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Autophagy-related (ATG) gene products regulate macroautophagy, LC3-associated
phagocytosis (LAP) and LC3-dependent extracellular vesicle loading and secretion
(LDELS). These processes also influence antigen processing for presentation on major
histocompatibility complex (MHC) molecules to T cells. Here, I summarize how these
different pathways use the macroautophagy machinery, contribute to MHC class I and II
restricted antigen presentation and influence autoimmunity, tumor immunology and
immune control of infectious diseases. Targeting these different pathways should allow
the regulation of intracellular and extracellular antigen presentation to T cells to modulate
protective and pathological immune responses.
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THE MACROAUTOPHAGY MACHINERY

Yoshinori Ohsumi described in a landmark paper in 1993 15 genes that are required in yeast to
survive starvation (1). These formed the core of the more than 40 autophagy-related proteins that
regulate macroautophagy, one of at least three pathways by which cytoplasmic constituents are
imported into lysosomes for degradation (2). This machinery consists of a protein kinase complex, a
lipid kinase complex, enzymes that couple ubiquitin-like molecules to membranes and recruit
substrates to them, as well as a fusion machinery that delivers the result of the first three complexes,
a double-membrane surrounded autophagosome, to lysosomes for the degradation of the cargo and
the inner membrane of autophagosomes (Figure 1). Many of the molecular components of this
machinery are abbreviated as ATG (autophagy-related) proteins. The protein kinase complex of
ATG1/ULK1 gets inhibited by mammalian target of rapamycin complex 1 (mTORC1) and activated
by AMP kinase (AMPK) via differential phosphorylation. This allows eukaryotic cells to initiate
macroautophagy upon nutrient deprivation. The ATG1/ULK1 complex then phosphorylates itself
and components of all stages of autophagosome maturation and degradation (3). However, one
of its main targets is the VPS34 phosphatidylinositol 3 (PI3) kinase complex containing ATG6/
Beclin-1. This complex generates the phospholipid PI3P that recruits the ATG8/LC3B lipidation
machinery to membranes via WIPI proteins, predominantly WIPI2. The ATG8/LC3B lipidation
machinery consists of the E1-like enzyme ATG7. The E2-like enzymes ATG3 and 10, and the
E3-like enzyme ATG5-ATG12-ATG16L1 that finally couples the six mammalian ATG8
orthologues LC3A, LC3B, LC3C, GABARAP, GABARAP-L1, and GABARAP-L2 primarily to
phosphatidylethanolamine (PE) in the forming autophagosome that is called isolation membrane or
phagophore. Attached to the phagophore membrane these ATG8 orthologues assist in membrane
fusion during phagophore extension by ATG9 containing vesicles and ATG2mediated lipid transfer
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Münz ATG Regulation of MHC Presentation
(4–6). Prior to their lipidation the ATG8 orthologues need to be
processed by the ATG4 proteases (ATG4A-D in higher
eukaryotes) that also remove them from the outer membrane
upon autophagosomes completion (7). The ATG8 orthologues
also serve as anchors to recruit macroautophagy cargo to
phagophores. Proteins with LC3-interacting regions (LIRs)
bind to ATG8 orthologues and then the phagophore grows
around the respective cargo, including damaged mitochondria,
chloroplasts, ribosomes, proteasomes, endoplasmic reticulum,
protein aggregates, damaged endosomes, bacteria, and some
viral capsids. These LIR containing autophagy receptors, like
sequestosome 1/p62 or NBR1 that cross-link for example
ubiquitinated cytoplasmic constituents with LC3B (8). After
removal of most lipidated ATG8 orthologues from the outer
membrane of the completed autophagosome, residual autophagy
receptor binding at this site supports autophagosome transport
along microtubules and recruitment of the fusion machinery
with lysosomes or late endosomes (9, 10). Finally, the soluble
N-ethylmaleimide-sensitive-factor attachment receptors (SNAREs)
syntaxin 17 and YKT6 are required for autophagosome fusion with
lysosomes (11, 12). In the resulting autolysosome macroautophagy
substrates and the inner autophagosomal membrane are degraded
by lysosomal hydrolases. Therefore, macroautophagic flux is
coupled to lysosomal activity and transcriptionally linked to
transcription factor EB (TFEB) the master transcription factor of
lysosomal biogenesis (13). The resulting molecular building
blocks of lysosomal degradation, including amino acids, nucleic
acids, sugars, and phospholipids are then recycled for energy
generation and synthesis of new macromolecules to survive
periods of starvation. Once such a catabolic machinery is in
place it can be used for a multitude of other cellular processes,
including degradation of pathogens, regulation of intercellular
communication like inflammation and immune cell activation.
In this review I will focus on its role in antigen presentation on
major histocompatibility complex (MHC) molecules to T cells
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which utilizes proteolytic product display on MHC molecules at
the cell surface.
MACROAUTOPHAGY IN MHC CLASS II
RESTRICTED ANTIGEN PRESENTATION

