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Extensive gut virome variation and its
associations with host and environmental
factors in a population-level cohort

Suguru Nishijima 1,2,15,16 , Naoyoshi Nagata 3,4,16 , Yuya Kiguchi1,5,
Yasushi Kojima4, Tohru Miyoshi-Akiyama6, Moto Kimura7, Mitsuru Ohsugi8,9,
Kohjiro Ueki10, Shinichi Oka11, Masashi Mizokami12, Takao Itoi13, Takashi Kawai3,
Naomi Uemura14 & Masahira Hattori1,5

Indigenous bacteriophage communities (virome) in the human gut have a
huge impact on the structure and function of gut bacterial communities
(bacteriome), but virome variation at a population scale is not fully investi-
gated yet. Here, we analyse the gut dsDNA virome in the Japanese 4D cohort of
4198 deeply phenotyped individuals. By assembling metagenomic reads, we
discover thousands of high-quality phage genomes including previously
uncharacterised phage clades with different bacterial hosts than knownmajor
ones. The distribution of host bacteria is a strong determinant for the dis-
tribution of phages in the gut, and virome diversity is highly correlated with
anti-viral defence mechanisms of the bacteriome, such as CRISPR-Cas and
restriction-modification systems. We identify 97 various intrinsic/extrinsic
factors that significantly affect the virome structure, including age, sex, life-
style, anddiet,most ofwhich showedconsistent associationswithbothphages
and their predicted bacterial hosts. Among the metadata categories, disease
and medication have the strongest effects on the virome structure. Overall,
these results present a basis to understand the symbiotic communities of
bacteria and their viruses in the human gut, which will facilitate the medical
and industrial applications of indigenous viruses.

Large numbers of diverse bacterial viruses (phages) reside in the
human gut, and the indigenous phage community (virome or pha-
geome) greatly affects the structure and function of the bacterial
community (bacteriome) by lysing bacterial cells and facilitating hor-
izontal gene transfer1–4. The most dominant members of the gut vir-
ome are double-stranded DNA (dsDNA) phages, and their number is
estimated to be comparable to that of bacteria1.

Recent viral metagenomic studies have identified highly
abundant and prevalent clades among human gut dsDNA phages5–11,
such as crAss-like phages6,7 including crAssphage5, Lak phage8 and
Gubaphage9/Flandersviridae10. The genome sequences of these
phages provide insights into their functional potential, unique

biology and ecology in the human gut7,8. Other studies targeting the
virome structure have revealed its high inter-individual diversity12,13,
differences between populations14, and associations with several
host factors15,16. Furthermore, altered gut virome structure has been
associated with various diseases, such as inflammatory bowel dis-
ease, type 2 diabetes, and colorectal cancer17–19, suggesting a pos-
sible role for the altered virome in these diseases. However, these
studies were conducted in relatively small-scale cohorts (n < 1000),
or used heterogeneous samples collected from independent stu-
dies using different methodologies, serious constraints limiting the
understanding of the virome variation and its associations with
various host and environmental factors. Moreover, the DNA
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amplification step frequently used in the previous studies could
preferentially amplify certain types of viruses (e.g. circular single-
stranded DNA phages) and systematically bias the viral profile1. To
date, there have been no population-level studies that have col-
lected and processed faecal samples uniformly without DNA
amplification in order to analyse gut virome variations.

In this study, we present a large-scale analysis of human gut viral
profiles obtained from whole (bulk) gut metagenomes uniformly col-
lected from 4198 deeply phenotyped individuals. A newly developed
pipeline revealed thousands of high-quality dsDNA phage genomes,
including highly abundant but uncharacterised phage clades in the
gut. Further comparative analysis of the virome with the bacteriome
showed high correlations of their diversities, close interac-
tions between phages and predicted bacterial hosts, and sig-
nificant associations between the defense mechanisms of the
bacteriome and virome diversity. Finally, a comprehensive association
analysis with various host and environmental factors uncovered a large
number of intrinsic and extrinsic factors significantly associated with
the structure of the virome.

Results
Construction of a phage genome catalogue in the Japanese 4D
microbiome cohort
We collected faecal samples from 4198 Japanese individuals
(66.4 ± 12.6 years old (mean ± s.d.) [143 young (<40 years old), 2102
middle-aged (40–70 years old), and 1953 elderly (≥70 years old)];
proportionofmales, 59%) in the Japanese 4D (Disease,Drug,Diet, Daily
life) microbiome project and performed whole shotgun metagenomic
sequencing (Supplementary Data 1)20. Intrinsic and extrinsic factors
(e.g. age, sex, bodymass index [BMI], lifestyle, dietary habits, diseases,
and medications) were exhaustively collected from these individuals
through self-report questionnaires, face-to-face interviews, and medi-
cal records (Supplementary Data 2).

To establish a dsDNA phage genome catalogue using the whole
metagenomes, we developed a pipeline in which candidate phage
genomes were identified by detecting phage genome-specific sig-
natures, such as the presence of virus hallmark genes and the absence
of bacterial essential genes (Methods, Supplementary Fig. 1a, Sup-
plementary Data 3). Since themajority of reads in wholemetagenomes
derives from non-phage entities, such as bacterial chromosomes and
plasmids21, we used relatively strict criteria and designed the pipeline
to reduce the false positives as much as possible (Methods). Com-
parison between our pipeline and other virus-detection tools22–28

showed that the true positive rate of our pipeline (81.5%) was com-
parable or slightly lower than other pipelines’ (40.2–99.7%), whereas
the false positive rate (0.4%) was considerably lower than others’
(2.7–54.2%) (Supplementary Fig. 1b, c). These results suggest that our
pipeline, with the highest specificity at the cost of slightly lower sen-
sitivity, was likely to be appropriate to construct a high-quality phage
catalogue with minimum contamination by non-phage sequences.

Applying the pipeline to the 4198 whole metagenomes, we iden-
tified 1125 complete and 3584 draft (>70% completeness) phage
genomes29. Quality assessment by CheckV revealed that 2819 (59.9%),
1836 (39.0%) and 54 (1.1%) of the genomeswere complete/high-quality,
medium-quality and low-quality, respectively (Supplementary Fig. 1d,
Supplementary Data 4). To assess to what extent this catalogue cov-
ered the dsDNA phages in the human gut, we sequenced virus-like
particles (VLPs) in additional 24 faecal samples (Methods, Supple-
mentary Data 5) and mapped the VLP reads to the catalogue, con-
firming that more than half of the VLP reads (57.1%), on average, were
mapped to the catalogue. This value was comparable to that from
another phage genome catalogue constructed using more sensitive
tool, VIBRANT (58.5%), suggesting that the slightly lower sensitivity of
our pipeline had little effect on the viral coverage of the catalogue
(Supplementary Note). The unmapped VLP reads might derive from

low abundant phages in the gut or those difficult to be assembled with
short reads (Supplementary Note).

