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Abstract: Treatment of bis(iminophosphorane)phosphane ligands 2a–2e with Li2PdCl4 gave a set of
novel diphosphane-derived complexes bearing two metallacycle rings, each one enclosing a P=N
double bond: the unprecedented bis(iminophosphorane)phosphane-[C,N,S] palladacycles. In the
case of the ligand derived from bis(diphenylphosphino)methane, 2a, both the single and the double
palladacycle complexes were obtained. Reaction of 3a with bis(diphenylphosphino)ethane did not
yield the expected product with the diphosphane bonded to both palladium atoms, but rather the
novel coordination compound 5. The crystal structures of 3c and 5 are described.
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1. Introduction

The chemistry of cyclometallated compounds, with particular emphasis on the pal-
ladacycles, has been of great relevance since their beginning, mostly due to the applications
they present: specifically, they behave as pre-catalysts in cross-coupling reactions with
C-C bond formation, as, for example, the Suzuki–Miyaura [1,2] or the Mizoroki–Heck
reactions [3,4]; they can present activity as antitumor or anticancer agents [5–7], with
some displaying activity similar to cis-platinum. They may also have interesting lumi-
nescent properties [8,9]. We have extensively studied the synthesis and characterization
of palladacycles [10] and more recently those containing thiosemicarbazone [11–13] and
Schiff base ligands [14,15], giving further insights into their chemistry. On the other hand,
iminophosphoranes, also known as phosphazenes, are a type of organic ligand of general
formula R3P=NR’ widely used in coordination chemistry [16–19]. They may incorporate
additional donor atoms becoming quite versatile ligands; they are synthesized by the
Staudinger reaction [20]. In recent years, iminophosphorane chemistry has undergone a
remarkable breakthrough [21] inclusive of the functionalized iminophosphoranes useful in
homogeneous catalysis, which may be conveniently modified to achieve the most desirable
properties of the corresponding complexes [22,23]. These ligands are a very good choice for
synthesizing cyclometallated compounds, and have been known for quite some time [24].
The main feature that makes them optimal for coordinating to metal centers is the polarity
in the P=N double bond. Nitrogen bears a negative partial charge inducing a strong σ donor
and weak π acceptor character which allows the formation of strong bonds with palladium.
Moreover, these ligands are known to also coordinate to metal centers through the carbon
in the ortho position to phosphorus to give preferentially endo species [25]. These ligands
display other interesting properties: they can be used as synthetic intermediates in the
Aza–Wittig reaction [26,27], generating heterocycles that act as intermediates in drug syn-
thesis; they are also widely used as superbases [28] with a low nucleophilicity, which can
be modulated according to their substituents. Additionally, they exhibit very low toxicity,
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and it has been found that when coordinated to transition metals they can exhibit high
antitumor activity [29,30].

In Scheme 1, some relevant examples of iminophosphorane palladacycles are de-
picted which show the terdentate [C,N,S] aniline complex by Grévy [31] I, the [C,N,S] [21]
and [C,N] [16] structures II and III by Urriolabeitia, and the terdentate [C,N,O] [32] IV
and tetradentate [C,N:C,N] [33] V dinuclear complexes by Vila. In all cases, the corre-
sponding iminophosphorane was prepared from the azide by using a PR3 ligand, where
appropriate, in the ensuing palladacycles, with a bridging diphosphine; the latter holds
together the two palladium iminophosphorane moieties. Likewise, although the related
bis(iminophosphorane) ligands are known [33–36], the ensuing dipalladacycles VI are to
the best of our knowledge still outstanding. Hence, at variance with the hitherto known
examples, the preparation of the first bis(iminophosphorane)phosphane palladacycle com-
plexes seemed to be a challenging quest as well as a new approach to this chemistry for a
number of reasons: (a) in type VI complexes, the phosphorus atoms are multifunctional,
being part of the palladacycle ring and of the bridging diphosphane; (b) their number
is brought down to two, cf. to the previous known examples, where there were two
sets of independent phosphorus nuclei. [32]; (c) additional reactivity can be carried out,
e.g., by exchanging the terminal chloride ligands for mono- or diphosphanes, the latter
case opening the possibility of folding the starting dinuclear structure of the complex. The
results of such a process are reported herein.
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Scheme 1. Examples of isolated complexes containing a palladated iminophosphorane ligand, (I–V);
and a cyclometallated bis(iminophosphorane)phosphane complex, (VI).

2. Results and Discussion

For the convenience of the reader, the compounds and reactions are shown in Scheme 2.
The compounds described in this paper were characterized by elemental analysis (C, H,
N, S); IR, 1H and 31P−{1H} NMR spectroscopy (see the Section 4); and by X-ray single
crystal diffraction. Ligands 2a–2e were readily synthesized by the Staudinger reaction
from the corresponding triphenylphosphane and 2-thiomethyl azide. The sp2 carbon
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atoms available for metallation are on the phosphorus phenyl rings, giving the endo type
species. The IR spectra show the υ(P=N) stretch ca. 1330 cm−1 and total absence of any
band assignable to azide vibrations modes. The 1H and 31P−{1H} NMR resonances were
assigned accordingly (see Section 4), the latter showing a singlet resonance at 0–10 ppm in
agreement with equivalent phosphorus nuclei. Treatment of 2a–2e with Li2PdCl4 gave the
hitherto unknown bis(iminophosphorane)phosphane-[C,N,S] palladacycles 3a–3e.
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Scheme 2. Reaction sequence leading to the synthesis of double iminophosphorane palladacycles.
Phenyl rings on the phosphorus atoms in 6 have been omitted for clarity.

