ChIP-seq experiment on each element

of our collections of genomic regions.

a. Execute the following commands on the terminal for each file of mapped reads of the histone

modifications of our example (step 2).

Note: Readers can apply the same commands on other BAM files of reads that could be

included in the analysis to determine the abovementioned values on our set of enhancers:
% bin/recoverChIPlevels -vnd data/ChromInfo.txt data/H3K27me3_mESC_chr19.bam \

data/Enhancer_gene_chr19.bed Enhancer_H3K27me3_chr19

% bin/recoverChIPlevels -vnd data/ChromInfo.txt data/H3K27ac_mESC_chr19.bam \

data/Enhancer_gene_chr19.bed Enhancer_H3K27ac_chr19

% bin/recoverChIPlevels -vnd data/ChromInfo.txt data/H3K4me3_mESC_chr19.bam \

data/Enhancer_gene_chr19.bed Enhancer_H3K4me3_chr19

% bin/recoverChIPlevels -vnd data/ChromInfo.txt data/H3K36me3_mESC_chr19.bam \
CRITICAL: Option -d in the recoverChIPlevels command is only necessary when

data/Enhancer_gene_chr19.bed Enhancer_H3K36me3_chr19
working with our BAM/SAM files containing mapped reads in only one chromosome.

When dealing with the full set of chromosomes users should not include this option.
%

E

c

c

c

c

c

8

b. Examine the output of recoverChIPlevels SeqCode command.

Note: The output consists on a new BED file in which three new columns (average value,

maximum value and total value) have been added at each line after the information regarding

the identification of every enhancer and target gene pair in the original input BED data. All

values are normalized by SeqCode for the total number of reads inside each BAM file. We

will use column number five (average value) for this protocol.
head -5 \

nhancer_H3K27ac_chr19_recoverChIPlevels/PEAKsignal_Enhancer_H3K27ac_chr19.bed

hr19 10012600 10014600 Fen1 8.64 18.40 1728.06

hr19 10012600 10014600 Fth1 8.64 18.40 1728.06

hr19 10012600 10014600 Incenp 8.64 18.40 1728.06

hr19 10012600 10014600 Tmem258 8.64 18.40 1728.06

hr19 10129000 10130600 Fen1 7.12 16.87 1139.26

STAR Protocols 4, 101948, March 17, 2023
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Note: In the example provided through our GitHub repository, each line corresponds to

the Hi-C-top enhancer-gene associations identified in our previous publication.1 Trouble-

shooting 2.

4. Elaborate the matrix linking target gene expression and epigenomic information for enhancers.

Note:Once we have calculated the normalized number of reads for each epigenetic item, we

need to generate a matrix linking gene expression data and epigenetic signal strength on

each pair of enhancer-gene elements to learn the predictive models later. For this purpose,

we provide in our repository a python script (prepare_matrix.py) that constructs the ob-

servations matrix by combining the actual expression data (RNA-seq FPKM values) and the

output of each recoverChIPlevels function call (ChIP-seq average signal values).

a. Create the parameter file named ChIPlevels_enhancers.txt (see Box 1) in the data/

folder.

Note: The parameter file named ChIPlevels_enhancers.txt (see Box 1) contains the

location in the user file system of the BED files generated by the recoverChIPlevels com-

mands in step 3, and a unique identifier (i.e., name of the corresponding histone modifica-

tion). This file will have as many rows as epigenetic samples we would like to utilize as variables

to learn the predictive models in the next steps.

b. Run our Python script on the terminal to finally link expression data and epigenomic ChIP-seq

levels for each pair of gene-enhancer record:
% ./scripts/prepare_matrix.py data/ChIPlevels_enhancers.txt \

data/gene-FPKMs.txt > results/matrix_observations_enhancers.txt

% head -5 results/matrix_observations_enhancers.txt

expression H3K27me3 H3K4me3 H3K27ac H3K36me3

47.2144 1.70 4.28 8.64 2.99

563.153 1.70 4.28 8.64 2.99

46.8749 1.70 4.28 8.64 2.99

307.058 1.70 4.28 8.64 2.99
CRITICAL: prepare_matrix.py is intended to be executed by the python2 interpreter.
However, it can be run under python3 by changing ‘‘python’’ in the first line (shebang)

of our script for ‘‘python3’’.
Note: Both input and output files on this command for chromosome 19 of mouse (mm10) are

provided in the data/ and results/ folders of our GitHub repository, respectively. This re-

sulting matrix_observations_enhancers.txt archive will be used as input data to learn predic-

tive models in the next steps of the protocol. Troubleshooting 3.