Clustering of the 4709 phage sequences with >95% sequence
similarity generated 1347 viral operational taxonomic units (vOTUs)29

(corresponding to the species level) (Fig. 1a and Supplementary Fig. 2a,
Supplementary Data 4). The largest vOTU (vOTU_974) was composed
of 461 genomes and represented a cluster of crAssphage, the most
prevalent and abundant phage in the human gut5. Comparative ana-
lysis of the vOTUs with known phage genomes in RefSeq and sev-
eral databases recently published9,15,30,31 revealed that only 0.67–44.6%
of the sequences we found were aligned with known sequences (>95%
identity) (Supplementary Fig. 3a–e). 667of the vOTUswerenot aligned
to any knowngenomes in the databases, suggesting that they arenovel
genomes first identified in this study (Supplementary Fig. 3f). The
majority of thephages in the cataloguewerepredicted tobelong to the
order Caudovirales (n = 598), among which Siphoviridae (n = 291),
Podoviridae (n = 213), and Myoviridae (n = 94) were most abun-
dant (Fig. 1b).

Host prediction of the vOTUs using CRISPR spacers (Methods)
revealed that the most common phylum of the predicted hosts was
Firmicutes (n = 413), followed by Bacteroidetes (n = 271) and Actino-
bacteria (n = 118) (Fig. 1c). At the genus level, the commonly assigned
hosts were Bacteroides (n = 176), Ruminococcus (n = 128), Blautia
(n = 110), and Bifidobacterium (n = 98) (Fig. 1f). In addition to these
abundant taxonomies in the human gut, some phages were predicted
to infect Klebsiella (n = 8), Akkermansia (n = 6) and Eggerthella (n = 5),
which are relatively minor in abundance but known to be associated
with human health and disease32–34 (Supplementary Data 6). Of the
vOTUs whose hosts were predicted (n = 852), themajority (71.1%) were
predicted to infect only one genus (i.e. specialist phages), whereas the
others (28.9%) were predicted to infect multiple genera (i.e. generalist
phages) (Fig. 1d).

Comparison of the phages across predicted hosts revealed that
phages for Bacteroidetes phylum (e.g. Bacteroides, Prevotella, and
Parabacteroides) had relatively larger genomes (median size:
54.4–65.0 kb), whereas those for Actinobacteria (e.g. Bifidobacterium
and Collinsella) had smaller genomes (18.8 kb and 28.1 kb, respec-
tively) (Fig. 1f), consistent with variations in the hosts’ genome size35,36.
In addition, the proportion of specialist and generalist phages differed
substantially across the genera, in which the majority of phages pre-
dicted to infect Bifidobacterium, Streptococcus, and Faecalibacterium
were specialist phages (87.3–98.8%) while those for Clostridium,
Roseburia, and Eubacterium were likely to be generalist phages
(83.3–97.6%) (Fig. 1f). The proportion of virulent and temperate pha-
ges also varied among the hosts; most of the phages for Odoribacter,
Bacteroides, and Parabacteroides were predicted as virulent
(76.1–88.9%), whereas those for Roseburia, Dorea, and Anaerostipes
were temperate (83.3–91.3%).

To clarify the more distant relationship of the vOTUs, we further
clustered vOTUs based on the proportion of shared proteins (>20%),
providing a total of 223 viral clusters (VCs) corresponding to the family
or subfamily level7,37 (Supplementary Fig. 2b). Rarefaction analysis
showed that the number of VCs, but not the number of vOTUs, was
saturated at the number of individuals in this study (n = 4198) (Fig. 1e).

Identification of novel phage clades abundant in the human gut
Owing to the lack of a high-quality genome catalogue of human gut
phages until recently, themajor clades of phages in the human gut are
still largely unknown, other than a few groups, such as crAss-like
phages5,7,8,10,38,39. To explore the major and abundant phage clades in
the human gut, we quantified the abundance of each vOTU/VC by
mapping the metagenomic reads of the 4198 individuals to the cata-
logue (Methods). On average, 1.8 ± 0.013% (mean± s.e.) of the whole
metagenomic reads were mapped to the catalogue, and 115 ± 0.62
vOTUs and 47 ± 0.17 VCs (mean ± s.e.) were detected from an
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individual. The accuracy of viral quantification based on whole meta-
genomic reads was confirmed by the comparison of viral profiles
obtained from the VLPs metagenomes with those from whole meta-
genomes prepared from the same 24 fecal samples, which showed a
high correlation between the two profiles (average Spearman corre-
lation [rs] = 0.74 and 0.76 at the vOTU and VC levels, respectively,
Supplementary Fig. 4a). Additional cluster analysis showed clusters
pairing each VLP with the whole metagenomes for the 24 samples
(Supplementary Fig. 4b).

The most abundant VC in this cohort was a crAssphage-
containing VC (VC_19) (relative abundance = 4.3 ± 0.17% [mean ±
s.e.], Supplementary Note), which included crAssphage and crAss-
like phages (candidate genera I, III, IV, and IX). Interestingly, we also
identified several VCs whose abundance was at the same order of
magnitude as VC_19 (Fig. 2a). Particularly, 9 VCs other than VC_19
were highly abundant (reads per kilobase million [RPKM] > 1) and
prevalent (>100 genomes) across the 4198 whole gut metagenomes
in this cohort. Of these abundant VCs, VC_6 was a group of crAss-like
families (candidate genera VII, VIII, and X), and the phages in
VC_1 showed similarities to the recently proposed new clade of
Gubaphage/Flandersviridae9,10. The other seven abundant VCs (VC_2,
24, 12, 15, 3, 44 and 18) did not show any similarity to knownphages in
RefSeq, suggesting that they were novel phage clades abundant and
prevalent in the human gut. They were detected in 24.6–90.2% of the
individuals and were predicted to infect major gut species such as

Bacteroides, Prevotella, Roseburia, or Bifidobacterium (Supplemen-
tary Fig. 5, Supplementary Data 7). By searching genes specific to
temperate phages40 or comparing with reference microbial genomes
in RefSeq, we found that the novel phage clades VC_2, 24, 12, 3 and 15
were likely to have lysogenic life cycles but the others (VC_44 and 18)
were not (Supplementary Data 7). Phylogenetic analysis based on
large terminases, portal proteins, andmajor capsid proteins revealed
that most of the 7 VCs were monophyletic and significantly different
from those of the known reference phages in RefSeq (Fig. 2c, Sup-
plementary Fig. 6). In addition, a comparison of genomic similarities
among the phages (Methods) revealed thatmost of the phages in the
same VC were clustered together and distinct from the phages in the
other VCs (Fig. 2b).