Thus, treatment of 2a with Li2PdCl4, made in situ from LiCl and PdCl2, in a 2:1 molar
ratio and sodium acetate in methanol gave an untreatable mixture, which was not further
pursued. However, analogous treatment of 2a in a 1:2 molar ratio in refluxing methanol for
18 h gave a solution and a solid which were conveniently separated. From the solution, the
resulting residue after solvent removal was recrystallized from dichloromethane to give the
single palladacycle complex 4; the solid was dissolved in dichloromethane, filtered through
silica gel and after work up recrystallized from hexane to give the double palladacycle com-
plex 3a. Further attempts to prepare 3a or 4 independently were unsuccessful. Reaction of
2b–2e with Li2PdCl4 in a 1:2 molar ratio and sodium acetate in methanol with stirring gave
complexes 3b–3e as yellow to pale-yellow air-stable solids; single palladacycle complexes
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were not observed in any of the reactions. We assume that the differing behavior of ligand
2a in 3a as opposed to 2b–2c, in 3b–3c could be due to certain steric hindrance imposed
by the shorter PCnP carbon chain in the former case, making stronger reaction conditions
necessary to produce double metalation, i.e., long refluxing hours, whereas in the latter
cases, a milder process at r.t. readily gives the double-nuclear palladacycle. For 3d the
PCP carbon is a sp2 carbon, hence with a greater PCP bond angle of 120◦, cf. 109.5◦ 3a,
thus lowering the steric barrier. For 3e, in spite of the theoretical PNP angle of 109.5◦ for
the N(sp3), only coordination of the diphosphine in the bridging mode was observed. Al-
though presently we have no sound explanation for this behavior, this seems to be a rather
frequent arrangement of the phosphine (see the SI section for references regarding this
issue). The single palladated complexes have so far not been pursued further in the hope
of finding a suitable synthetic procedure to give the pure compounds. Notwithstanding,
we have observed a rather mild shift in the non-metalated P=N group at 41.70 ppm: the
possibility of a P=O group in view of the microanalytical and spectroscopic data, which are
in accordance with the proposed formulation for compound 4.

The IR spectra show the υ(P=N) band ca. 1220 cm−1 shifted by ca. −100 cm−1

compared to the starting ligand, as well as the band assigned to the υ(Pd–Cl) vibration
mode ca. 325 cm−1, in accordance with a terminal chloride ligand. In the 1H NMR spectra
resonances, ca. 4.5 (doublet of doublets) and 2.63 (broad singlet) ppm were assigned to the
PCH2P 3a and PN(Me)P 3e protons, respectively, whereas the P(CH2)2P 3b and P(CH2)3P
3c resonances were multiplets. In the case of 3d, the C(=CH2) resonances were two apparent
triplets for the proton part of the AA’XX’spin system generated by the P2C(=CH2) nuclei.
As for the complex 4, the PCH2P resonance (proton ABXY system) was an apparent doublet
at 3.26 ppm. The H5 resonance was high field shifted with respect to the parent ligand
and showed coupling to the phosphorus nuclei (4JPH5 ca. 10 Hz). The 31P NMR spectra
showed a singlet resonance for the two equivalent phosphorus nuclei ca. 48–58 ppm. For
complex 3c, for which two singlets ca. 57 ppm were observed, we suggest the presence of
two isomers syn and anti, Scheme 3. Likewise, the 1H NMR spectrum for 3c also showed
two similar sets of proton resonances. For complex 4, there were two singlet resonances
at 41.70 and 51.36 ppm in the 31P NMR spectrum, consequent of two non-equivalent
phosphorus nuclei.
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Suitable crystals of 3c were grown by slowly evaporating an acetone solution of the
compound. Crystal data are given in the Supporting Information. The ORTEP illustration
of complex 3c is shown in Figure 1. The compound crystalizes in the orthorhombic space
group Pnma with two acetone solvent molecules. The crystals consist of discrete molecules
separated by van der Waals distances, bearing two palladacycle moieties symmetry related
by a 2-fold axis passing through the C(21) carbon atom of the iminophosphorane ligand.
The crystallographic independent palladium atom is bonded to four different atoms in a
slightly distorted square—planar disposition: a P=N nitrogen atom, an aryl carbon atom, a
sulfur from the thiomethyl aniline, and finally by a chloride ligand. The metal coordination
planes [C,N,S,Cl] form a dihedral angle of 22.24◦. All bond lengths and angles are within
the expected values, with allowance for lengthening of the Pd(1)–S(1) bond, 2.358 Å. The
bond angles at palladium are close to 90◦ with the smaller values for the bite angles for the
tridentate ligand [C(1)-Pd(1)-N(1) = 88.5◦ and N(1)-Pd(1)-S(1) = 84.99◦] consequent upon
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chelation and the sum of angles at palladium is 360.16◦. The large distance between the
metallated rings and the thioaniline rings precludes any π-π stacking interactions between
the metalated rings.
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Figure 1. ORTEP drawing of complex 3c with thermal ellipsoid plot shown at 50% probability level.
Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (◦) for 3c:
Pd(1)-C(1) 1.962(8), Pd(1)-N(1) 2.039(6), Pd(1)-Cl(1) 2.316(2), Pd(1)-S(1) 2.358(2), P(3)-N(1) 1.616(7),
C(1)-Pd(1)-N(1) 88.5(3), C(1)-Pd(1)-Cl(1) 94.9(2), N(1)-Pd(1)-Cl(1) 175.0(2), C(1)-Pd(1)-S(1) 173.2(2),
N(1)-Pd(1)-S(1) 85.0(2), Cl(1)-Pd(1)-S(1) 91.8(7).

