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Abstract
Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of

the leading causes of cancer-related deaths worldwide, and is commonly treated with che-

motherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemo-

therapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies

have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may

also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838

expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces

cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in

erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we com-

bined mathematical modeling with a method for feature selection, the L1 regularization. Uti-

lizing an example model and simulated data, we demonstrated that this approach enables

the accurate identification and quantification of cell type-specific parameters. We applied

our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling gener-

ated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR

(qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR

(H838-HA-hEPOR). The established parsimonious mathematical model was able to simul-

taneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell

type-specific parameters were identified that included for example parameters for nuclear
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translocation of STAT5 and target gene induction. Cell type-specific differences in target

gene induction were experimentally validated by qRT-PCR experiments. The systematic

identification of pathway differences and sensitivities of EPOR signaling in CFU-E and

H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced sig-

naling in the tumor cells but leave the responses in erythroid progenitor cells unaffected.

Thus, the proposed modeling strategy can be employed as a general procedure to identify

cell type-specific parameters and to recommend treatment strategies for the selective tar-

geting of specific cell types.

Author Summary

Amajor challenge in the development of therapeutic interventions is the selective inhibi-
tion of a signal transduction pathway in one cell type such as a cancer cell leaving the
other cell type such as a healthy cell as unaffected as possible. Here, we propose a new
approach that combines mathematical modeling based on quantitative experimental data
with statistical methods. We demonstrate based on simulated data that our approach can
determine which parameters are the same and which parameters differ in two exemplary
cell types. We compare a lung cancer cell line to the precursor cells of red blood cells. We
show that the same signal transduction network induced by erythropoietin (EPO), a hor-
mone that is frequently employed to treat anemia in cancer patients, regulates survival of
both cell types. Based on our experimental data in combination with our computational
approach, we identify seven cell type-specific differences in this signaling pathway. Our
strategy allows predicting therapeutic targets that could be inhibited to interfere with sur-
vival of lung cancer cells while leaving production of red blood cells unaffected.

Introduction
Lung carcinoma is one of the leading causes of cancer-related deaths worldwide. The main
types of lung cancer are small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma
(NSCLC). NSCLC is the most frequent form with a prevalence of around 85% and can be clas-
sified in squamous-cell carcinoma, large-cell carcinoma, and adenocarcinoma which is the
most prevalent subgroup (40%) [1]. Because lung cancer metastasizes already at early stages
independent of the tumor size [2], most of the patients receive chemotherapeutic agents such
as cisplatin. As a side effect of chemotherapy, as well as due to tumor-related effects, anemia
frequently occurs [3]. Anemia is treated either by blood transfusion or by erythropoiesis stimu-
lating agents (ESAs) such as erythropoietin (EPO) alfa or beta [4]. EPO is the key regulator of
red blood cell production and ensures survival, proliferation and differentiation of erythroid
progenitors at the colony forming unit-erythroid (CFU-E) stage in the fetal liver, the adult
bone marrow and spleen. Biosynthesis of EPO in the kidney is stimulated by reduced blood
oxygen levels [5]. Unfortunately, recent studies suggested that EPO treatment could reduce the
overall survival of NSCLC patients [6]. Furthermore, expression of the EPO receptor (EPOR)
has been detected in some tumors and cancer cells including NSCLC cells [7–10]. Co-expres-
sion of EPO and the EPOR has been shown to be associated with poor survival of NSCLC
patients, even at stage I [11]. Because of these ambivalent effects, the treatment of lung cancer
patients with EPO in the context of cancer-related anemia is controversially discussed [12, 13].

How to Identify Parameter Differences between Cell Types

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005049 August 5, 2016 2 / 34

CancerSys network “LungSysII” (0316042A) RM,
MEB, WDL, UK (0316042G): BS, JT. German
Federal Ministry of Education and Research (BMBF)
within the Virtual Liver network (0315745): MW, UK
(0315766): CK, JT. German Federal Ministry of
Education and Research (BMBF) within the Liver
Systems Medicine network “LiSyM” (031L0042): MW,
UK (031L0048): BS, JT. German Center for Lung
Research (DZL) (82DZL00404): SD, FS, MW, UK,
CP. The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: AR is affiliated with Merrimack
Pharmaceuticals, Inc.



In addition to clinically administered recombinant EPO, endogenous EPO produced in the
kidney may also influence cancer cells.