The two classes of classical MHC molecules monitor different
proteolytic machineries in cells by sampling a subset of these that
they then transport to the cell surface for T cell stimulation (14–
16). Pathogen-derived or otherwise foreign peptides can then be
recognized by the T cell repertoire that has been tolerized against
self-peptides. MHC class I molecules present primarily products
of proteasomal degradation that are then imported via the
transporter associated with antigen presentation (TAP) into the
endoplasmic reticulum and loaded in the MHC-I peptide-loading
complex (17). After transport to the cell surface MHC class I
molecules and their presented mostly nonameric peptides are then
screened by cytotoxic CD8+ T cells. In contrast MHC class II
molecules are loaded with usually longer peptides but a nonameric
core sequence in MHC class II containing compartments (MIICs)
which are late endosomes with lysosomal proteolytic capacity.
MHC class II molecules are transported to MIICs as complexes
with the invariant chain (Ii) that is then degraded and peptides
loaded with the assistance of HLA-DM (H2-M in mice) onto
MHC class II molecules (18). MHC class II molecules with their
bound peptide ligands then migrate to the cell surface for
surveillance by helper CD4+ T cells.

MHC class II restricted antigen presentation monitors
therefore lysosomal proteolysis which degrades both endocytosed
proteins and macroautophagy substrates (Figure 2). Indeed 20-
30% of MHC class II ligands originate from cytosolic and nuclear
sources, including the three ATG8 orthologues LC3B, GABARAP
and GABARP-L2 (19, 20). MHC class II presentation of
cytoplasmic constituents after macroautophagy was indeed
FIGURE 1 | Molecular machinery of macroautophagy. The protein kinase ATG1/ULK1 is activated by AMP kinase (AMPK) and inhibited by mammalian target of
rapamycin complex 1 (mTORC1). It then activates the lipid kinase complex containing VPS34 and Beclin-1 to generate phosphatidylinositol-3-phosphate (PI3P) that
then recruits the ATG8/LC3B lipidation complex ATG5-ATG12-ATG16L1 that couples ATG8/LC3B to phosphatidylethanolamine at the inner and outer membrane of
the phagophore. Membranes are donated to the phagophore via ATG2 associated channels and ATG9 carrying vesicles. Once this double membrane closes around
cargo that is recruited by macroautophagy receptors like p62 via binding to ATG8/LC3 to form an autophagosome ATG4 recycles ATG8/LC3B from the outer
membrane. The autophagosome fuses then with late endosomes and lysosomes in a syntaxin 17 (STX17) and YKT6 dependent fashion for degradation of the cargo
and the inner autophagosome membrane with coupled ATG8/LC3B.
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Münz ATG Regulation of MHC Presentation
initially demonstrated for three pathogen derived antigens,
namely the nuclear antigen 1 of the Epstein Barr virus,
bacterial neomycin phosphotransferase II (NeoR) and Ag85B
of Mycobacterium tuberculosis (21–24). Processing of antigens
for MHC class II presentation by macroautophagy can also be
demonstrated by targeting them to phagophores via N-terminal
conjugation to LC3B (25). This increases intracellular antigen
presentation on MHC class II, but not MHC class I molecules.
Furthermore, LC3B can be found in MIICs (25, 26). Enhanced
presentation of antigens on MHC class II molecules after
macroautophagy targeting has now been demonstrated for viral
and tumor proteins (25, 27–30). The above listed studies
demonstrate that macroautophagy contributes to antigen
processing for MHC class II presentation in a variety of cell
types, including B cells (19, 21, 22), epithelial cells (25),
melanocytes (29) and myeloid antigen presenting cells (24, 28,
30). Therefore, MHC class II molecules can sample cytoplasmic
antigens of pathogens for presentation via macroautophagy.