5. Repeat steps 3 and 4 for promoters.

Note: In previous steps, we have quantified the signal strength of each ChIP-seq experiment

on the enhancers previously linked to genes in mESCs. Now, to calculate the accuracy of a

similar predictive model for gene expression in promoters, we will repeat this calculation

over the promoters linked to the same set of genes using the Promoter_gene_chr19.bed

(provided in our GitHub repository). This file contains the coordinates of the promoters of
STAR Protocols 4, 101948, March 17, 2023 9



Box 1. Contents of the file ChIPlevels_enhancers.txt

Enhancer_H3K27ac_chr19_recoverChIPlevels/PEAKsignal_Enhancer_H3K27ac_chr19.bed. H3K27ac

Enhancer_H3K27me3_chr19_recoverChIPlevels/PEAKsignal_Enhancer_H3K27me3_chr19.bed H3K27me3

Enhancer_H3K4me3_chr19_recoverChIPlevels/PEAKsignal_Enhancer_H3K4me3_chr19.bed. H3K4me3

Enhancer_H3K36me3_chr19_recoverChIPlevels/PEAKsignal_Enhancer_H3K36me3_chr19.bed H3K36me3

%

da

Pr

%

da

Pr

%

da

Pr

%

da

Pr

%

Pr

ch

ch

ch

ch

ch

%

da

%

ex

47

30

12

0.
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chromosome 19 involved in the Hi-C-top interactions as identified in our previous publica-

tion.1 After running the SeqCode commands, we will generate now a parameter file called

ChIPlevels_promoters.txt (Box 2) to specify the location of the normalized counts of

each ChIP-seq experiment processed by SeqCode.
bin/recoverChIPLevels -vnd data/ChromInfo.txt \

ta/H3K27me3_mESC_chr19.bam data/Promoter_gene_chr19.bed \

omoter_H3K27me3_chr19

bin/recoverChIPlevels –vnd data/ChromInfo.txt \

ta/H3K27ac_mESC_chr19.bam data/Promoter_gene_chr19.bed \

omoter_H3K27ac_chr19

bin/recoverChIPLevels -vnd data/ChromInfo.txt \

ta/H3K4me3_mESC_chr19.bam data/Promoter_gene_chr19.bed \

omoter_H3K4me3_chr19

bin/recoverChIPLevels -vnd data/ChromInfo.txt \

ta/H3K36me3_mESC_chr19.bam data/Promoter_gene_chr19.bed \

omoter_H3K36me3_chr19
All output files follow the same format and layout as in the case of enhancers.
head -5 \

omoter_H3K27ac_chr19_recoverChIPlevels/PEAKsignal_Promoter_H3K27ac_chr19.bed

r19 10202800 10205000 Fen1 13.42 39.87 2953.20

r19 10202800 10205000 Tmem258 13.42 39.87 2953.20

r19 10239600 10241200 Myrf 7.67 15.33 1226.66

r19 10304200 10305600 Dagla 3.68 7.67 515.20

r19 10456200 10458400 Lrrc10b 2.93 7.67 644.00

./scripts/prepare_matrix.py data/ChIPlevels_promoters.txt \

ta/gene-FPKMs.txt > results/matrix_observations_promoters.txt

head -5 results/matrix_observations_promoters.txt

pression H3K27me3 H3K4me3 H3K27ac H3K36me3

.2144 1.26 153.31 13.42 2.20

7.058 1.26 153.31 13.42 2.20

.3486 2.28 57.73 7.67 2.46

259599 15.54 75.08 3.68 2.96
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Box 2. Contents of the file ChIPlevels_promoters.txt

Promoter_H3K27ac_chr19_recoverChIPlevels/PEAKsignal_Promoter_H3K27ac_chr19.bed H3K27ac

Promoter_H3K27me3_chr19_recoverChIPlevels/PEAKsignal_Promoter_H3K27me3_chr19.bed

H3K27me3

Promoter_H3K4me3_chr19_recoverChIPlevels/PEAKsignal_Promoter_H3K4me3_chr19.bed H3K4me3

Promoter_H3K36me3_chr19_recoverChIPlevels/PEAKsignal_Promoter_H3K36me3_chr19.bed

H3K36me3
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Learning the predictive models for enhancers or promoters

Timing: 1 h

The next part of this protocol consists in learning the predictive models of gene expression by

finding the optimal weight for the signal strength of each epigenetic variable (i.e., H3K27ac) on

each class of genomic regions (enhancers and promoters, separately), that predicts a value of

expression that fits better with the observed FPKM values in mESCs. We will show step by step

how to (i) learn an enhancer predictive model from a part of the input matrix of observations (training

set) and a random model as a control (generated by shuffling gene expression values), and (ii) eval-

uate the accuracy of both models on the rest of input data (test set).