It has been speculated that EPO might affect the survival of cancer cells [14]. The key signal-
ing pathway that is activated by EPO binding to the EPOR and that is involved in survival sig-
naling is the Janus kinase (JAK)2 / signal transducer and activator of transcription (STAT)5
pathway. EPOR is a member of the cytokine receptor superfamily and is present at the cell sur-
face as a homodimer [15]. Upon EPO binding, the receptor undergoes conformational changes
and activates the pre-bound tyrosine kinase JAK2 [16]. The activated JAK2 is transphosphory-
lated and phosphorylates (p) tyrosine residues on the EPOR cytoplasmic domain that serve as
docking site for the interaction with Src-homology (SH)2-domain containing proteins. The
phosphorylated EPOR-JAK2 complex is able to bind and phosphorylate the latent transcrip-
tion factor STAT5. Subsequently, pSTAT5 forms dimers that translocate to the nucleus, where
they induce the transcription of target genes. JAK2/STAT5 target genes such as cytokine-
inducible SH2-containing protein (CISHmRNA, translated to CIS) and suppressor of cytokine
signaling 3 (SOCS3mRNA, translated to SOCS3) are expressed that act as negative regulators
of JAK2/STAT5 signaling at the EPOR/JAK2 level [17]. Specifically, CIS inhibits STAT5 activa-
tion by binding to the EPOR, whereas SOCS3 binds to the activated receptor and the kinase
domain of JAK2, thereby inhibiting its tyrosine kinase activity [18–21]. In addition, protein
tyrosine phosphatases (PTPs) negatively regulate the activated EPOR-JAK2 complex [21]. It
has been shown that the PTP SHP1 negatively regulates EPOR signaling in hematopoietic cells
[22].

EPO acts on the erythroid lineage, particularly on CFU-E cells residing in the bone marrow
of human adults. It is difficult to obtain primary human CFU-E cells in adequate numbers to
perform time-resolved biochemical experiments required for mathematical modeling. How-
ever, murine CFU-E cells can be readily purified from fetal mouse liver preparations subjected
to negative depletion with lineage-specific antibodies [23] and thereby can be isolated in suffi-
cient quantities for data-based mathematical modeling. Therefore, we employed murine
CFU-E cells as a proxy for human CFU-E cells and as representative for healthy erythroid cells.

Recently, an ordinary differential equation (ODE) model of the EPO-induced JAK2/
STAT5 pathway in murine CFU-E cells was reported [19] that focused on the distinct roles of
SOCS3 and CIS and linked the integrated nuclear pSTAT5 response to cell survival. To inves-
tigate differences of EPO-induced JAK2/STAT5 signaling in hematopoietic and non-hemato-
poietic cell types like cancer cells, such an ODE model can be generalized. The parameters of
the generalized mathematical model can be estimated individually using time- and dose-
resolved quantitative data for the studied cell types. A major challenge is to identify significant
differences in parameter values that are characteristic of a respective cell type. In general, one
could discriminate between cell type-specific parameters and cell type-independent parame-
ters. Mathematically, all combinations of parameters being either cell type-specific or cell
type-independent have to be tested. Finding the exact solution of this model selection task is
challenging as the number of candidate models grows exponentially with the number of
model parameters [24]. Established approaches to approximate the solution of such a selec-
tion task have been developed mainly in classical statistics and comprise approaches such as
lasso (least absolute shrinkage and selection operator) [25], elastic net [26], forward selection
and backward elimination [27], and combinations thereof [28]. These approaches favor small
models by penalizing increasing numbers of parameters. Their main difference is the metric
quantifying the model complexity. In the lasso approach, the L1 metric, i.e., the absolute value
of differences to zero is used. It has been shown that under certain conditions, the L1 metric
produces similar results as the L0 metric that penalizes only the number of parameters [29].
However, due to convexity and continuity of the L1 metric, it is considered favorable over L0
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[30]. The L2 metric, on the other hand, does not lead to a sparse (parsimonious) model and is
therefore not suitable for our task. Because L1 regularization techniques have been mainly
developed for linear models, only a subset of existing algorithms can be employed for models
that are nonlinear, which is a prevalent property of mathematical models based on coupled
ODEs. Additional issues arising from nonlinearity comprise local optima, non-identifiabil-
ities, and decreased performance of numerical calculations in general. To tackle these chal-
lenges, state-of-the-art implementations for optimization in nonlinear ODE systems have
been developed [31]. We utilize these established approaches and extend their functionality
by identifying parameter differences with L1 regularization. For a successful implementation,
strategies to consider discontinuities in the derivatives and adaptation of convergence criteria
have to be taken into account [32].