To investigate whether the VCs newly identified in this study exist
as virus particles in the human gut, we explored them in the VLP
dataset. We found that all of the 10 abundant VCs were detected in the
24 VLP dataset, and their relative abundance was, on average, 4.5–1115
times higher in the VLP metagenomes than in whole metagenomes
prepared from the same faecal samples (Supplementary Fig. 7), clearly
showing that they were present as virus particles in the gut. We named
the seven novel VCs according to the names of the cities in which the
research institutes of the authors are located (VC_2, “Toyamaviridae”;
VC_24, “Konodaiviridae”; VC_12, “Shinjukuviridae”; VC_15, “Okubovir-
idae”; VC_3, “Tsurumiviridae”; VC_44, “Suehiroviridae”; and VC_18,
“Umezonoviridae”).

0
100

# 
of

 v
O

T
U

s

0.3

0.4

0.5

0.6

0.7

1e+04 3e+04 1e+05 3e+05
Genome size

G
C

 c
on

te
nt

0 100
# of vOTUs

Host unknown
Akkermansia

Olsenella
Prevotellamassilia

Tyzzerella
Aeromonas
Escherichia

Klebsiella
Megamonas
Odoribacter

Holdemanella
Alistipes

Anaerostipes
Lactobacillus

Collinsella
Fusicatenibacter

Gemmiger
Unclassified Lachnospiraceae

Dorea
Unclassified Firmicutes

Coprococcus
Porphyromonas

Eubacterium
Roseburia

Clostridium
Faecalibacterium
Parabacteroides

Prevotella
Streptococcus

Bifidobacterium
Blautia

Ruminococcus
Bacteroides

0 100 200
# of vOTUs

for each genus

Firmicutes

Bacteroidetes

Actinobacteria

Proteobacteria

Verrucomicrobia

Host unknown

1e+04 1e+05
Genome

size

0% 100%
Taxonomy

Unassigned

Myoviridae

Podoviridae

Siphoviridae

0% 100%
Specialist/
generalist

Specialist phage

Generalist phage

0% 100%
Virulent/

temperate

Virulent phage

Temperate phage

0

200

400

600

N
um

be
r 

of
 v

O
T

U
s

0

100

200

300

400

500

N
um

be
r 

of
 v

O
T

U
s

0

50

100

150

N
um

be
r 

of
 v

O
T

U
s

0

500

1000

1500

N
um

be
r 

of
 c

lu
st

er
sSpecialist phage

Generalist phage
vOTU

VC

U
na

ss
ig

ne
d

S
ip

ho
vi

rid
ae

P
od

ov
iri

da
e

M
yo

vi
rid

ae

H
os

t u
nk

n o
w

n

F
ir

m
ic

ut
es

B
ac

te
ro

id
et

es

A
ct

in
ob

ac
te

ria

P
ro

te
ob

ac
te

ria

A
cr

os
s 

ph
yl

a

V
er

r u
co

m
ic

ro
bi

a

Te
ne

ric
ut

es

2.5 5.0 7.5
Number of putative hosts (genus)

0 1000 2000 3000 4000
Number of individuals

b c

d e

a f
Firmicutes

Actinobacteria
Bacteroidetes

Proteobacteria

Host unknown
Other phyla

495

Fig. 1 | Overview of reconstructed phage genomes from 4198 human gut
metagenomes. a Genome size and GC content of phage genomes (n = 4709)
reconstructed from the dataset of 4,198 whole metagenomes. Bar plots on the top
and right side depict the distribution of genome size and GC content, respectively.
b Taxonomic annotation of the vOTUs at the family level. c Predicted hosts of the
vOTUs at the phylum level.dNumber of predicted hosts at the genus level for each
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the genus level). If a vOTU was predicted to infect more than one genus, it was
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the interquartile range (IQR), and the lines inside show the median. Whiskers
denote the lowest and highest values within 1.5 times the IQR.
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Close interactions between the gut virome and bacteriome
It has been suggested that phages in the human gut largely affect the
structure of the bacteriome through bacterial lysis and integration as
prophages1–3, but the relationships between phages and bacteria in the
gut environment (i.e. in natura) are not well characterised. To explore
this, we compared viral and bacterial profiles collected from the 4198
individuals and found significant positive correlations for α-diversity
(Shannon diversity) and β-diversity (Bray-Curtis distance) between
them (rs = 0.73 and 0.46, respectively; Fig. 3a, b). This results indi-
cate that the virome and bacteriome structures are closely related to
each other in the human gut. We also found that the β-diversity of the
virome was significantly higher than that of the bacteriome (Fig. 3b,
Supplementary Fig. 7), suggesting that the virome is more specific to
each individual than the bacteriome.

To further explore their associations, we next examined one-to-
one correlations between the relative abundance of each phage and its
predicted host at the genus level among 4198 individuals (Methods).
Notably, we found a positive correlation with an average rs of 0.18
between them (Fig. 3d), suggesting that phages and host bacterial
species co-occur rather than being mutually exclusive in the human
gut. Among the genera examined, Megamonas, Escherichia, Prevotella
and Lactobacillus showed relatively higher correlation with their pha-
ges than other genera (Fig. 3c). These high correlations could be
explained by the higher proportion of specialist phages that infect
these genera as compared to other genera, such as Clostridium,
Ruminococcus, and Tyzzerella, which are often infected by generalist
phages (Fig. 3c). Indeed, the specialist phages showed a significantly
higher correlation with their hosts (rs = 0.27 on average) than the
generalist phages (rs = 0.08) (P < 2.2e-16, Fig. 3d). The higher correla-
tion for specialist phages than generalist phages was reproduced with

other correlation indexes such as Pearson correlation and Maximal
information coefficient, but was not present using Bray-Curtis dis-
similarity (Supplementary Fig. 9a). Phage lifestyle did not have sub-
stantial impacts on the phage-host correlation, but virulent phages
showed slightly but significantly stronger correlation (rs = 0.17) than
temperate phages (rs = 0.15) (P = 0.025, Supplementary Fig. 9b).

Among the diverse genes encoded in the human gut bacteriome,
the CRISPR-Cas, restriction-modification (RM), and abortive infection
(Abi) systems are well-known defence mechanisms of prokaryotic
species protecting against mobile genetic elements, including phage
infection41. To explore associations between such antiviral genes and
phages in the community, we quantified these genes and assessed
their associationswith the virome structure (Methods, Supplementary
Data 8). We found that Shannon diversity of the virome was sig-
nificantly higher in samples with abundant defence mechanisms than
in those with low abundances of all three systems (Fig. 3e). In addition,
significant positive associations were also identified for various sub-
types in the CRISPR-Cas and RM systems (Fig. 3f). Other genes such as
integrase and spore germination proteins, the latter of which is asso-
ciatedwith species in Firmicutes42, were also positively correlatedwith
virome diversity (Supplementary Data 9).