Note:Wewill focus first on the R script LM_enhancer.Rwhich contains the steps to generate

the gene expression predictive model based on enhancer histone decoration. Similar steps

will be indicated later to perform the same operation on promoter histone marking.

6. Prepare the workspace directory. Open RStudio and set the path of the main folder of the clone of

our GitHub repository inside your computer (yourpath/) as workspace directory.
7. Load the R packages in the current RStudio session.

Note: We load caret9 and viridis.10 Moreover, caret will load the ggplot2 plotting

package11 as well.

> setwd("yourpath")
> library(caret)
8. Load the transcriptomic and epigenomic matrix of observed counts.

Note: We load the resulting file from point 5 (matrix_observations_enhancers.txt)

into a variable named data, and perform a log2 transformation, adding a pseudocount of

0.1. We need to convert our data into a data frame.

> library(viridis)
> data <- read.table("results/matrix_observations_enhancers.txt",

header = T) # substitute by your file
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>

> head(data,n=5)

expression H3K27me3 H3K4me3 H3K27ac H3K36me3

1 47.2144 1.70 4.28 8.64 2.99

2 563.1530 1.70 4.28 8.64 2.99

3 46.8749 1.70 4.28 8.64 2.99

4 307.0580 1.70 4.28 8.64 2.99

5 47.2144 1.01 4.35 7.12 2.39

> data <- log2(data+0.1)

> head(data,n=5)

expression H3K27me3 H3K4me3 H3K27ac H3K36me3

1 5.564207 0.8479969 2.130931 3.127633 1.627607

2 9.137639 0.8479969 2.130931 3.127633 1.627607

3 5.553818 0.8479969 2.130931 3.127633 1.627607

4 8.262837 0.8479969 2.130931 3.127633 1.627607

5 5.564207 0.1505597 2.153805 2.851999 1.316146

> data <- data.frame(data)

> nrow(data)

[1] 1426

> ncol(data)

[1] 5

>

>
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CRITICAL: We provide examples of expression and epigenomic observations for en-
hancers and promoters in mESCs in our GitHub repository. Therefore, unless you are pro-

cessing your own high-throughput experiments, steps 1–5 can be skipped when working

with intermediate results from our GitHub examples.
9. Create the training and test sets.

Note:Wewill randomly partition the input matrix of enhancer-gene observations stored in the

data variable into two sets: 80% of the BED entries for the training set and the remaining 20%

for the test set.

a. Choose the randomization seed. We generated our current partitioning using 47.
set.seed(47)
b. Create both partitions by permutating indexes of the elements in the data structures and ex-

tracting the data associated to such indexes into the dataTrain and dataTest variables.
trainIndex <-createDataPartition(data$expression,

p = .8,list = FALSE, times = 1)

head(trainIndex,n=2)
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Resample1

[1,] 1

[2,] 2

> tail(trainIndex,n=2)

Resample1

[1141,] 1424

[1142,] 1425

> dataTrain <- data[ trainIndex,]

> dataTest <- data[-trainIndex,]

> nrow(dataTrain)

[1] 1142

> nrow(dataTest)

[1] 284

> head(dataTrain,n=2)

expression H3K27me3 H3K4me3 H3K27ac H3K36me3

1 5.564207 0.8479969 2.130931 3.127633 1.627607

2 9.137639 0.8479969 2.130931 3.127633 1.627607

> head(dataTest,n=2)

expression H3K27me3 H3K4me3 H3K27ac H3K36me3

5 5.564207 0.1505597 2.153805 2.851999 1.316146

8 5.564207 1.2509616 1.815575 3.412782 1.731183
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Optional: Under certain circumstances, instead of partitioning the data in two sets (training

and test), we might be interested in learning the predictive model in a particular biological

context and evaluate its performance on a second one (e.g., mESCs vs. a posterior cell differ-

entiated state, see our previous publication1). In this case, readers will need to adapt this R

script to load two files of matrices of observations: one will be stored inside the dataTrain

variable, and the other one into the dataTest variable. Both files will need to be previously

processed with the command in the step 8. Troubleshooting 4.