Here, we show on the basis of simulated data that our implementation for modeling of non-
linear ODE systems in combination with an L1 approach is a suitable method to infer cell type-
specific parameters of two cell types and demonstrate the interpretation of the results. This
approach is then applied to assess parameter differences in EPO-induced JAK2/STAT5 signal-
ing between the NSCLC cell line H838 that expresses the EPOR [9, 10, 33] and CFU-E cells.
Furthermore, a sensitivity analysis of the biological readout is performed to discover potential
targets for intervention that specifically reduce the effects of EPO on the cancer cells while leav-
ing the EPO-induced survival of hematopoietic cells unaffected.

Results

Expression and function of EPOR in the NSCLC cell line H838
We previously showed that the NSCLC cell line H838 expresses the EPOR at the mRNA and
protein level, albeit at rather low levels [10]. To more robustly detect EPO-induced phosphory-
lation of signaling components and expression of target genes in this cell line, we stably
expressed high levels of HA-tagged human EPOR (HA-hEPOR) in H838 cells by retroviral
transduction (H838-HA-hEPOR). The amount of EPOR protein present in the human lung
cancer cell line H838 and its derivative H838-HA-hEPOR was determined by immunoprecipi-
tation followed by quantitative immunoblotting and compared to the amount present in
mouse CFU-E cells (Fig 1A). A protein band in the immunoblot that corresponds to the EPOR
was detected in the analyzed cell types. As shown in S1A and S1B Fig, the hEPOR levels in
H838-HA-hEPOR cells were increased 170-fold compared to H838 cells. The shift in molecular
weight of the EPOR in H838-HA-hEPOR cells is most likely due to the HA-tag introduced into
the EPOR. For absolute quantification of receptor expression levels, signal intensities of puri-
fied protein standards of mouse or human GST-tagged EPOR [34] were used to establish cali-
bration curves and to subsequently estimate the number of EPOR molecules per cell (S1D Fig).
As shown in S1 Table, H838-HA-hEPOR cells harbor 620 000 ± 200 000 hEPOR molecules per
cell, H838 cells 3 600 ± 1 200 hEPOR molecules per cell and CFU-E cells 4 300 ± 2 200 mEPOR
molecules per cell.

To assess the activation of signal transduction we examined ligand-induced phosphoryla-
tion of the EPOR (Fig 1A). H838 and H838-HA-hEPOR cells were treated for 10 min with 10
U/ml EPO beta and CFU-E cells for 10 min with 5 U/ml EPO alfa or were left untreated. In
each case, a band in the immunoblot corresponding to the phosphorylated EPOR was detect-
able in the treated samples, but was absent in the unstimulated controls. The amount of
pEPOR in H838-HA-hEPOR upon stimulation with 10 U/ml EPO beta was only approxi-
mately 12-fold increased compared to H838 (S1C Fig), indicating that in cells expressing
elevated levels of the EPOR such as H838-HA-hEPOR possibly the transport of the receptor
to the plasma membrane or phosphorylation of the EPOR by JAK2 might be limiting.
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Fig 1. Functional and signaling-competent EPOR in the NSCLC cell line H838 and CFU-E cells. (A) Left panel: H838 and H838 cells stably
overexpressing HA-tagged human EPOR (H838-HA-hEPOR) were either left untreated (-) or stimulated with 10 U/ml EPO beta (+). Cells were lysed
after 10 min and hEPOR proteins were subjected to immunoprecipitation (IP, MAB 307, R&D) and phosphorylated (p) EPOR (4G10, Merck Millipore)
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S2A and S2B Fig show that EPO alfa and EPO beta activate EPO-induced signaling at a com-
parable extent.