In view of the arrangement of the rings at palladium in the crystal structure of 3c,
our ensuing hypothesis was that it could be possible to link the metal atoms of the folded
compound with a diphosphane after removing the chloride ligands. For this purpose,
compound 3a was chosen, having the shortest carbon chain between the phosphorus
atoms; also, considering the deviation of the metallated rings from their ideal parallel
arrangement (probably more increased in solution), Ph2P(CH2)2PPh2 (dppe) was selected
as the attempted binding diphosphane between the metal centers. The resulting species
would be related to the known A-frame structures [14]. Thus, reaction of complex 3a with
dppe and ammonium hexafluorophosphate in acetone under stirring condition for 18 h at
room temperature gave a sticky solid, for which the spectroscopic data indicated to be a
complex mixture of products, which were not further pursued. However, the chloroform
solution of this solid gave suitable crystals for X-ray structural analysis that proved to
be not the expected product with the diphosphane bonded to both palladium atoms, but
rather a different and new coordination compound, labelled 5. (see Scheme 2).

Compound 5 crystallizes in the P21/n space group with two chloroform solvent
molecules; the ORTEP illustration is shown in Figure 2. The molecular structure of 5 consists
of discrete molecules with the palladium atom bonded to two pairs of nitrogen and sulfur
atoms in a cis arrangement, pertaining to a tetradentate-[N,S,N,S] bis(iminophosphorane)
ligand, in a distorted square-planar geometry. The sum of coordination bond angles at pal-
ladium is 359.67◦. As for the bond distance, the most noteworthy feature is the somewhat
longer Pd-N distance of 2.075 Å compared to the analogous bond length in 3c, consequent
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on the greater trans influence of the sulfur atom in 5 as opposed to the chloride ligand in
3c. Similarly, the Pd(1)-S(1) bond length, 2.267 Å, is slightly shorter due to the stronger
trans influence of the phenyl carbon atom in 3c vs. the P=N nitrogen atom in 5. The PCP
and palladium coordination planes, [P(1)C(15)P(2)] and [N(1)N(2)S(1)S(2)], respectively
are at an angle of 74.43◦; whilst the two rings at palladium [Pd(1)S(1)C(6)C(5)N(1)] and
[Pd(1)S(2)C(13)C(12)N(2)] are at 22.8◦. In relation to the similarity of the structures, it should
be noted that there are two phosphorus atoms pertaining to a single six-membered coordina-
tion ring and four non-substituted phenyl rings in 5, as opposed to two phosphorus atoms,
each one embedded in a metallacycle ring and two non-substituted phenyls in 3c, highlight-
ing the difference in the diphosphane as a bidentate ligand vs. its bis(iminophosphorane)
counterpart. Even assuming that complex 5 has been obtained serendipitously, representing
an intriguing reactivity, and that it seems to stem from a re-protonation of the palladium-
phenyl moiety of complex 3a, two issues may be considered. First of all, if complex 5
can be prepared directly from the reaction of the iminophosphorane precursor 2a and the
palladium(II) reagent without the added base; secondly, to provide a reasonable answer,
or at least a tentative route, of the formation for 5. As for the former question, this would
provide a satisfactory explanation and solve the intrigue in its formation, however leading
to a much less interesting chemistry. Nevertheless, all attempts to the mentioned synthesis
of complex 5 via this route have been to no avail, which brings us to the second point, in
other words, of finding or proposing a plausible explanation for this new reactivity pattern;
understanding that the process should be made repeatable to determine the proper reaction
conditions. This poses quite a challenge, as with many by chance reactions. Notwithstand-
ing, and in the absence of further data at this time, we suggest that after chloride abstraction
by ammonium hexafluorphosphate and re-protonation of the phenyl ring, one Pd(II) is
chelated by the dppe phosphane; ligand 2a then coordinates to the second Pd(II) center to
give complex 5. This research, together with the reactivity of complexes 3b–3e with dppe
and related diphosphanes, is currently underway.
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ilarity of the structures, it should be noted that there are two phosphorus atoms pertaining 
to a single six-membered coordination ring and four non-substituted phenyl rings in 5, as 
opposed to two phosphorus atoms, each one embedded in a metallacycle ring and two 
non-substituted phenyls in 3c, highlighting the difference in the diphosphane as a biden-
tate ligand vs. its bis(iminophosphorane) counterpart. Even assuming that complex 5 has 
been obtained serendipitously, representing an intriguing reactivity, and that it seems to 
stem from a re-protonation of the palladium-phenyl moiety of complex 3a, two issues may 
be considered. First of all, if complex 5 can be prepared directly from the reaction of the 
iminophosphorane precursor 2a and the palladium(II) reagent without the added base; 
secondly, to provide a reasonable answer, or at least a tentative route, of the formation for 
5. As for the former question, this would provide a satisfactory explanation and solve the 
intrigue in its formation, however leading to a much less interesting chemistry. Neverthe-
less, all attempts to the mentioned synthesis of complex 5 via this route have been to no 
avail, which brings us to the second point, in other words, of finding or proposing a plau-
sible explanation for this new reactivity pattern; understanding that the process should be 
made repeatable to determine the proper reaction conditions. This poses quite a challenge, 
as with many by chance reactions. Notwithstanding, and in the absence of further data at 
this time, we suggest that after chloride abstraction by ammonium hexafluorphosphate 
and re-protonation of the phenyl ring, one Pd(II) is chelated by the dppe phosphane; lig-
and 2a then coordinates to the second Pd(II) center to give complex 5. This research, to-
gether with the reactivity of complexes 3b–3e with dppe and related diphosphanes, is 
currently underway. 