10. Randomize gene expression.
> expression_rd <- sample(dataTrain$expression)

> dataTrain_rd <- dataTrain

> dataTrain_rd$expression <- expression_rd

> head(dataTrain_rd,n=2)

expression H3K27me3 H3K4me3 H3K27ac H3K36me3

1 9.137639 0.8479969 2.130931 3.127633 1.627607

2 5.466689 0.8479969 2.130931 3.127633 1.627607
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Note: As a control, we will generate a second predictive model in whose training set the

expression data of target genes coupled to enhancers from mESCs is shuffled. Performance

on this random model, when comparing predicted vs. observed gene expression, will be use-

ful as a reference to evaluate the results of the model trained on the correct matching between

expression of target genes and enhancers.

11. Define the training conditions.
> train_control <- trainControl(method="repeatedcv",
Note: Cross validation (CV) is a statistical method to obtain better estimations when

fitting a model to a limited dataset. By iteratively splitting data into k parts, CV

method is based on using k-1 fractions of the original input for fitting k-1 models to

the observations leaving one part for evaluating the sample error at each iteration.18

Prior to executing the learning step, we will define the set of technical conditions

that must be followed. Thus, for both predictive models (real and random), we will

perform a 103 cross-validation (method=’’repeatedcv’’ and number=10), repeated

three times (repeats=3). We can modify these parameters by those that best suit our

needs.

12. Learn the predictive models.

Note: To learn the parameters of our models (real and random), we will fit gene expression

values predicted using the observed epigenomic read counts with the observed gene expres-

sion (original or shuffled) at each enhancer-gene pair. Gene expressionmust be always the first

term of the formula. Terms after the symbol ‘‘�’’ correspond to the counts of each piece of

epigenetic information we selected before. We can run several fitting methods, in our case

we opted for a linear model (lm).

number=10, repeats = 3)
> model <- train(expression�H3K36me3+H3K4me3+H3K27me3+H3K27ac,

data=dataTrain, trControl=train_control,

method="lm")

> model_rd <-train(expression�H3K36me3+H3K4me3+H3K27me3+H3K27ac,

data=dataTrain_rd, trControl=train_control,
Note: Indeed, we compared linear regression (lm) to other existing methods such as neural

networks, support vector machines, or random forests in our previous publication.1 While

no other approach yielded better performance, a higher amount of running time was required

in the other methods. Please, refer to caret9 for further information on all the available

methodologies.

13. Save the resulting model.

method="lm")
14 STAR Protocols 4, 101948, March 17, 2023
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Note: We visualize the content of the model and the model summary, and save their respec-

tive outputs. Among other things, we can see the actual weight assigned to each epigenetic

feature and their significance, as well as the error statistics of the CV method.
> model

Linear Regression

1142 samples

4 predictor

No pre-processing

Resampling: Cross-Validated (10 fold, repeated 3 times)

Summary of sample sizes: 1027, 1029, 1028, 1028, 1026, 1028, ...

Resampling results:

RMSE Rsquared MAE

2.739144 0.1969188 2.092115

Tuning parameter ’intercept’ was held constant at a value of TRUE

> model_print <- capture.output(print(model))

> out_print <- paste("results/Enhancer_predictive_model.txt",

sep = "")

> writeLines(model_print,out_print)

> summary(model)

Call:

lm(formula = .outcome � ., data = dat)

Residuals:

Min 1Q Median 3Q Max

-8.0254 -1.5536 0.0824 1.6723 8.5237

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.39910 0.58615 5.799 8.64e-09 ***

H3K36me3 0.08289 0.09154 0.906 0.365

H3K4me3 0.05827 0.06853 0.850 0.395

H3K27me3 -0.91799 0.07708 -11.909 < 2e-16 ***

H3K27ac 0.13557 0.14893 0.910 0.363

—

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.741 on 1137 degrees of freedom

Multiple R-squared: 0.1978, Adjusted R-squared: 0.195

F-statistic: 70.09 on 4 and 1137 DF, p-value: < 2.2e-16
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> model_sum <- capture.output(summary(model))