Further, we examined EPO-induced JAK2/STAT5 survival signaling in the NSCLC cell line
H838 and its derivative H838-HA-hEPOR because it had been reported that EPO induces sur-
vival signaling via the JAK2/STAT5 pathway in CFU-E cells [19]. In H838 cells, pJAK2 was
detected upon stimulation with 100 U/ml and in H838-HA-hEPOR an EPO dose-dependent
increase in JAK2 phosphorylation was observed (Fig 1B). Because the latent transcription fac-
tor STAT5 is a key mediator of the JAK2/STAT5 signaling pathway, we determined the degree
of STAT5 phosphorylation by mass spectrometry in H838 and H838-HA-hEPOR cells treated
with different doses of EPO beta (Fig 1C). The highest degree of STAT5 phosphorylation was
observed at 10 U/ml EPO beta, with approximately 60% of STAT5 in H838-HA-hEPOR cells
being phosphorylated and 3% in H838 cells. As quantified in S2C and S2D Fig and summarized
in S1 Table both H838 and H838-HA-hEPOR harbor approximately 1 200 JAK2 and 90 000
STAT5 molecules compared to 24 000 JAK2 and 20 000 STAT5 molecules in CFU-E. To also
consider the cytoplasmic and nuclear volume of the cell types analyzed, trypsinized cells were
analyzed by fluorescence microscopy and the diameter of the cell and of the nucleus was deter-
mined (S3A and S3B Fig). CFU-E cells with a cell volume of 700 μm3 and a nuclear volume of
300 μm3 are much smaller compared to H838 cells that have a cell volume of around 14
000 μm3 and a nuclear volume of around 2 000 μm3. The respective volumes were utilized to
convert number of molecules per cell into cell type-specific initial concentrations, which are
summarized in S1 Table.

To test whether EPO influences survival and may reduce cisplatin-induced apoptosis in
NSCLC cells, H838 and H838-HA-hEPOR cells were treated with 5 mg/l of the chemothera-
peutic agent cisplatin in combination with 10 U/ml EPO beta or were left untreated for three
days. Cell viability was measured every 24 hours by the CellTiter-Blue assay (Fig 1D, S4 Fig). In
untreated proliferating H838 and H838-HA-hEPOR cells, a two- to three-fold increase in cell
numbers was observed. No significant impact of EPO beta on cell viability was detected during
this observation period. The treatment of H838 and H838-HA-hEPOR with 5 mg/l cisplatin
reduced cell viability or at least decreased proliferation compared to the untreated control.
Interestingly, co-treatment with 10 U/ml EPO beta decreased the impact of cisplatin in H838
and H838-HA-hEPOR at each time point. While there was some variability in the response of
these cells to cisplatin, the rescue effect induced by EPO beta was consistent. To validate these
findings, the Casper3-GR FRET (fluorescence resonance energy transfer)-based sensor was
expressed in H838-HA-hEPOR (H838-HA-hEPOR-Casper3-GR) and caspase-3 activity, a key
indicator for apoptotic responses, was measured by life-cell imaging in a time-resolved manner
(Fig 1E, S5 Fig). As a positive control 10 μM staurosporine was applied that is known to rapidly

and total EPOR (C-20, Santa Cruz) were detected by quantitative immunoblotting (IB). The complete immunoblot is shown in S1 Fig. Right panel:
murine (m) CFU-E cells were either left untreated (-) or stimulated with 5 U/ml Epo alfa (+). Cells were lysed after 10 min and mEPOR proteins were
subjected to IP (M-20, Santa Cruz). pEPOR (4G10, Merck Millipore) and total EPOR (M-20, Santa Cruz) were detected by IB with
chemiluminescence by CCD camera. The experiment was performed in biological triplicates. (B) H838 and H838-HA-hEPOR cells were treated with
the indicated doses of EPO beta. Cells were lysed after 10 min and JAK2 proteins were subjected to IP. pJAK2 and total JAK2 were detected by IB
with chemiluminescence by CCD camera. (C) H838 and H838-HA-hEPOR cells were treated with the indicated doses of EPO beta. Cells were lysed
after 20 min and STAT5 proteins were subjected to IP. The degree of phosphorylation of STAT5 was measured with mass spectrometry. For H838
cells, the average degree of STAT5 phosphorylation based on biological duplicates is shown. (D) H838 and H838-HA-hEPOR cells were treated for
three days with 5 mg/l cisplatin or left untreated. Additionally, cells were treated with 10 U/ml EPO beta and the cell viability was measured with
CellTiter-Blue assay. The error bars represent standard deviation of biological replicates (n� 5). The experiment was performed on two independent
days (second replicate in S4 Fig). (E) H838-HA-hEPOR cells expressing the Casper3-GR FRET-based sensor (H838-HA-hEPOR-Casper3-GR)
were treated with 5 mg/l cisplatin, EPO beta, a combination of both or left untreated. Staurosporine (10 μM) was used as positive control for induction
of apoptosis. Casper3-GR FRET signal was measured by life-cell imaging for 60 hours. Caspase-3 activity was determined based on the green-to-
red ratio and normalized to the untreated control (n = 2, second replicate in S5 Fig).