Possibly even more important, however, is the role of this
pathway for CD4+ T cell tolerance induction. This tolerance
induction requires in part MHC class II presentation by epithelial
cells without significant phagocytic activity, such as thymic
epithelial cells (TECs) (31). Medullary TECs (mTECs) express
tissue-restricted self-antigens (TRAs) under the influence of
the autoimmune regulator (AIRE). The intracellular expression
of these TRAs leads to negative selection of autoimmune CD4+

T cell clones in the thymus to ensure tolerance of the T cell
repertoire against self. It was shown that macroautophagy
deficient thymi were not able to sufficiently perform this
negative selection, resulting in colitis and multi-organ
inflammation in mice (32). Moreover, this primarily affected
antigens that are endogenously expressed at low levels and
cannot be efficiently transferred to neighboring cells for uptake,
as is the case for most TRA expression in mTECs (33). As for
the pathogen derived antigens, targeting of these to phagophores
via N-terminal conjugation to LC3B led to improved negative
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selection of CD4+ T cells. These findings suggest that efficient
negative selection by TRAs in the thymus requires
macroautophagy. Furthermore, regulatory CD4+ T cell stability
in the periphery seems also to benefit from macroautophagy in
dendritic cells (DCs) (34). However, this might not only depend
on its role in endogenous self-antigen presentation onMHC class
II molecules, but rather on a role of ATGs in co-stimulatory
molecule expression. Nevertheless, macroautophagy can process
cytoplasmic proteins for MHC class II presentation to CD4+ T
cells and this seems particularly important for self-antigens that
are expressed at low levels by cells with limited phagocytic
potential in order to induce tolerance against these.
LC3 ASSOCIATED PHAGOCYTOSIS
IN MHC CLASS II RESTRICTED
ANTIGEN PRESENTATION

In addition it was, however, already noted in the first study
that abolished ATG5 expression in DCs to study the influence of
the macroautophagy machinery on MHC restricted antigen
presentation and T cell responses in vivo that also extracellular
antigen presentation to CD4+ T cells benefits from ATGs (35).
Indeed, apart from the ATG1/ULK1 protein kinase complex
the other components of the macroautophagy machinery also
regulate phagocytosis. This was coined LC3-associated
phagocytosis (LAP) (Figure 2), and the respective LC3B
conjugation to the cytosolic side of phagosomes is primarily
observed after co-engagement of pathogen associated molecular
pattern receptors, such as toll-like receptor (TLR) 2, during
uptake of extracellular material (36–40). During LAP, PI3P is
deposited in a VPS34 dependent manner at the cytosolic side of
phagosomes (41). This might be required to assemble efficiently
NADPH oxidase (NOX2) at these phagosomes (42) and NOX2
mediated reactive oxygen species (ROS) production is required
FIGURE 2 | Regulation of MHC presentation by the macroautophagy machinery. MHC class II gets loaded with peptides in MHC class II containing vesicles (MIICs).
They receive antigens (Ag) from intracellular sources via macroautophagy and from extracellular sources via phagocytosis, including LC3-associated phagocytosis
(LAP). LAP recruits ATG8/LC3B to the phagosomal membrane after for example TLR2 engagement and is dependent on NADPH oxidase 2 (NOX2). The ATG8/
LC3B lipidation complex of ATG5-ATG12-ATG16L1 conjugates ATG8/LC3B to the cytosolic side of phagosomes that then deliver the endocytosed antigen to MIICs.
In contrast MHC class I restricted antigen presentation is restricted by the macroautophagy machinery, supporting MHC class I internalization and lysosomal
degradation. Adaptor associated kinase 1 (AAK1) is recruited to MHC class I molecules for the respective internalization.
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for LAP (37, 41, 43). The exact role of this ROS production is
unclear to date, but the recruitment of the ATG8/LC3B
lipidation seems to neither depend on ROS not PI3P at
phagosomes (44). Instead it depends on the WD40 domain of
ATG16L1 that is not required for macroautophagy (44, 45). The
ATG16L1 dependent conjugation of LC3B to the cytosolic side of
phagosomes is then removed prior to fusion with lysosomes as
was observed by live cell imaging (36, 37). Dependent on the cell
type LAP leads to accelerated fusion with lysosomes, delayed
phagosome maturation or redirection of phagocytosed cargo to
TLR containing endosomes (36, 37, 46). This probably depends
on the recruitment of different vesicular transport factors to LAP
phagosomes in different cellular backgrounds.