> out_sum <-paste("results/Enhancer_predictive_model_summary.txt",

sep = "")

> writeLines(model_sum,out_sum)

ll
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14. Calculate the importance of each variable.
> varImp(model, scale = FALSE)

lm variable importance

Overall

H3K27me3 11.9091

H3K27ac 0.9103

H3K36me3 0.9056

H3K4me3 0.8503

> model_imp <- capture.output(varImp(model))

> out_imp <- paste("results/Enhancer_varImp.txt", sep = "")

> writeLines(model_imp,out_imp)
Note: To define the impact of each histone modification over gene expression prediction, we

calculate their importance into the predictive model. Importance is defined as the contribu-

tion of each variable in the linear regression predictivemodel and corresponds to the absolute

value of the t-statistic for each model parameter. We save the output of calculating variable

importance into a file.

15. Calculate the correlation between predicted and measured expression.
> exp_pred <- predict(model,dataTest)

> r <- round(cor(exp_pred,dataTest$expression),2)

> r

[1] 0.42

> exp_pred_rd <- predict(model_rd,dataTest)

> r_rd <- round(cor(exp_pred_rd,dataTest$expression),2)

> r_rd
Note: Finally, once we have generated the model learned on the training set, we can evaluate

its performance on the test set (step 9). For this purpose, we predict the expression of genes in

the test set using the real and the randommodels, and then we calculate Pearson’s correlation

(r) between predicted and measured expression in both cases to assess predictive model’s

performance.

[1] -0.01
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Figure 1. Performance of the enhancer model and its corresponding random model

Predicted expression of the test subset of genes calculated by the models versus their measured expression by RNA-

seq. Model performances are represented by the Pearson’s correlation (r) between predicted and measured

expression values. Color scale on the right represents the density of dots in the scatter plots.
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16. Plot predicted vs. measured expression.
> predicted <-c (exp_pred,exp_pred_rd)

> measured <- c(dataTest$expression,dataTest$expression)

> models <- c(rep("Model",nrow(dataTest)),

rep("Random model",nrow(dataTest)))

> text <- data.frame(label=c(paste("r = ",r),

paste("r = ",r_rd)),

models=c("Model","Random model"))

> c <- data.frame(predicted,measured,models)

> pdf("plots/Enhancer_prediction.pdf", width = 10,height = 5)

> ggplot(c) +

geom_hex(aes(measured, predicted), bins = 100) +

scale_fill_gradientn("", colours = rev(viridis(300)))+

geom_smooth(aes(measured, predicted),method = "lm",level=0)+

labs(title="Expression prediction in the test subset",

x="Measured expression (log(FPKMs + 0.1))",

y = "Predicted expression") +

geom_text(data = text,

mapping = aes(x = -Inf, y = -Inf, label = label),hjust = -2,

vjust = -1, size=7) +

theme_bw() +

theme(legend.position="right",

axis.text=element_text(size=20,face="bold"),

axis.title=element_text(size=20,face="bold"),

STAR Protocols 4, 101948, March 17, 2023 17



legend.text=element_text(size=20),

legend.title=element_text(size=20),

plot.title = element_text(size=24,face="bold"),

strip.text = element_text(size=20,face="bold")) +

facet_wrap(� models)
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Note: We use the ggplots2 R package to generate publication-ready plots to visualize how

well our predictivemodel perform compared to their corresponding randommodel (Figure 1).

17. Plot the variable importance.

Note: Finally, we can show in a barplot the different contribution of each histone modification

into the gene expression prediction based in enhancer epigenetic marking (Figure 2A).

> dev.off()
> out_varImp <- paste("plots/Enhancer_varImp.pdf",sep="")

> p <- ggplot(varImp(model,scale = FALSE))+

geom_bar(stat="identity", fill="darkviolet")+

labs(title="Enhancer model variable importance",

x="", y = "importance") +

theme_bw() +

theme(legend.position="bottom",

axis.text=element_text(size=12,face="bold"),

axis.title=element_text(size=12,face="bold"),

plot.title = element_text(size=15,face="bold"),

strip.text = element_text(size=12,face="bold"))
18. Repeat steps 6–17 for promoter analysis.

Note: To generate a predictive model of gene expression from epigenetic information at pro-

moter regions, we will resume from step 6 with the file of data observations in promoter re-

gions by running the R script LM_promoter.R. It follows the same steps shown in the R script

LM_enhancer.R, being adapted to read and output promoter files. We provide in our

GitHub repository an example of the file matrix_observations_promoter.txt for pro-

moters. Graphical results are shown in Figures 2B and 3.