doi:10.1371/journal.pcbi.1005049.g001
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induce caspase-3. Indeed, the effect of staurosporine was observed within 5 hours upon treat-
ment whereas in untreated cells no peak of caspase-3 activation was detected. Upon treatment
with 5 mg/l cisplatin the maximum peak of caspase-3 activity was reached at around 24 hours
followed by a strong signal decrease due to cells undergoing apoptosis. Upon co-treatment
with 10 U/ml or 500 U/ml EPO the amplitude of the cisplatin-induced maximal caspase-3 acti-
vation showed an EPO dose-dependent reduction, which is in line with the cell viability assay,
and a peak shift to around 15 hours. Treatment with EPO alone did not induce caspase-3
activation.

Concluding, we demonstrated that, similar to CFU-E, the EPOR expressed in H838 cells
was capable of activating the JAK2/STAT5 signaling cascade. Further, in line with the observa-
tion that EPO-induced activation of JAK2/STAT5 signaling correlates with survival signaling
[19], we showed in co-treatment experiments that EPO reduces the extent of cisplatin-induced
apoptosis in H838 and H838-HA-hEPOR cells and thus exhibits a rescuing effect in the lung
cancer cell line and its derivative. Due to the similarity of the core signaling components, it is
difficult to predict cell type-specific differences in the signaling network based only on experi-
mental observations. We developed a systematic mathematical modeling approach for the
unbiased identification of cell type-specific differences with the aim to propose strategies to
exclusively target the lung cancer cells but not the erythroid progenitor cells.

Development of a strategy to identify cell type-specific parameters
To predict cell type-specific model parameters between two different cell types, we propose an
ODE-based mathematical modeling strategy in combination with a L1 regularization method. To
show that this approach is capable to identify these parameter differences, first an in silicomodel
with simulated data was investigated. The exemplary mathematical model mimics a two-step
phosphorylation cascade in two different cell types, in which a protein (Protein) is irreversibly
converted into a phosphorylated protein (pProtein) with rate k1 followed by another phosphory-
lation step resulting in a doubly phosphorylated protein (ppProtein). This second step can be
reversed by a dephosphorylation reaction (Fig 2). The ppProtein and its intermediate pProtein
equilibrate depending on the ratio of the forward (k2) and backward reaction (k3). The corre-
sponding differential equation system is given by:

d½Protein�
dt

¼ �k1 � ½Protein�
d½pProtein�

dt
¼ k1 � ½Protein� � k2 � ½pProtein� þ k3 � ½ppProtein�

d½ppProtein�
dt

¼ k2 � ½pProtein� � k3 � ½ppProtein�

The model structure and the parameters k1 and k2 were chosen to be identical for cell type 1
and cell type 2. In contrast, the following two parameters were set as cell type-specific: The rate
k3 was set to 0.5 min-1 in cell type 1 and 0.1 min-1 in cell type 2 and the parameter [Protein]t = 0

was defined as 1 nM in cell type 1 and 2 nM in cell type 2. The initial concentration of pProtein
and ppProtein at t = 0 min were assumed to be zero in both cell types.

The ODE solution was calculated using the D2D software [31] and data (black dots) were
simulated by adding normally distributed noise (σ = 0.1) (Fig 2). The model trajectories are
depicted as black lines and the shading represents the noise distribution. To approximate a
realistic setting, only two proteins were assumed to be measurable and sampling time points
were not equal. Hence, data was available for Protein (n = 21) and ppProtein (n = 10).
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Fig 2. Example model with simulated data for two different cell types. The process diagram of a two-step phosphorylation
reaction (Protein!pProtein!ppProtein) is shown according to Systems Biology Graphical Notation. The ODE was numerically
solved over time for two cell types that differ in the initial protein concentration ([Protein]t = 0) and in one kinetic rate (k3). The initial

How to Identify Parameter Differences between Cell Types

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005049 August 5, 2016 8 / 34