Comprehensive identificationof host and environmental factors
associated with the virome
To investigate how the gut virome structure is associated with host
physiologies and environmental factors, we conducted an association
analysis with age and sex, which are strong determinants of the gut
bacteriome structure43. Age showed a significant positive correlation
with virome diversity (rs = 0.20, P-value <2.2e–16, Fig. 4a), consistent
with a positive correlation between age and bacteriome diversity

Fig. 2 | Identification of novel viral clusters abundant and prevalent in the
human gut. a Average abundance of each VC among the 4198 individuals and
the number of genomes forming the VC. The colour and size of each circle
represent the phylum-level taxonomy of the predicted host and prevalence of the
VC in the cohort, respectively. b Similarity of phage genomic content (proportion
of shared proteins) visualised by tSNE. The colour of each circle represents the VC

assigned to the genome. c Phylogenetic trees of the 10 most abundant and pre-
valent VCs in this cohort and phages in the RefSeq database were constructed
based on large terminase proteins. Circles on the edges show vOTUs belonging to
the VC and edges without circles represent reference genomes in RefSeq. Only
representative genomes for each vOTU are included in the trees.
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(Supplementary Fig. 8a). At the level of the host bacteria, age had
significant positive correlations with Proteobacteria phages and host
unknown phages, but a negative correlation with Actinobacteria pha-
ges (rs = 0.10, 0.12 and−0.07, respectively,P-values <0.05, Fig. 4b), also
in agreement with age-related changes in the bacteriome structure
(Supplementary Fig. 8b, d). Multivariable analysis considering the
effects of other covariates (Methods) revealed that age had significant
associations with 176 vOTUs (P-values <0.05, Fig. 4c, Supplementary
Data 10), including positive correlations with phages for Clostridium,
Ruminococcus and Faecalibacterium, as well as host-unknown phages.
At the VC level, age showed a strong negative correlation with Bifido-
bacterium-related VC_28, which was the most abundant VC among
individuals in their 20 s, but decreased substantially with age (Sup-
plementary Fig. 8c, Supplementary Data 10). Sex showed significant
associations with 68 vOTUs and 24 VCs (Fig. 4d, Supplementary
Data 10 and 11). Males had significantly higher abundances of phages
predicted to infect Prevotella and Megamonas, while females had
higher abundances of Faecalibacterium- and Ruminococcus-related
phages, possibly reflecting differences in the bacteriome between
males and females (Supplementary Fig. 8e).

To further explore the comprehensive relationships, we next
performed an association analysis between the viral profiles and 232
host/environmental factors exhaustively collected from the 4198

individuals (Supplementary Data 2). Redundancy analysis showed that
these factors explained 0.6% of the total variance in the virome at the
vOTU level (Fig. 5a), which was substantially lower than the value that
the same factors explained in the gut bacteriome at the species and
genus levels (4.9% and 10.0%, respectively; Fig. 5a). The metadata
categories most strongly associated with gut virome variation were
clinical factors, such as medication and disease (explained variance =
0.5% and 0.3%, respectively). Permutational analysis of variance
revealed that 97 of the 232 factors were significantly associated with
virome variation (false discovery rate [FDR] < 0.05), among which age
showed the strongest association with the virome (Fig. 5b, d). The
significantly associated factors included various diseases (e.g. HIV
infection, inflammatory bowel disease, past history of gastrointestinal
resection), medications (e.g. osmotically acting laxatives, antiviral
drugs, and alpha-glucosidase inhibitors), and diets (e.g. fruits, dairy
products, and milk), which included numerous factors not identified
previously14,44. The variation explained by each factor was highly cor-
related between the virome and bacteriome (rs = 0.87, P-value
<2.2e–16, Fig. 5c). The vOTU of crAssphage (vOTU_974) showed no
significant associationwith anymetadata in this cohort, suggesting the
presence of still unknown host, environmental or ecological factors
that explain the variation of this most abundant phage in the
human gut.
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Among the 97 factors with statistical significance, the majority
showed strong associations with both the virome and bacteriome
(Fig. 5d). By contrast, proton pump inhibitors, which showed the
strongest effect on the gut bacteriome, had a relatively moderate
effect on the virome (Fig. 5d). A largenumber ofbacterial species in the
oral cavity reach the gut following the administration of proton pump
inhibitors, but these species are less transcriptionally active45 and
might have fewer interactions with gut phages46. Furthermore, anti-
microbial drugs, such as cephalosporins, macrolides, and sulphona-
mides, which had large effects on the bacteriome, also had amoderate
effect on the virome (Supplementary Fig. 8f), which might be
explained by the absence of phage-originated molecular targets for
anti-microbial drugs. Thus, ecological and biological differences
between the virome and bacteriome might result in differences in the
strengths of associations with some host and environmental factors.

Discussion
In the present study, we have performed a large-scale analysis for viral
profiles of deeply phenotyped individuals (n = 4198) and shown
extensive virome variation and its associationwith the bacteriome and

numerous host and environmental factors. This study is, to the best of
our knowledge, the largest single cohort analysis for the human gut
virome with little biases due to the DNA amplification. The analysis
uncovered novel viral clades, interactions between the virome and
bacterial anti-viral genes, and clinical factors strongly associated with
the virome, expanding our knowledge of the gut virome structure and
variation.

We uncovered a lot of prevalent but previously uncharacterized
dsDNA phage clades in the human gut (Fig. 2). Although recent large-
scale studies have been uncovering numerous phage genomes in the
human gut9,10,15,31, our result suggests that the human gut phages are
still under-explored and further efforts are needed to construct amore
comprehensive phage catalogue of the gut phages. Some of the novel
clades identified in this study could infect Firmicutes and Actino-
bacteria (VC_2, 15, 3, 44, and 18), which is in contrast to recently pro-
posed large clades, such as crAssphage, crAss-like phage, and
Gubaphage/Flandersviridae, all of which are suggested to infect
Bacteroidetes6,7,9,10. Firmicutes is one of the major taxa in the human
gut and include clinically important species47. Actinobacteria, such as
Bifidobacterium, includes species used for probiotics and are quite
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abundant in the guts of infants48. The novel phage clades identified in
this study may play important roles in the bacteriome by interacting
with these major bacterial species and regulating their population
dynamics.