19. Comparing the variable importance of histone marks between enhancer and promoter

models.

Note: Finally, we will compare the ranking of variable importance between enhancer and pro-

moter models to highlight potential differences. Figure 2.

> ggsave(out_varImp,plot=p,device = "pdf",width = 5, height = 4)
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Figure 2. Variable importance

(A) Importance of each histone modification used to train the enhancer predictive model. Importance is defined as the

contribution of each variable in the linear regression predictive model and corresponds to the absolute value of the

t-statistic for each model parameter.

(B) As for A, but for promoters.
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EXPECTED OUTCOMES

Plots in Figures 1 and 3 show the expression predicted by the computational models (real and

random) based in epigenetic decoration of enhancers and promoters vs. measured expression

from published RNA-seq experiments in mESCs.5 Their color scale represents the density of dots,

and the blue line is the regression line. We plot r-value which represents the Pearson’s correlation

between measured and predicted gene expression. We expect the random model from both, en-

hancers and promoters, to have an almost horizontal regression line, with a r-value lower than the

one from the real model and usually close to 0 (Figures 1 and 3). However, the r-value of the random

model could virtually take any value depending on the result of the randomization (i.e., it could take

the same value as the real model, but the probability of this happening is very low). The higher the r-

value of the real predictive model, the higher the correlation between predicted and measured

expression, and therefore, the better the performance of the predictive model.

Plots in Figure 2 show the ranking of variable importance. The value of importance cannot be fairly

compared between different models (i.e., the same variable in the enhancer or the promoter model).

However, we can compare the changes in the ranking in which each variable appears on each model.
Figure 3. Performance of the promoter model and its corresponding random model

Predicted expression of the test subset of genes calculated by the models versus their measured expression by RNA-

seq. Model performances are represented by the Pearson’s correlation (r) between predicted and measured

expression values. Color scale on the right represents the density of dots in the scatter plots.
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H3K4me3, a histone mark mostly associated to active promoters, is the variable showing a more dra-

matic change as expected (null contribution in enhancers, substantial contribution in promoters).

H3K27me3, mostly present in transcriptionally inactive regions is the most important contributor in

both cases as it is the best feature to distinguish between expressed and silent genes.1 The fact that

H3K27ac has little importance for both, enhancer and promoter predictive models, may be surprising

for the reader especially in the case of enhancers, as H3K27ac is considered the canonical marker of

active enhancers.19 However, as we demonstrated in our previous publication,1 this is due to

H3K27me3 and H3K27ac being mutually exclusive,20 and therefore not independent variables.

LIMITATIONS

To obtain proper models of gene expression prediction from enhancer epigenetic information, we

need repressed (poised) and active enhancers. However, poised enhancers have only been identi-

fied in embryonic stem cells.21,22 They might exist in other cell types, but further research is needed

in order to confirm it. On the other hand, the type of epigenetic data and gene expression data in

which one could be potentially interested might not be publicly available for the cellular model in

which the reader is planning to produce gene expression predictive models.

TROUBLESHOOTING

Problem 1

At step 2, BAM or SAM files are not available for our epigenetic information of interest.

Potential solution

If processed files of mapped reads (BAM/SAM) are not available for our epigenetic data of interest,

we should download their raw data files in FASTQ format and perform the mapping over our current

genome assembly. We propose using popular mapping tools such as BOWTIE23 or BWA.24,25 Prior

to mapping, indexes from the appropriate genome assembly must be generated from the FASTA

sequences of the chromosomes. Both genome indexing (which is generated only once at each com-

puter) and ChIP-seq read mapping are time-consuming operations that will take between 1–2 h

running in ordinary workstations.

In brief, we will execute the following steps to generate the index:

� Get a copy of the sequence of each chromosome of the genome of interest (mouse, mm10 assem-

bly in our example) in FASTA format from the UCSC genome browser. We suggest to download

the same chromosomes described in our previous chromInfo.txt file: https://hgdownload.soe.

ucsc.edu/goldenPath/mm10/chromosomes/.