To estimate parameters and identify cell type-specific differences given only by the model
structure and the simulated data, the model was parameterized with parameter pi for cell type 1
and ri � pi for cell type 2, with ri denoting fold-changes between both cell types. After calculating
the maximum likelihood estimates individually for cell type 1 and 2, the regularization weight
λ of the constrained likelihood

C ¼ Lcell type 1 þ Lcell type 2 þ l
X

i
jlog10rij

was scanned. Here, Lcell type 1 and Lcell type 2 denote the likelihood (i.e. the negative two-fold
log-likelihood) of the respective cell type and the last term regularizes the fold-changes ri of
parameters between the cell types. If the parameter pi is the same in both cell types, ri = 1 and
the regularization term is zero. To obtain the regularization path for all parameters, we gradu-
ally increased λ from 10−4 to 104 and re-estimated the constrained likelihood at each step.

With increasing regularization weight λ, the number of cell type-specific parameters
decreased until all parameters were independent from the cell type (Fig 3A). To determine
the optimal regularization weight λ, i.e. to statistically evaluate the minimum number of cell
type-specific parameters that are necessary for the model to sufficiently describe the data
(parsimonious model), the likelihood ratio test was utilized. The L1 regularization was used
to select cell type-specific parameters. To reduce bias, the parameters of the non-regularized
parsimonious model were then estimated in a second step. The likelihood ratio test statistic
D = Lλ − Lfull was used, where Lfull denotes the likelihood of the full model with only cell
type-specific parameters (M) and Lλ the likelihood of a model with N cell type-specific
parameters that were selected for a given λ. If D< χ2dof,α, the smaller model cannot be
rejected based on the χ2-distribution for a given confidence level α and degrees of freedom
(dof =M − N).

In Fig 3B, the test statistic D is shown by a solid blue line and the statistical threshold based
on the likelihood ratio test is shown as a dashed red line. The crossing point of both lines
defines the parsimonious model, in which only relevant parameters are defined as cell type-
specific. The so-called regularization path shown in Fig 3C indicates the fold-changes between
cell type 1 and cell type 2 for all parameters at a given regularization weight. The colors red or
blue show whether a parameter is larger in cell type 1 or 2, respectively. The regularization
path is also shown in S6A Fig as a line plot. In our example, the parsimonious model that is
indicated by the vertical dashed line (Fig 3A, 3B and 3C) has two cell type-specific parameters.
These two parameters were the rate k3 and the initial concentration of Protein [Protein]t = 0,
which could be reconstructed from the example model as cell type-specific (indicated with
asterisks in Fig 3C and S6A Fig). We determined the relative difference and by a profile likeli-
hood approach [35] the corresponding confidence interval (S6B Fig): [Protein]t = 0 is larger in
cell type 2 by a factor of 1.88 ± 0.17 (true value is 2) and k3 is larger in cell type 1 by a factor of
4.71 ± 1.20 (true value is 5).

To illustrate how well individual models that differ in the number of cell type-specific
parameters can describe the simulated data, model trajectories of three different scenarios were
plotted with the simulated data (Fig 3D). The model with only cell type-specific parameters

concentrations of the phosphorylated compounds were set to zero ([pProtein]t = 0 = [ppProtein]t = 0 = 0). The second phosphorylation
step is reversible and the dephosphorylation rate (k3) was assumed to be cell type-specific. The parameters for the phosphorylation
steps (k1, k2) are the same for both cell types. Simulated data points are depicted as black dots, and the grey shading indicates the
standard deviation (σ = 0.1) of the simulated measurement errors. Model trajectories are displayed as black lines.

doi:10.1371/journal.pcbi.1005049.g002
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(green dashed line), which is the largest model and has the highest degree of freedom, was
capable to describe all data sets. The smallest model with no cell type-specific parameters (blue
dashed line) was not in statistical agreement with the simulated data, because e.g. for both
cell types the species “ppProtein” was not correctly described. In line with the likelihood ratio
test, the parsimonious model with only relevant cell type-specific parameters (solid red line)
described the simulated data to a comparable extent as the model with only cell type-specific
parameters.

In sum, the L1 regularization was able to reconstruct cell type-specific parameters for simu-
lated data using a single scan of the regularization weight λ, suggesting that our implementa-
tion for dynamic ODE-based mathematical modeling in combination with L1 regularization is
appropriate to reveal differences between two different cell types.