Comparative analysis among the 4198 individuals showed a sig-
nificant positive correlation between the diversity of virome and bac-
teriome (Fig. 3a), consistent with previous studies16,49. Interestingly, at
the level of individualphages andhosts, their relative abundanceswere
also positively correlated and they co-occurred (Fig. 3c). Since phages
kill their hosts, a negative correlation between phages and their hosts
would be expected. Actually, previous studies observed negative cor-
relations between them in a time-series dataset using a mouse

model50,51. At the same time, however, phages have a limited host range
and cannot live without their hosts52,53 (Supplementary Data 5), sug-
gesting that their symbiotic relationship results in a positive correla-
tion at a more global scale (e.g. among different individuals and
environments). Thus, our findings strongly suggest that, at the popu-
lation level, the distribution of host bacteria is a dominant factor
governing the distribution of individual phages in the human gut.
Furthermore, we found that prokaryotic defence systems, such as the
CRISPR-Cas, RM, and Abi systems, had significant associations with
virome diversity (Fig. 3d). These associations suggest that anti-phage
systems are important factors in shaping the virome through regula-
tion of phage infection. Alternatively, given that numerous gut
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microbes are infected and lysed by phages51, the ability to protect
against phage infection may also have a role in determining the
structure and diversity of the bacteriome. However, our results based
on the cross-sectional design cannot rule out the possibility that the
defence systems were simply correlated with other microbiome
properties (e.g. other gene functions, microbial density, and spatial
structure) that actually cause the increase in virome diversity.

Our association analysis revealed numerous intrinsic/extrinsic
factors significantly associated with the gut virome, which included
previously unidentified factors, especially in disease and medication
(Fig. 5). Strong associations with the virome were observed for host
age, disease, andmedication, in accordancewith associations between
these factors and the bacteriome (Fig. 4b). Additionally, the predicted
hosts of the associated phages were mostly consistent with the
microbial species associated with the factor (Figs. 4 and 5, Supple-
mentary Fig. 10), supporting strong interactions between phages and
their bacterial hosts. However, the variation in the virome explained by
these factors was only 0.6%, significantly lower than the variations in
the bacteriome (5%–10%) that was explained by factors in this cohort
(Fig. 5a) as well as other cohorts54,55. This was possibly owing to sub-
stantially higher inter-individual variation in the virome compared to
that of the bacteriome (Fig. 3b), whichmight be driven by various viral
and bacterial ecological factors, such as the rapid evolutionary rate of
phages56, strain-level diversity of bacterial species among individuals57,
or the associated variability of the defence systems58. More detailed
analysis andunderstandingof inter-individualdiversity of the virome is
needed since its variation has potential clinical impacts on faecal
microbiota transplantation and phage therapy59.

In summary, our population-level analysis of the human gut vir-
ome uncovered its substantial variation and associations with the
corresponding bacteriome and various factors. These results provide
the basis for a better understanding of viral and microbial ecology in
the human gut and are anticipated to facilitate medical and industrial
applications to the gut microbial community.

Methods
Sample collection and metagenomic sequencing
Written informed consent was obtained prior to participation in the
project. The study protocol for the Japanese (Disease, Drug, Diet, Daily
life) microbiome project was approved by the medical ethics com-
mittees of the Tokyo Medical University (Approval No: T2019-0119),
National Center for Global Health and Medicine (Approval No: 1690),
the University of Tokyo (Approval No: 2019185NI), Waseda University
(Approval No: 2018-318), and the RIKEN Center for Integrative Medical
Sciences (Approval No: H30-7). We conducted a prospective cross-
sectional study of 4198 individuals participating in the Japanese 4D
microbiome project, which commenced in January 2015 and is
ongoing20.

Participants registered in the project were those who visited
hospitals in the area for disease diagnosis or a health checkup. Faecal
samples are collected from both healthy and diseased participants.
The eligibility criteria for participants are as follows: (1) bornand raised
in Japan; (2) age >15 years; (3) written informed consent provided; and
(4) having an endoscopic diagnosis on colonoscopy; either having
undergone a colonoscopy within the last 3 years or planning to
undergo colonoscopy for colorectal cancer screening, surveillance,
and diagnosis of various gastrointestinal symptoms. The exclusion
criteriawere as follows: (1) suspected acute infectious disease basedon
clinical findings (e.g., acute enterocolitis, pneumonia, tuberculosis
etc.); (2) acute bleeding; (3) hearing loss; (4) unable to understand
written documents; (5) unable to write and (6) limited ability to per-
form activities of daily living. No compensation was paid to
participants.

Participants collected faecal samples using a Cary–Blair medium-
containing tube60 at home, and the sampleswere refrigerated for up to

2 days before the hospital visit. Immediately after participants arrived
at the hospital, their faecal samples were frozen at −80 °C until DNA
extraction. We avoided collecting samples within 1 month of admin-
istering bowel preparation for colonoscopy because it has a profound
effect on the gut microbiome andmetabolome61. Health professionals
checked that the amount of stool was sufficient for analysis. Shotgun
metagenomic sequencing was performed for 4241 faecal samples and
quality controls were conducted20, from which 43 samples were
excluded from further analyses due to the low number of high-quality
reads (<5 million reads) as described in detail previously20 (Supple-
mentary Data 1). To explore the viral profiles of VLPs and whole
metagenomes from the same samples, we collected additional faecal
samples from 24 individuals in the same manner as described earlier.

Metadata collection
Details for metadata collection were described previously20. Briefly, the
participants completed a self-reported questionnaire on body weight,
height, alcohol consumption, smoking, dietary habits, physical activity,
and Bristol Stool Scale score62. Health professionals checked the entries
to correct obvious inaccuracies and obtain any missing data. BMI was
categorised into five groups according to the standard World Health
Organization (WHO) classification and considering the threshold value
of mortality risk63 (0, underweight, <18.5 kg/m2; 1, normal weight [low],
18.5–20.0 kg/m2; 2, normal weight [high], 20.1–24.9 kg/m2; 3, over-
weight, 25.0–29.9 kg/m2; and 4, obese [≥ 30.0 kg/m2]). Dietary habits
were assessed using a 7-point Likert scale (1, never or rarely; 2, 1–3 times/
month; 3, 1–3 times/week; 4, 4–6 times/week; 5, 1 time/day; 6, 2 times/
day; and 7, ≥3 times/day). Physical activity was evaluated with the
International Physical Activity Questionnaire–Short Form64. Exercise
reported as vigorous intensity, moderate intensity, or walking was
denoted as 1, and <60min/week was denoted as 0. The total sitting
hours per day and the total metabolic equivalent of tasks65 were divided
into four groups based on quartiles for the entire dataset. For the
diagnosis of gastrointestinal diseases, an electronic high-resolution
video endoscope was used. Comorbidities, or a history of hypertension,
dyslipidemia, and any component of the Charlson comorbidity index66,
were evaluated. The definite diagnosis of the disease was based on
histopathological or cytological examinations or imaging modalities
(e.g. computed tomography, magnetic resonance imaging and ultra-
sound). For medication, health professionals evaluated entries in the
participant’s medication pocketbook (the Okusuri-techo) made by
pharmacists when filling prescriptions20 to ensure that there were no
omissions or discrepancies with the self-reported data. Electronic
medical records were also checked to identify medications used. Drug
use was defined as oral or self-injected administration within the pre-
vious month. All medications with pharmaceutical brand names were
grouped according to the WHO’s Anatomical Therapeutic Chemical
classification system (4th level)67. In total, 232 metadata were assessed
and used in this study.