Nevertheless, in both human and mouse phagocytes LAP
supports MHC class II presentation of endocytosed antigens (37,
39, 44, 47, 48). Since yeast cell wall components efficiently engage
TLR2 Zymosan and Candida albicans spores or extracts were
often used in these assays, and MHC class II presentation to
Candida specific Th17 cells was monitored (37, 39).
Phagocytosed Candida antigen presentation on MHC class II
molecules to Th17 cells requires ATG5, ATG16L1 and more
specifically the WD40 domain of ATG16L1 (37, 39, 44). Bacterial
outer membrane vesicles (OMVs) might also be processed via
this LAP for regulatory CD4+ T cell stimulation (49). In addition
to TLR mediated LAP induction it was also described that B cell
stimulation activates ATG1/ULK1 independent use of the
macroautophagy machinery (50). Accordingly, B cell receptor
(BCR) mediated antigen uptake was found to use the ATG8/
LC3B lipidation machinery (51, 52). This allows BCR bound
antigens to be delivered to TLR containing endosomes and to
MIICs for antigen processing towards MHC class II presentation.
Finally, myelin autoantigen presentation by DCs in the central
nervous system (CNS) also depends on ATG5 and NOX2 as
hallmarks of LAP, even so the receptor that mediates LC3B
recruitment to phagocytosed oligodendrocyte derived apoptotic
blebs has not been identified yet (47, 48). However, in mouse
macrophages the phosphatidylserine binding scavenger receptor
TIM4 was found to be involved in the clearance of apoptotic
bodies by LAP (38). Thus, LAP supports autoimmune CD4+ T
cell stimulation in the CNS for experimental autoimmune
encephalomyelitis (EAE) development.

Therefore, ATG proteins support both intracellular and
extracellular antigen presentation on MHC class II molecules
to CD4+ T cells via macroautophagy and LAP, respectively.
REGULATION OF MHC CLASS I
RESTRICTED ANTIGEN PRESENTATION
BY THE MACROAUTOPHAGY
MACHINERY

In contrast to the support of MHC class II restricted antigen
presentation by the macroautophagy machinery, loss of ATGs
leads to up-regulation of MHC class I restricted presentation of
intracellular antigens (53–57). This affects both classical MHC
class I molecules and the non-classical MHC class I molecule
Frontiers in Immunology | www.frontiersin.org 4
CD1D that restricts glycolipid presentation to NKT cells. In these
studies it was found that the stimulation of anti-viral, anti-tumor
and alloreactive CD8+ T cell responses as well as anti-bacterial
NKT cell immunity is enhanced in the absence of ATG3, ATG5,
ATG7 or ATG16L1 (53–56). Higher classical and non-classical
MHC class I expression on the surface of DCs and pancreatic
carcinoma cells is at least in part responsible for this increased
stimulation (54–56). This elevated surface expression of MHC
class I molecules seems to be due to MHC class I targeting for
lysosomal degradation by ATG proteins (Figure 2). In DCs this
seems to be due to increased internalization and then
degradation with the support of the macroautophagy
machinery (54, 56). The identification of the adaptor
associated kinase 1 (AAK1) and the adaptor complex AP2
point towards ATG proteins supporting clathrin mediated
endocytosis (54, 56). This is reminiscent of the internalization
of the amyloid precursor protein (APP) in Alzheimer’s disease
that was reported to require LC3 mediated recruitment of AP2
for efficient clathrin mediated turn-over (58, 59). In contrast in
pancreatic carcinoma cells an NBR1 dependency of MHC class I
degradation was observed and the authors suggested that
macroautophagy of ER might redirect MHC class I molecules
to lysosomes and therefore diminish surface expression for CD8+