Fig 3. L1 regularization recovers cell type-specific parameters. (A) The dependency of the predicted number of cell type-specific parameters and
the regularization weight λ is shown. (B) The likelihood ratio test was performed for each number of cell type-specific parameters. If the test statistics
(blue), i.e. the mismatch between data and model, is larger than the statistical threshold (red dashed), the regularization weight λ was too large
hence the model was rejected. The crossing of the blue and the dashed red line corresponds to the parsimonious model (dashed black line). (C) The
regularization path of the four parameters fold-changes is shown. The regularization-dependent parameter differences are indicated with shades of
red (higher in cell type 1) to blue (higher in cell type 2). The asterisks indicate the identified parameter differences. (D) Model trajectories and
simulated data for three exemplary scenarios. The dashed green line shows the dynamics for only cell type-specific parameters. In contrast, the blue
line displays the model trajectories for no cell type-specific parameters, which is unable to describe the simulated data. Finally, the parsimonious
model (solid red) is able to describe the simulated data with only two relevant cell type-specific parameters recovering the simulated parameter
differences.

doi:10.1371/journal.pcbi.1005049.g003
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Generalized mathematical model structure of the EPO-induced JAK2/
STAT5 signaling pathway in CFU-E and H838 cell types
To pinpoint cell type-specific differences in EPO-induced JAK2/STAT5 signaling in CFU-E
cells and H838 & H838-HA-hEPOR cells by the approach introduced above, the previously
published mathematical model of EPO-induced JAK2/STAT5 signaling in murine CFU-E
cells [19] was used as reference model structure: The JAK2/STAT5 model for mCFU-E cells
described the EPO-induced JAK2 activation in the EPOR-JAK2 complex, the subsequent phos-
phorylation of the EPO receptor, attenuation by the phosphatase SHP1, the activation of the
transcription factor STAT5 by the EPOR-JAK2 complex and the STAT5 transport from cytosol
into and out of the nucleus, as well as the induced transcription and translation of the negative
feedback regulators SOCS3 and CIS. To describe EPO-induced JAK2/STAT5 signaling in
human H838 and H838-HA-hEPOR cells, a generalized model structure was developed by
adding the following components to the reference model: (i) Basal RNA activation rates were
included, because we observed that basal CISHmRNA and SOCS3mRNA is also reduced
by inhibiting transcription (S7A and S7B Fig). (ii) A dephosphorylation step of nuclear
phosphorylated (np) STAT5 was included to be able to distinguish dephosphorylation and
nuclear export of STAT5 [36]. (iii) The regulation of the SOCS3 promotor binding activity by
npSTAT5 was described by a Hill coefficient to allow non-linear transcriptional activity. In
addition, the receptor phosphatase SHP1 that is known to be restricted to hematopoietic cells
was substituted by the general term PTP (Fig 4).

The generalized model structure was parameterized based on cell type-specific quantitative
data. First, the model was calibrated by directly implementing cell type-specific quantities for
H838 and H838-HA-hEPOR cells such as cellular and nuclear volumes and the initial concen-
trations of the EPOR as well as JAK2 and STAT5 together with their respective experimental
error (summarized in S1 Table). As the ratio of the EPOR and JAK2 was different for H838
and H838-HA-hEPOR cells possibly resulting in a saturation of the phosphatase in H838-HA-
hEPOR cells, distinct properties were assumed for the phosphatase PTP in H838-HA-hEPOR
cells. Except for this difference and the number of receptors on the surface as shown in S1 Fig,
the JAK2/STAT5 signaling models for H838 and H838-HA-hEPOR cells were parameterized
identically. Therefore, H838 and H838-HA-hEPOR cells were treated as the same cell type but
with different conditions.