Preparation of VLP DNA and sequencing
Frozen faecal samples (30–500mg) were suspended in a 2.5mL SM
buffer with 0.01% gelatine by vortexing and centrifuged at 5000× g for
10min at 4 °C to remove debris. The supernatant was filtered with
5.0μm and 0.45μm PVDF pore membrane filters (Millex-HP Syringe
Filter; Merck Millipore) to remove bacterial cells. An equal volume of
20% polyethylene glycol solution (PEG-6000-2.5MNaCl) was added to
the filtrate and stored overnight at 4 °C. The solution was centrifuged
at 20,000 × g for 45min at 4 °C, and the supernatant was discarded to
collect VLPs. The VLP pellet was suspended in 1mL SM buffer with
lysozyme (10.0mg/reaction; Sigma Aldrich) and incubated for 60min
at 37 °C with gentle shaking to degrade unfiltered bacterial cells. The
lysate was incubated with 10 U DNase (NIPPON GENE), 5 U TURBO
DNase (Thermo Fisher Scientific), 5 U Baseline-ZERO DNase (Epi-
centre), 25 U Benzonase (Sigma Aldrich), and RNase (25 g/sample;
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NIPPON GENE) in DNase buffer (1× concentration) for 1 h at 37 °C with
gentle shaking. To inactivate the DNases, EDTA (final concentration
20mM)was added to theDNase-treated lysate andheated for 15min at
70 °C. Proteinase K (0.5mg/reaction; Sigma Aldrich) and SDS (final
concentration 0.1%) were added to the VLPs and gently mixed at 55 °C
for 30min. An equal volume of phenol/chloroform/isoamyl alcohol
(Life Technologies Japan, Ltd) was added to the lysate and gently
mixed for 10min at room temperature (20–25 °C). The lysate was
centrifuged at 9000 × g for 10min at 25 °C, and the aqueous phasewas
collected. Sodium acetate (final concentration 0.3M) and an equal
volume of isopropanol with Dr. GenTLE precipitation carrier (Takara
Bio) were added to the DNA solution and pelleted by centrifugation at
12,000 × g for 15min at 4 °C. The DNA pellet was rinsed with 75%
ethanol and dissolved in TE buffer (10mM Tris-HCl, 10mM EDTA). An
equal volume of polyethylene glycol solution (20% PEG6000-2.5M
NaCl) was added and kept on ice for at least 10min, and the DNA was
pelleted by centrifugation at 12,000× g for 10min at 4°C. Finally, the
DNAwas rinsedwith 75%ethanol, dried, and dissolved in TEbuffer. For
NovaSeq shotgun metagenomic sequencing, libraries were con-
structed from 2.5 ng VLP DNA using a KAPA HyperPrep Kit (KAPA
Biosystems) with 12 cycles of amplification. The libraries were sub-
jected to 150-bp paired-end sequencing on a NovaSeq platform.

WholemetagenomicDNAwas also prepared from the same faecal
samples (10 to 250mg faeces) with an enzymatic lysis method as
described previously68. Libraries were constructed from 100ng whole
metagenomicDNAand sequencedbyNovaSeq using the samemethod
as for VLP DNA.

Identification of phages in the metagenomic data
To construct a high-quality double-stranded DNA (dsDNA) phage
catalogue withminimum contamination of bacterial chromosome and
plasmid sequences, we developed a custom pipeline and applied it to
the 4198 whole gut metagenomes as described below. The metage-
nomic reads of each individual were assembled into contigs using the
MEGAHITassembler (v1.2.9)69. The circularity of the assembled contigs
(>10 kb) was assessed using the check_circularity.pl script, included in
the sprai assembler package (https://sprai-doc.readthedocs.io/en/
latest/index.html), by modifying the threshold for terminal redun-
dancy as follows: >97% identity and >130bp. Encoded genes in the
contigs were predicted by MetaGeneMark (3.38)70. Assembled contigs
were defined as phages if they passed all of the following six criteria.
1. A genome size threshold was applied, and contigs less than 10 Kb

were excluded, as typical dsDNA phages have genomes larger
than >10 Kb71.

2. Viral-specific k-mer patterns were checked by DeepVirFinder
(v1.0)22. Contigs with p-values >0.05 were excluded from further
analysis.

3. To detect viral hallmark genes (VHGs) and plasmid hallmark
genes, weperformed a highly sensitive HMM-HMMsearch against
the Pfam database72. First, the encoded genes were aligned to the
viral protein database, collected from complete (circular) viral
genomes (n = 13,628) in the IMG/VR v2 database30 using JackHM-
MER. The obtained HMMprofiles were searched against the Pfam
database using hhblits73 with a >95% probability cut-off. These
procedures were performed using the pipeline_for_high_sensiti-
ve_domain_search script (https://github.com/yosuken/pipeline_
for_high_sensitive_domain_search)74,75. Contigs with plasmid hall-
mark genes or those without VHGs were excluded. The hallmark
genes used in this analysis are summarised in Supplemen-
tary Data 3.

4. The presence of housekeeping marker genes of prokaryotic spe-
cies was checked by fetchMG (v1.0)76, and ribosomal RNA genes
(5 S, 16 S and 23 S)were identifiedbybarrnap (0.9) (https://github.
com/tseemann/barrnap). Contigs with the marker genes and
ribosomal RNA genes were excluded from further analysis.

5. The encoded genes of each contig were aligned to the viral pro-
tein database and a plasmid protein database constructed from
the reference plasmids in RefSeq (n = 16,136, in April 2020) using
DIAMOND (v0.9.29.130)77 with the more-sensitive option. The
number of genes aligned to each database was compared, and
contigs with more genes aligned to the plasmid protein database
were excluded from further analysis.

6. The proportion of provirus regions was assessed by CheckV
(v0.7)24, and contigs estimated with <80% of provirus regions
were excluded.