T cell stimulation (55). In both instances, deficiencies in the
macroautophagy machinery, however, increase anti-viral
(influenza and lymphocytic choriomeningitis virus) and anti-
tumor CD8+ T cell responses via increased surface expression of
MHC class I molecules. Lysosomal degradation of MHC class I
molecules by the macroautophagy machinery seems to be also
induced by ORF8 of the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) (60). Moreover, autophagy
inhibition can also redirect intracellular antigen degradation to
proteasomes leading to increased MHC class I antigen
presentation (57). Therefore, multiple pathways might account
for increased MHC class I presentation of intracellular antigens
by both somatic cells, such as tumor cells, and antigen presenting
cells upon inhibition of the macroautophagy machinery.

With respect to extracellular antigen processing for MHC class
I presentation, so called cross-presentation, the contribution of
the macroautophagy machinery is not entirely clear yet. So far
only soluble proteins have been described to benefit from the
macroautophagy machinery in cross-presenting classical type 1
DCs and B cells (61, 62). However, long-term storage of antigen
by DCs for cross-presentation was rather compromised by the
macroautophagy machinery (63). Another function for antigen
cross-presentation on MHC class I molecules was described for
the macroautophagy machinery in antigen donor cells like virus-
infected stromal or tumor cells (64, 65). In these studies,
exocytosis of antigen containing vesicles that get efficiently
cross-presented for CD8+ T cell stimulation by DCs seemed to
benefit from the macroautophagy machinery. The packaging of
antigens into the respective vesicles was improved by inhibiting
both proteasomal and lysosomal degradation in the antigen donor
cells (66–70). The respective pathway that utilizes the ATG8/
LC3B lipidation machinery for cross-presentable vesicle export
could be overlapping or identical to LC3-dependent extracellular
vesicle loading and secretion (LDELS) (71–76). Potentially more
February 2021 | Volume 12 | Article 628429

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Münz ATG Regulation of MHC Presentation
than one exocytosis pathway seems to benefit from the
macroautophagy machinery and neutral sphingomyelinase 2
(nSMase2) or Golgi reassembly stacking proteins (GRASPs)
have been reported to be involved in this ATG supported
exocytosis. Thus, extracellular antigen processing for MHC class
I presentation seems to benefit from a functional macroautophagy
machinery in both antigen donor cells and for short-term cross-
presentation of certain antigen formulations also in antigen
presenting cells, while the autophagic machinery limits MHC
class I surface expression for intracellular antigen presentation.
CONCLUSIONS AND FUTURE
PERSPECTIVES

Lysosomal and proteasomal protein degradation are the two
main proteolytic machineries of cells and their products sampled
by MHC class II and I molecules for CD4+ and CD8+ T cell
stimulation, respectively. Accordingly, macroautophagy as a
component of lysosomal degradation, targeting cytoplasmic
constituents, supports MHC class II restricted antigen
presentation to helper CD4+ T cells. Recent years have,
however, demonstrated that the same molecular machinery
that supports macroautophagy also regulates endocytosis and
exocytosis. While the role of ATG proteins in endocytosis seems
to promote MHC class II presentation of phagocytosed antigens
via LAP and inhibit MHC class I presentation of intracellular
antigens through lysosomal degradation of MHC class I plus
peptide complexes, exocytosis might package antigens optimally
for processing onto MHC class I molecules during cross-
Frontiers in Immunology | www.frontiersin.org 5
presentation. Since not all modules of the macroautophagy
machinery are used in all these pathways, regulation of specific
ATG proteins in antigen donor or presenting cells might be used
to influence MHC class I or II presentation in the tumor
microenvironment or during viral infections. However, which
manipulation might be beneficial in which setting needs to be
determined on a case by case basis, considering, in addition to
the role of the macroautophagy machinery for MHC restricted
antigen presentation, also its anti-inflammatory role in myeloid
cells and its pro-survival role in lymphocytes as well as in virus
infected and tumor cells.
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