 
Figure 2. ORTEP drawing of complex 5 with thermal ellipsoid plot shown at 50% probability level. 
Solvent molecules, PF6− anions and hydrogen atoms have been omitted for clarity. Selected bond 
distances (Å) and angles (°) for 5: Pd(1)-N(2) 2.079(2), Pd(1)-N(1) 2.074(2), Pd(1)-S(1) 2.266(6), Pd(1)-
S(2) 2.268(6), P(2)-N(2) 1.619(2), P(1)-N(1) 1.616(2), N(2)-Pd(1)-S(1) 172.1(6), N(1)-Pd(1)-S(2) 173.7(6), 
N(1)-Pd(1)-N(2) 100.6(8), N(1)-Pd(1)-S(1) 84.5(6), S(1)-Pd(1)-S(2) 89.9(2), S(2)-Pd(1)-N(2) 84.7(6). 

  

Figure 2. ORTEP drawing of complex 5 with thermal ellipsoid plot shown at 50% probability level.
Solvent molecules, PF6

− anions and hydrogen atoms have been omitted for clarity. Selected bond
distances (Å) and angles (◦) for 5: Pd(1)-N(2) 2.079(2), Pd(1)-N(1) 2.074(2), Pd(1)-S(1) 2.266(6), Pd(1)-
S(2) 2.268(6), P(2)-N(2) 1.619(2), P(1)-N(1) 1.616(2), N(2)-Pd(1)-S(1) 172.1(6), N(1)-Pd(1)-S(2) 173.7(6),
N(1)-Pd(1)-N(2) 100.6(8), N(1)-Pd(1)-S(1) 84.5(6), S(1)-Pd(1)-S(2) 89.9(2), S(2)-Pd(1)-N(2) 84.7(6).
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3. Conclusions

In conclusion, a new family of bis(iminophosphorane) metallacycles derived from
diphosphanes, which contain two five-membered metallacycle rings in the endo arrange-
ment, have been successfully synthesized. The phosphorus atoms are multifunctional,
being part of the palladacycle ring and of the bridging diphosphane For this purpose,
the synthetic method of cyclometallation using bis(iminophosphorane) ligands has been
followed; the corresponding ligands were synthesized using the Staudinger reaction. The
crystal structural analysis for 3c confirms the spectroscopic results, providing satisfactory
evidence regarding the orientation of the metallated rings, which show a close-to-parallel
arrangement. Treatment of compound 3a with the ammonium hexafluorophosphate salt
and diphosphine dppe did not give the hoped dinuclear complex with bridging dppe,
but rather the formation of the chelate coordination compound 5. The attempt to prepare
complex 5 by direct treatment of 2a and an appropriate palladium salt was unsuccessful at
reproducing the result here reported. Further studies are presently in progress in order to
shed more light on this process and those concerning complexes 3b–3e.