First, we screened complete phage genomes from the circular
contigs using these six criteria (Supplementary Fig. 1a). To identify
phage genomes that were not complete but were of high or medium
quality, we next screened possible phage contigs in the linear contigs.
We aligned genes identified in the linear contigs to gene sets obtained
from the complete phage genomes identified in this study (n = 1125)
and the IMG/VR database (n = 13,628). The alignment was performed
using DIAMOND with the more-sensitive option and e-value <1E-5 as a
threshold. Contigs were defined as possible phage contigs if >40% of
the genes were aligned to genes from a complete phage genome and
the size of the contig was >70% and <120% of the complete genome.
For these possible phage contigs, the above six criteria were applied,
and those that did not passwere excluded. Finally, CheckVwas used to
screen for excess host bacterial genomes and exclude linear contigs
defined as low quality or having >10% contamination.

To evaluate the performance of this custom pipeline, we applied
the pipeline to reference phage genomes (n = 2609, as positive data)
and plasmid sequences (n = 16,136, as negative data) in Refseq. The
true positive rate was defined as the number of phages detected as
phages by thepipelinedividedby thenumber of referencephages. The
false positive rate was defined as the number of plasmids detected as
phages by the pipeline divided by the number of reference plasmids.
DeepVirFinder22, VirSorter (v1.0.3)23 Virsorter2 (2.2.3)25, VIBRANT
(v1.2.1)26, Seeker (v1.0.3)27 and ViralVerify (v1.1)28 were also applied to
the same datasets with the default parameters, and the performance
was compared among them.

Analysis of phage genomes
Viral operational taxonomic units (vOTUs) were constructed by clus-
tering phage genomeswith a > 95% identity29 using dRep (v2.2.3)78 with
the default options. Representative sequences of each vOTU selected
by dRep were further clustered with reference sequences in RefSeq,
IMG/VR30, gut virome database (GVD)15, gut phage database (GPD)9,
and metagenomic gut virus (MGV) database31 with >95% identity and
>85% length coverageusing aniclust.py script in theCheckVpackage to
identify common sequences among the databases.

To further construct broader viral clusters (VC), proportions of
protein clusters shared between phages were assessed. First, to define
protein clusters, similarity searches of all protein sequences from all
the phages identified in this study were performed using DIAMOND
with themore-sensitive option (e-value <1E-5). Basedon the similarities
between proteins, protein clusters were defined by MCL (v14-137)79

with an inflation factor of 2. The percentage of shared protein clusters
was calculated for each phage pair, and phages sharing >20% of clus-
ters were grouped as a VC, which corresponds approximately to
family- or subfamily-level clusters7,37. Rarefaction curves of the vOTUs
and VCs were estimated with the iNEXT function in the iNEXT package
(v2.0.20)80. The similarity matrix of the phages based on the percen-
tage of shared protein clusterswas further projected by tSNE using the
tsne function in the Rtsne package (v0.16).

Taxonomy annotation of phages was performed with a voting
approach described previously16 with minor modifications. First, the
protein sequences of each phage were aligned to viral proteins
detected from phage genomes in RefSeq (n = 2609, in April 2020)
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using DIAMOND with the more-sensitive option. Then, the best-hit
taxonomy of each protein (family levels) was counted, and the most
common taxonomy was assigned to the phage if >20% of proteins in
the phage were aligned to the same taxonomy.

Phage lifestyles (i.e. virulent or temperate) were predicted by
BACPHLIP40 and alignments to reference bacterial genomes in the
RefSeq. Phages were defined as temperate if the BACPHLIP score was
>0.8 or the phage genomewas aligned to any reference genomes with
>1000bp alignment length with >95% identity.

Host prediction
Bacterial and archaeal genomes were downloaded from the RefSeq
database (in April 2019). To reduce the redundancy of genomes from
closely related strains in the same species (e.g. Escherichia coli), 10
genomes were selected randomly for species with more than 10 gen-
omes, and other genomes were excluded from the dataset. The
reference dataset consisted of 33,215 bacterial and 822 archaeal
genomes.

Host prediction of the identified phages was performed using
CRISPR spacers81. CRISPR spacers were predicted from the reference
microbial genomes and assembled contigs (>10,000bp) from the 4198
metagenomic datasets using PILER-CR (1.06)82. Short (<25 bp) or long
(>100bp) spacers were discarded. In total, 679,323 and
283,619 spacers were identified from the referencemicrobial genomes
and assembled contigs, respectively. Taxonomy information was
assigned to the assembled contigs if theywere aligned to themicrobial
reference genomes with >90% identity and >70% length coverage
thresholds usingMiniMap283. The CRISPR spacers weremapped to the
phage genomes using BLASTN with the option for short sequences:
-a20 -m9 -e1 -G10 -E2 -q1 -W7 -F F81. CRISPR spacers, which were map-
ped with 100% identity or 1 mismatch/indel with >95% sequence
alignment, were used for host assignment at the genus level. Assign-
ments of host species were checked manually, and if any of the fol-
lowing non-human intestinal species were assigned, the host was
excluded: Dickeya, Anaerobutyricum, Rubellimicrobium, Eisenbergiella,
Harryflintia, Leucothrix, Photorhabdus, Spirosoma, Syntrophobotulus,
Thermincola, Algoriphagus, Franconibacter, Kandleria, Lawsonibacter,
Methylomonas, Provencibacterium, Pseudoruminoccoccus, Rhodano-
bacter, Romboutsia, Sharpea, Varibaculum and Thioalkalivibrio.

Quantification of viral abundance and analysis of the virome
profile
To quantify the viral abundances in each sample, metagenomic reads
were mapped to the gene set of VHGs (Supplementary Data 3) of each
representative vOTU using Bowtie2 with a > 95% identity threshold,
and reads per kilobase million (RPKM) were calculated for each vOTU.
The reason for using only VHGs in the analysis was to avoid over-
counting of viral reads, which could be caused by spuriousmapping of
reads from horizontally transferred genes of other phages or bacterial
species. The α-diversity (Shannon diversity) of the vOTU-level viral
profile was calculated using the diversity function in the vegan pack-
age. The β-diversity (Bray-Curtis distance) between individuals was
assessed using the vegdist function, and the average distance against
other individuals was calculated for each individual. The VC-level viral
profile was obtained by summing all the RPKM of vOTUs for each VC.