� FASTA sequences of the chromosomes must be concatenated together in a single multi-FASTA

file with the UNIX zcat command:
% zcat chr*.fa.gz > genome.fa
� Let genome.fa be a multi-FASTA file combining the chromosomes of a genome, the following

BOWTIE command generates and stores the genome indexing files into the output folder:
Next, for the mapping of the FASTQ file of one ChIP-seq experiment, we will perform the following

steps:

% bowtie-build genome.fa output/genome
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� Alignment of the ChIP-seq reads from a FASTQ raw data file (sample.fastq) to the appropriate

genome index (output/genome), discarding multi-locus reads, and saving the output in SAM

format (sample.sam) with BOWTIE:
SAM files contain the location of each read in the genome.26 To remove unaligned reads and to

convert the resulting SAM file into BAM format to save storage space, users will run the following

SAMTools command:

% bowtie –p 4 –t –m 1 –S –q output/genome sample.fastq sample.sam
% samtools view –b –F 034 –o sample.bam sample.sam
Problem 2

At step 3, we would like to identify our own set of enhancers and their target genes.
Potential solution

For this protocol we provide the coordinates of enhancers and their target genes identified inmESCs

in our previous publication.1 We used the combination of several histone modifications (H3K27me3,

H3K27ac, H3K4me3 and H3K4me1) to identify active and poised enhancers, as well as promoters.

Moreover, we used Hi-C interactions to associate enhancers to promoters and target genes, as

long as promoters and enhancers share the same chromatin state (i.e., both active or both poised).

The same approach can be utilized for other cell types as well. If Hi-C data is not available, we can

predetermine a 1 Mb maximum distance between enhancer and promoter of same chromatin state

to assign potential enhancer-gene associations. This arbitrary distance approach indeed showed an

acceptable performance of gene expression prediction in our previous publication.1
Problem 3

At step 4, we would like to use expression data from another cell-type different from mESCs.
Potential solution

For this particular protocol we provide FPKMs for mESCs in our GitHub repository. However,

readers might be interested in learning predictive models for other scenarios. In that case, we

need to calculate FPKMs in the RNA-seq samples performed over the cell-type of our interest.

We propose software such as Cufflinks27 and DESeq228 for this purpose. If previously we need

to map reads of RNA-seq raw data files to generate the corresponding BAM files, we suggest using

TopHat.29 Similar to ChIP-seq analysis, genome indexing is necessary and mapping of RNA-seq

plus read counting are time-consuming operations that will take between 4–5 h running in ordinary

workstations.

For the mapping of the FASTQ files of an RNA-seq experiment, we will perform the following steps

on the same indexes generated for ChIP-seq analysis.

� Get a copy of the annotated exons of all genes in the genome of interest (mouse, mm10 assembly

in this example) according to the RefSeq consortium as provided by the UCSC genome browser.

The UCSC tool genePredToGtf can be used to convert annotations in GTF format for mapping

and quantification: https://hgdownload.soe.ucsc.edu/goldenPath/mm10/database/refGene.

txt.gz.

� We suggest two alternative TopHat commands, to process single-end (sample.fastq) and

paired-end samples (sample1.fastq and sample2.fastq), respectively:
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% tophat –no-coverage-search -p 4 -g 1 -G refGene.gtf -o project_name output/genome \

sample.fastq

% tophat –no-coverage-search –mate-inner-dist 100 -p 4 -g 1 -G refGene.gtf -o project_name \

ll
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� To quantify the expression in terms of FPKMs/RPKMs for all mouse transcripts as annotated by

RefSeq, users can execute the cufflinks program over the previously mapped reads (sample.bam):

–library-type=fr-firststrand output/genome sample1.fastq sample2.fastq
% cufflinks –max-bundle-frags 5000000 -p 1 -G refGene.gtf -o project_name sample.bam
Problem 4

At step 9, we would like to train and evaluate our models in two different cellular scenarios, but the

high-throughput data is distributed from two different sources.
Potential solution

In case our training and test set come from two different sources, we need to normalize both, epige-

netic data and expression data, to get rid of any possible bias. We proposed a normalization based

on a local regression (LOESS) whose good performance we demonstrate in our previous publica-

tion.1 Without this normalization, correct interpretation of the results can be misleading in many

scenarios.
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Luciano Di Croce luciano.dicroce@crg.eu.
Materials availability

This study did not generate new unique reagents.
Data and code availability

The datasets and code generated during this study are available at GitHub: https://github.com/

margonram/gene_expression_prediction.

(DOI at Zenodo: https://doi.org/10.5281/zenodo.7341909).
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