4. Experimental Section
4.1. General Procedures

Solvents were purified by standard methods [37]. The reactions were carried out
under dry nitrogen. 2-(methylsulfanyl)aniline, Ph2PCH2PPh2 (dppm), Ph2P(CH2)2PPh2
(dppe), Ph2P(CH2)3PPh2 (dppp), Ph2PC(CH2)PPh2 (vdpp), lithium chloride and palladium
chloride (II) were purchased from commercial sources; Ph2PN(Me)PPh2 (dppma) was a
personal loan to Professor JM Vila. Elemental analyses were performed with a Thermo
Finnigan elemental analysis and model Flash 1112. IR spectra were recorded on Jasco
model FT/IR-4600 spectrophotometer. 1H NMR and spectra in solution were recorded in
acetone-d6 or CDCl3 at room temperature on Varian Inova 400 spectrometers operating at
400 MHz using 5 mm o.d. tubes; chemical shifts, in ppm, are reported downfield relative to
TMS using the solvent signal as reference acetone-d6 δ

1H: 2.05 ppm, CDCl3 δ 1H: 7.26 ppm).
31P NMR spectra in solution were recorded in acetone-d6 or CDCl3 at room temperature
on Varian Inova 400 spectrometer operating at 162 MHz using 5 mm o.d. tubes and are
reported in ppm relative to external H3PO4 (85%). Coupling constants are reported in Hz.
All chemical shifts are reported downfield from standards.

4.2. Preparation of the Ligands

Synthesis of 1
2-(methylsulfanyl)aniline (500 mg, 3.59 mmol) was added in a mixture of water

(2 cm3), ethyl acetate (8 cm3) and hydrochloric acid (1 cm3). The solution was cool below
5 ◦C and a cold solution of NaNO2 (421 mg, 6.10 mmol, 70% excess) was slowly added
to the mixture, which was stirred for 30 min. Then, a cold solution of NaN3 (397 mg,
6.10 mmol, 70% excess) was slowly added, taking care to not overheat it above 5 ◦C, and
the solution was stirred for 30 min. The reaction mixture was extracted with 3 × 10 cm3

of ethyl acetate and the organic phase was washed with water and dried under vacuum.
Yield: 445 mg, 75%. Anal. calculated: C: 50.9, H: 4.3, N: 25.4, S: 19.4%; found: C: 50.7, H:
4.4, N: 25.3, S: 19.2%; C7H7N3S (165.21 g/mol); IR (cm−1): υas(N3) 2123, υs(N3) 1280. 1H
NMR (acetone-d6, δ/ppm): 7.14–7.25 (m, 4H, H1H2H3H4), 2.42 (s, 3H, SCH3).

Synthesis of 1,1′ -methylenebis(N-(2-(methylthio)phenyl)-1,1-diphenyl-λ5-
phosphanimine) 2a.

A 2:1 mixture of MeSC6H4N3 (300 mg, 1.82 mmol) and Ph2PCH2PPh2 (349 mg,
0.91 mmol) in diethyl ether (15 cm3) was refluxed for 24 h, with N2 bubbling. After
stirring for 24 h at room temperature, a yellow solid was formed, which was filtered off and
dried under vacuum. Yield: 323 mg, 54%. Anal. calculated: C: 71.1, H: 5.5, N: 4.3, S: 9.7%;
found: C: 71.1, H: 5.6, N: 4.3, S: 9.7%; C39H36N2P2S2 (658.80 g/mol); IR (cm−1): υ(P=N)
1332. 1H NMR (CDCl3, δ/ppm, J/Hz): 7.82 (dd, 8H, Ho, 3JHo/P = 11.7, 3JHo/Hm = 7.7),
7.30 (m, 12H, Hm/Hp), 7.04 (d, 2H, H4, 3JH4/H3 = 7.2), 6.72 (m, 4H, H2/H3), 6.21 (d, 2H,
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H1, 3JH1/H2 = 7.2), 3.85 (m, 2H, PCH2), 2.48 (s, 6H, SCH3). 31P-{1H} NMR (CDCl3, δ/ppm):
22.37 (s, PPh2).

Synthesis of 1,1′-(ethane-1,2-diyl)bis(N-(2-(methylthio)phenyl)-1,1-diphenyl-λ5-
phosphan-imine) 2b.

A 2:1 mixture of MeSC6H4N3 (100 mg, 0.61 mmol) and Ph2P(CH2)2PPh2 (121 mg,
0.30 mmol) in diethyl ether (10 cm3) was refluxed for 24 h, with N2 bubbling. After stirring
for 24 h at room temperature, a white solid was formed, that was filtered off and dried
under vacuum. Yield: 168 mg, 82%. Anal. calculated: C: 71.4, H: 5.7, N: 4.2, S: 9.5%; found:
C: 71.3, H: 5.5, N: 4.1, S: 9.2%; C40H38N2P2S2 (672.83 g/mol); IR (cm−1): υ(P=N) 1325. 1H
NMR (acetone-d6, δ/ppm, J/Hz): 7.76 (m, 8H, Ho), 7.51 (m, 4H, Hp), 7.44 (m, 8H, Hm),
6.98 (d, 2H, H4, 3JH4/H3 = 6.6), 6.66 (dd, 2H, H2, 3JH2/H1 = 7.2, 3JH2/H3 = 6.9), 6.58 (dd,
2H, H3, 3JH3/H2 = 6.9, 3JH3/H4 = 6.6), 6.15 (d, 2H, H1, 3JH1/H2 = 7.3), 2.74 (d, 4H, PCH2,
3JH/P = 13.3), 2.37 (s, 6H, SCH3). 31P-{1H} NMR (acetone-d6, δ/ppm): 5.72 (s, PPh2).