Phylogenetic analysis of novel VCs
To construct phylogenetic trees for the vOTUs and reference gen-
omes, protein sequences of large terminases, portal proteins, and
major capsidproteins (Supplementary Data 3), which are often used to
construct phage phylogenetic trees7,9, were extracted from the vOTUs
in the 10 most abundant VCs (VC_19, 1, 2, 24, 12, 15, 3, 44, 18, 6), and
their homologues were searched for in the reference phage genomes
in RefSeq using DIAMONDwith themore-sensitive option (e-value <1E-
5). The collected protein sequences were aligned by MAFFT (v7.458)84

with the linsi option, and the alignments were trimmed by Trimal
(v1.4.rev15)85 with the automated1 option. Phylogenetic trees were
constructed by FastTree (2.1.10)86. The phylogenetic trees were
visualised with iTOL (v5)87. For each VC, vOTUs with the highest
number of genomes were selected, and their genomic structures were
visualised by the circlize package (v0.4.15)88.

Taxonomic and functional analysis of the bacteriome
Taxonomic and functional profiles of the bacteriomewere obtained as
described previously20. Briefly, bacterial profiles at the species
and genus levels were obtained with the single copy marker gene-
based method using mOTUs (v2.1.1)89. Functional profiles at the Kyoto
Encyclopaedia of Genes and Genomes (KEGG) orthology (KO) level
were obtainedbymapping themetagenomic reads to a non-redundant
gene set constructed from the 4198 subjects’ metagenomic data20.
Functional annotation of the non-redundant genes was performed
using eggNOG-mapper90, in which DIAMOND was used for alignment
to the eggNOG orthology database (version 4.5)91.

KOs involved in prokaryotic defence mechanisms, such as
CRISPR-Cas and RM (Supplementary Data 8)58, were collected, and
their total relative abundance in each system was calculated. Since
functional annotation for the Abi system is not included in the KEGG
database, we collected genes annotated as ‘abortive phage infection’
and ‘abortive phage resistance’ in the eggNOG annotation and calcu-
lated the total abundance. The 4198 individuals were classified into
three groups (high, middle, and low) based on tertiles of the total
abundance, and Shannon diversity of the virome was compared
among the three groups by the Wilcoxon rank-sum test.

Phage-host correlation analysis
To explore the phage-host association in the community, Spearman
correlations between relative abundances of vOTUs and microbial
species at the genus level were evaluated. If the vOTUwas predicted to
infect more than one genus (i.e. generalist phage), the correlation was
calculated for every predicted host. If a phage-host pair was absent (0
abundance) in a sample, the samplewas excluded from the correlation
analysis. vOTUs with average relative abundance >0.01% (n = 865) and
genera with average relative abundance >0.5% (n = 32) were included
in the analysis.

Analysis of VLPs and whole metagenomes from 24 faecal
samples
Quality filtering of sequenced reads from the 24 VLPs and whole
metagenomes was performed using fastp (version 0.20.1)92 with the
default parameters. Contamination with human (hg38) or phiX gen-
omes was excluded by mapping the reads to the genomes using
Bowtie2.

To exclude bacterial DNA contamination in the VLP dataset, we
performed further filtering. First, the VLP reads were assembled into
contigs using MEGAHIT and the contigs were checked for virus or not.
Contigs were defined as viral contigs if they were predicted as viruses
byDeepVirFinder (P-value <0.05) anddid not encode rRNAandmarker
genes checked by barrnap and fetchMG, respectively. Then, VLP reads
weremapped to the viral contigs usingBowtie2, and thosenotmapped
to the viral contigswereexcluded from theVLPdataset. Viralprofiles at
the vOTU and VC levels for the de-contaminated VLP and whole
metagenomic datasets were obtained with the same methodology for
the 4198-subject metagenomic dataset described earlier.

Association analysis between the virome and various host/
environmental factors
The association between each vOTU/VC and age/sex was assessed by
multivariable regression analysis considering the effects of other
covariates as described before20. Briefly, the relative abundance of
each vOTU/VC was log10-transformed, and single linear-regression
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analysis was performed using the transformed abundance as a
response variable andmetadata as an explanatory variable. This single
linear-regression analysis was performed for age, sex, and other
metadata (n = 230, Supplementary Data 2), and metadata significantly
associated with the vOTU/VC were determined (FDR<0.05) by taking
into account the total number of single regression analyses (number of
vOTU/VCs multiplied by number of metadata). Then, multiple
regression analysis was performed including all the sig-
nificant metadata in the single regression analysis as explanatory
variables. To exclude confounding factors, stepwise variable selection
was performed based on Akaike’s information criterion with the step
function. Metadata was defined as significantly associated with the
vOTU/VCs if they remained in the model with a P-value <0.05. All
regression models were constructed using the glm2 function in the
glm2 package (v1.2.1). In total, 390 vOTUs and 112 VCs, whose average
relative abundances in the 4198 metagenomic dataset were >0.05%
and>0.1%, respectively, were included in the analysis. For visualisation,
individuals younger than 20 years (n = 2) and older than 80 years
(n = 6) were excluded due to the low numbers of such individuals
(Fig. 5a, b).

Stepwise redundancy analysis was performed to evaluate the total
variance of the virome and bacteriome (relative abundance data)
explainedby eachmetadata category using theordriR2step function in
the vegan package (v2.5.7)93. To investigate the associations between
the virome/bacteriome and each single metadata item, permutational
analysis of variance was performed using the adonis function in the
vegan package based on the Bray–Curtis distance with 10,000 per-
mutations. P-values were corrected for multiple comparisons by the
Benjamini–Hochberg method94.

Statistics
All statistical analyses were conducted using R (v3.5.0) with two-sided
test and the Benjamini–Hochberg method for multiple comparisons
unless otherwise stated. Of the 4211metagenomic samples sequenced,
43 samples were excluded due to less reads (5million) than the others.
No statistical method was used to predetermine sample size.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequence statistics of the 4198 individuals and cohort-level summaries
of the metadata are available in Supplementary Data 1 and 2, respec-
tively. All circular and linear phage genomes detected in this study
(n = 4709) are available in the NCBI GenBank (PRJNA862966
[OP030729-OP031128 and OP072211-OP076519]) and at https://doi.
org/10.5281/zenodo.5645361. Reference bacterial, archaeal, viral and
plasmid genomes were downloaded from the RefSeq database. Gen-
omes of human gut phage constructed in previous studies were
downloaded as follows. GVD: https://datacommons.cyverse.org/
browse/iplant/home/shared/iVirus/Gregory_and_Zablocki_GVD_
Jul2020/. MGV: https://portal.nersc.gov/MGV/. GPD: http://ftp.ebi.ac.
uk/pub/databases/metagenomics/genome_sets/gut_phage_database/.
IMG/VR2: https://img.jgi.doe.gov/cgi-bin/vr/main.cgi.

Code availability
The custom phage-detection pipeline used in this study is available at
https://gitlab.com/suguru.nishijima/phage_detection.
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