Synthesis of 1,1′-(propane-1,3-diyl)bis(N-(2-(methylthio)phenyl)-1,1-diphenyl-λ5-
phosphan-imine) 2c.

A 2:1 mixture of MeSC6H4N3 (100 mg, 0.61 mmol) and Ph2P(CH2)3PPh2 (125 mg,
0.30 mmol) in diethyl ether (10 cm3) was refluxed for 24 h, with N2 bubbling. After stirring
for 24 h at room temperature, a yellow solid was formed, that was filtered off and dried
under vacuum. Yield: 141 mg, 68%. Anal. calculated: C: 71.7, H: 5.9, N: 4.1, S: 9.3%, found:
C: 71.2, H: 5.7, N: 4.3, S: 9.1%; C41H40N2P2S2 (686.85 g/mol); IR (cm−1): υ(P=N) 1331. 1H
NMR (acetone-d6, δ/ppm, J/Hz): 7.68 (dd, 8H, Ho, 3JHo/P = 12.0, 3JHo/Hm = 6.8), 7.33
(t, 4H, Hp, 3Hp/Hm = 6.6), 7.27 (m, 8H, Hm, N = 6.7), 6.86 (d, 2H, H4, 3JH4/H3 = 6.7), 6.53
(m, 4H, H2H3), 6.15 (d, 2H, H1, 3JH1/H2 = 7.1), 2.71 (dd, 4H, PCH2, 3JH/P = 16.3, 3JH/
H = 7.6), 2.18 (s, 6H, SCH3), 1.48 (m, 2H, PCH2CH2). 31P-{1H} NMR (acetone-d6, δ/ppm):
5.39 (s, PPh2).

Synthesis of 1,1′-(ethene-1,1-diyl)bis(N-(2-(methylthio)phenyl)-1,1-diphenyl-λ5-
phosphan-imine) 2d.

A 2:1 mixture of MeSC6H4N3 (100 mg, 0.61 mmol) and Ph2PC(=CH2)PPh2 (121 mg,
0.31 mmol) in diethyl ether (10 cm3) was refluxed for 24 h, with N2 bubbling. After stirring
for 24 h at room temperature, a yellow solid was formed, that was filtered off and dried
under vacuum. Yield: 193 mg, 95%. Anal. calculated: C: 71.6, H: 5.4, N: 4.2, S: 9.6%, found:
C: 71.3, H: 5.5, N: 4.2, S: 9.2%; C40H36N2P2S2 (670.81 g/mol); IR (cm−1): υ(P=N) 1339. 1H
NMR (acetone-d6, δ/ppm, J/Hz): 7.69 (dd, 8H, Ho, 3JHo/P = 12.2, 3JHo/Hm = 7.3), 7.55 (t,
4H, Hp, 3JHp/Hm = 7.4), 7.46 (dt, 8H, Hm, 3JHm/Ho = 7.3, 3JHm/Hp = 7.4, 4JHm/P = 2.9),
6.95 (d, 2H, H4, 3JH4/H3 = 6.7), 6.58 (m, 4H, H2H3), 6.15 (d, 2H, H1, 3JH1/H2 = 7.7), 4.55 (d,
1H, PCCH2, 2JH/H = 1.5), 4.18 (d, 1H, PCCH2, 2JH/H = 1.5), 2.38 (s, 6H, SCH3). 31P-{1H}
NMR (acetone-d6, δ/ppm): 3.57 (s, PPh2).

Synthesis of N-methyl-N’-(2-(methylthio)phenyl)-N-(N-(2-(methylthio)phenyl)-
P,P-diphenyl-phosphorimidoyl)-P,P-diphenylphosphinimidic amide 2e.

A 2:1 mixture of MeSC6H4N3 (50 mg, 0.30 mmol) and Ph2PNCH3PPh2 (61 mg,
0.15 mmol) in diethyl ether (10 cm3) was refluxed for 24 h, with N2 bubbling. After
stirring for 24 h at room temperature, a red solid was formed, that was filtered off and dried
under vacuum. Yield: 65.7 mg, 64%. Anal. calculated: C: 69.5, H: 5.5, N: 6.2, S: 9.5%, found:
C: 69.9, H: 5.7, N: 6.1, S: 9.2%; C39H37N3P2S2 (673.81 g/mol); IR (cm−1): υ(P=N) 1342. 1H
NMR (acetone-d6, δ/ppm, J/Hz): 7.95 (dd, 8H, Ho, 3JHo/P = 12.6, 3JHo/Hm = 7.4), 7.39 (t,
4H, Hp, 3JHp/Hm = 7.5), 7.28 (dt, 8H, Hm, 3JHm/Ho = 7.5, 3JHm/Hp = 7.5, 4JHm/P = 2.9),
6.98 (d, 2H, H4, 3JH4/H3 = 6.5), 6.68 (m, 4H, H2H3), 6.43 (d, 2H, H1, 3JH1/H2 = 8.1), 2.55 (s,
3H, NCH3), 2.35 (s, 6H, SCH3). 31P-{1H} NMR (acetone-d6, δ/ppm): 6.23 (s, PPh2).

4.3. Preparation of the Complexes

Synthesis of 3a
First the palladium salt must be synthesized “in situ”, adding lithium chloride

(21.6 mg, 0.51 mmol) and palladium chloride (45.2 mg, 0.26 mmol) under nitrogen in 15 cm3

of deoxygenated methanol for 2 h at 50 ◦C. After that, the ligand 2a (84 mg, 0.13 mmol)
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and sodium acetate (20.9 mg, 0.26 mmol) were added. After stirring for 22 h at 30 ◦C, a
yellow solid was formed, that was centrifugated and dried under vacuum. The solution
was evaporated, the residue was dissolved in dichloromethane, filtered under silica and
recrystallized from hexane. The yellow solid corresponds to compound 3a, and the residue
obtained from the solution corresponds to compound 4.

Yield: 39,6 mg, 33%. Anal. calculated: C: 49.8, H: 3.6, N: 3.0, S: 6.8%, found: C: 48.9, H:
3.6, N: 2.9, S: 6.8%; C39H34Cl2N2P2Pd2S2 (940.52 g/mol); IR (cm−1): υ(P=N) 1298. 1H NMR
(CDCl3, δ/ppm, J/Hz): 7.83 (m, 4H, Ho), 7.60–7.40 (m, 10H, H5/H6/H7/H8/Hp), 7.34 (d,
2H, H4, 3JH4/H3 = 7.7), 7.20 (m, 4H, Hm), 6.75 (m, 2H, H2), 6.61 (m, 2H, H3), 6.14 (d, 2H,
H1, 3JH1/H2 = 8.1), 3.05 (s, 6H, SCH3). 31P-{1H} NMR (CDCl3, δ/ppm): 49.40 (s, PPh2).

Product 4
Yield: 43.2 mg, 36%. Anal. calculated: C: 58.6, H: 4.4, N: 3.5, S: 8.0%, found: C: 58.7, H:

4.4, N: 3.5, S: 8.0%; C39H35ClN2P2PdS2 (799.66 g/mol); IR (cm−1): υ(P=N) 1331, 1297. 1H
NMR (CDCl3, δ/ppm, J/Hz): 8.19 (dd, 4H, Ho, 3JHo/P = 12.1, 3JHo/Hm = 7.6), 7.79 (m,
4H, HAr), 7.20–7.46 (m, 10H, HAr), 6.79–7.15 (m, 6H, HAr), 6.66 (m, 2H, HAr), 6.37 (d, 1H,
H1, 3JH1/H2 = 8.1), 2.76 (s, 3H, SCH3), 2.54 (s, 3H, SCH3). 31P-{1H} NMR (CDCl3, δ/ppm):
51.36 (s, PPh2), 41.70 (s, PPh2).

Synthesis of 3b
The palladium salt was made analogously as above from lithium chloride (18.9 mg,

0.45 mmol) and palladium chloride (39.5 mg, 0.22 mmol). Then, the ligand 2b (75 mg,
0.11 mmol) and sodium acetate (18.3 mg, 0.22 mmol) were added. After stirring for 22 h at
30 ◦C, a red solid was formed, which was washed with acetone-dichloromethane and dried
under vacuum. Yield: 89,4 mg, 84%. Anal. calculated: C: 50.3, H: 3.8, N: 3.0, S: 6.7%, found:
C: 48.8, H: 3.6, N: 2.9, S: 6.3%; C40H36Cl2N2P2Pd2S2 (954.55 g/mol); IR (cm−1): υ(P=N)
1297. 1H NMR (acetone-d6, δ/ppm, J/Hz): 7.98 (d, 2H, H8, 3JH8/H7 = 8.1), 7.87 (d, 4H, Ho,
3JHo/Hm = 7.7), 7.56 (t, 2H, Hp, 3JHp/Hm = 7.5), 7.45 (m, 4H, Hm, N = 7.6), 7.27 (m, 2H,
H6), 7.12 (d, 2H, H5, 3JH5/H6 = 7.9), 7.05 (d, 2H, H4, 3JH4/H3 = 7.7), 6.93 (m, 2H, H7), 6.87
(m, 2H, H2), 6.71 (m, 2H, H3), 6.59 (d, 2H, H1, 3JH1/H2 = 7.6), 3.53 (m, 4H, PCH2), 2.62 (s,
6H, SCH3). 31P-{1H} NMR (acetone-d6, δ/ppm): 56.38 (s, PPh2).

Synthesis of 3c
The palladium salt was made analogously as above from lithium chloride (18.5 mg,

0.44 mmol) and palladium chloride (38.7 mg, 0.22 mmol). Then, the ligand 2c (75 mg,
0.11 mmol) and sodium acetate (17.9 mg, 0.22 mmol) were added. After stirring for 22 h at
30 ◦C, an orange solid was formed and was washed with acetone-dichloromethane and
dried under vacuum. Yield: 85.7 mg, 81%. Anal. calculated: C: 50.8, H: 4.0, N: 2.9, S: 6.6%,
found: C: 49.5, H: 3.8, N: 2.6, S: 6.2%; C41H38Cl2N2P2Pd2S2 (968.58 g/mol); IR (cm−1):
υ(P=N) 1292. 1H NMR (acetone-d6, δ/ppm, J/Hz): 7.89 (d, 4H, Ho, 3JHo/Hm = 7.6), 7.84
(d, 4H, Ho, 3JHo/Hm = 7.6), 7.69–7.41 (m, 24H, H5/H6/H7/H8/Hp/H4), 7.15 (m, 8H,
Hm), 7.01 (m, 4H, H2), 6.76 (m, 4H, H3) 6.56 (d, 2H, H1, 3JH1/H2 = 8.3), 6.52 (d, 2H, H1,
3JH1/H2 = 8.3), 3.34 (m, 8H, PCH2), 2.65 (s, 6H, SCH3), 2.63 (s, 6H, SCH3). 31P-{1H} NMR
(acetone-d6, δ/ppm): 57.99 (s, PPh2), 57.25 (s, PPh2).

Synthesis of 3d
The palladium salt was made analogously as above from lithium chloride (20.2 mg,

0,48 mmol) and palladium chloride (42.3 mg, 0.24 mmol). Then, the ligand 2d (80 mg,
0.12 mmol) and sodium acetate (19.6 mg, 0.24 mmol) were added. After stirring for 22 h
at 30 ◦C, a brown solid was formed that was washed with acetone-dichloromethane and
dried under vacuum. Yield: 92.9 mg, 82%. Anal. calculated: 50.4, H: 3.6, N: 2.9, S: 6.7%,
found: C: 49.8, H: 3.8, N: 3.0, S: 6.3%; C40H34Cl2N2P2Pd2S2 (952.53 g/mol); IR (cm−1):
υ(P=N) 1291. 1H NMR (acetone-d6, δ/ppm, J/Hz): 8.00 (m, 2H, H8), 7.72–7.52 (m, 18H,
H4/H5/H6/H7/Ho/Hm/Hp), 6.89 (m, 2H, H2), 6.73 (m, 4H, H1/H3), 4.32 (m, 1H, PCCH2),
3.86 (m, 1H, PCCH2), 2.73 (s, 6H, SCH3). 31P-{1H} NMR (acetone-d6, δ/ppm): 52.72
(s, PPh2).
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Synthesis of 3e
The palladium salt was made analogously as above from lithium chloride (8.8 mg,

0.21 mmol) and palladium chloride (18.4 mg, 0.10 mmol). Then, the ligand 2e (35 mg,
0.05 mmol) and sodium acetate (8.5 mg, 0.10 mmol) were added. After stirring for 22 h at
30 ◦C, a green solid was formed that was washed with acetone-dichloromethane and dried
under vacuum. Yield: 32.8 mg, 66%. Anal. calculated: C: 49.0, H: 3.7, N: 4.4, S: 6.7%, found:
C: 47.2, H: 3.3, N: 4.6, S: 6.5%; C39H35Cl2N3P2Pd2S2 (955.54 g/mol); IR (cm−1): υ(P=N)
1299. 1H NMR (acetone-d6, δ/ppm, J/Hz): 8.19 (d, 2H, H8, 3JH8/H7 = 8.0), 8.09 (d, 4H, Ho,
3JHo/Hm = 8.6), 7.77 (t, 2H, Hp, 3JHp/Hm = 8.5), 7.60 (m, 4H, Hm, N = 8.6), 7.45 (m, 2H,
H6), 7.37 (m, 2H, H5), 7.29 (d, 2H, H4, 3JH4/H3 = 7.3), 7.16 (m, 2H, H7), 7.07 (m, 2H, H2),
6.98 (m, 2H, H3), 6.77 (d, 2H, H1, 3JH1/H2 = 7.3), 2.71 (s, 6H, SCH3), 2.63 (s, 3H, NCH3).
31P-{1H} NMR (acetone-d6, δ/ppm): 48.41 (s, PPh2).

Product 5
Compound 3a (94.0 mg, 0.10 mmol), dppe (19.9 mg, 0.05 mmol) and NH4PF6 (16.3 mg,

0.1 mmol) were added in acetone (15 cm3). The resulting mixture was stirred at room
temperature for 18 h, and an untreatable solid was formed which was filtered off. The solid
was dissolved in chloroform, which produced single crystals of compound 5.

4.4. Crystal Structure Analysis and Details on Data Collection and Refinement

CCDC 2113724(3c) and 2114034(5). See Supplementary Materials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27207043/s1, Tables S1–S6. References [38,39] are cited
in the Supplementary Materials.
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