To calibrate the model for CFU-E cells, quantitative data of the reference model [19] was
reutilized (open circles in Fig 5). For the NSCLC cell line H838 and its derivative H838-HA-
hEPOR, quantitative time-resolved data was generated (black closed circles in Fig 5). For
H838 cells, the dynamics of pEPOR, pJAK2 and pSTAT5 and the expression of CISHmRNA
upon stimulation with 10 U/ml EPO beta were determined. For H838-HA-hEPOR cells, the
amount of total and phosphorylated STAT5, pEpoR, pJAK2 and the expression of CISH and
SOCS3mRNA were measured upon stimulation with 10 U/ml EPO beta. While the temporal
changes of pEPOR were similar in CFU-E, H838-HA-hEPOR and H838 cells, the dynamics
of CISHmRNA was more transient in CFU-E cells, while pSTAT5 was more sustained in
H838-HA-hEPOR cells than in H838 cells. SOCS3mRNA, on the other hand, was more
sustained in CFU-E cells than in H838-HA-hEPOR cells. Thus, we observed substantial dif-
ferences in the dynamics of signaling components in the three cell types analyzed. We per-
formed a multitude of additional measurements with different conditions (S7 Fig). The
basal expression levels of CISHmRNA and SOCS3mRNA were determined for CFU-E and
H838-HA-hEPOR cells by applying the transcription inhibitor actinomycin D. Time- and
dose-resolved protein quantification was performed by quantitative immunoblotting and rel-
ative mRNA quantification by qRT-PCR. The degree of STAT5 phosphorylation (pSTAT5)
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Fig 4. Generalized mathematical model structure of the EPO-induced JAK2/STAT5 signaling pathway. The process diagram of the EPO-induced
JAK2/STAT5 signaling pathway model is shown according to Systems Biology Graphical Notation. The binding of the ligand EPO to its cognate receptor
results in the phosphorylation of first JAK2 and then of the EPOR (pEPORpJAK2). STAT5 is recruited by pEPOR and phosphorylated by pJAK2 and
translocates to the nucleus where it induces the transcription of the negative feedback regulators CISHmRNA and SOCS3mRNA. Protein tyrosine
phosphatase (PTP) regulates the dephosphorylation of the EPOR-JAK2 complex.

doi:10.1371/journal.pcbi.1005049.g004
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was measured for both the lung cancer cell line and its derivative by quantitative mass
spectrometry.

The generalized model structure comprised 25 kinetic parameters and 3 initial concentra-
tions (the EPOR-JAK2 complex, STAT5 and PTP at time point 0). Assuming that all kinetic
parameters and initial concentrations were cell type-specific (i.e. different parameters for
CFU-E and for H838 & H838-HA-hEPOR cells), this model was calibrated based on the exper-
imental data of CFU-E (516 data points) using 83 additional observation parameters and of
H838 and H838-HA-hEPOR cells (625 data points) using 77 additional observation parame-
ters. For global optimization of the likelihood, a multi-start deterministic strategy was applied

Fig 5. Model selection. The model trajectories for a selection of key pathway components are shown for CFU-E, H838 and H838-HA-hEPOR cells. This
includes expression of the EPOR targetsCISHmRNA and SOCS3mRNAmeasured by qRT-PCR as well as pEPOR, pJAK2 and cytoplasmic STAT5
data measured by quantitative immunoblotting. The amount of pSTAT5 was determined by either mass spectrometry or quantitative immunoblotting. The
closed circles represent experimentally measured data in H838 and H838-HA-hEPOR cells. CFU-E data previously published [19] are shown as circles.
The lines depict the three applied model strategies: dashed green (only cell type-specific parameters), dashed blue (no cell type-specific parameters) and
solid red (parsimonious model, only relevant cell type-specific parameters). The parsimonious model describes the data similarly to the model with only
cell type-specific parameters, whereas the trajectories of the model without cell type-specific parameters are not in line with the experimental data, e.g. for
SOCS3mRNA in CFU-E and for pSTAT5 in H838. All data sets, replicates and trajectories of the parsimonious model are shown in S8 and S9 Figs.

doi:10.1371/journal.pcbi.1005049.g005
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[37]. The model could describe all data sets of the cell types tested, shown representatively by
the model trajectory of the model with only cell type-specific parameters (dashed green line in
Fig 5). Concluding, we identified a model structure that was able to describe the data sets of
EPO-induced JAK2/STAT5 signaling in CFU-E, H838 and H838-HA-hEPOR cells.

L1 regularization identifies cell type-specific parameters
Our experimental observations suggested that core reactions of the pathway operate compa-
rable in the different cell systems. We therefore tested whether it is possible to identify cell
type-independent and cell type-dependent parameters to establish a parsimonious model.
The parsimonious model is defined as the model with the smallest number of cell type-spe-
cific parameters that is still compatible with the experimental data. To infer cell type-specific
parameters, the L1 regularization strategy was applied while parameterizing the mathematical
model based on the experimental data established for the different cell types. We tested the
25 kinetic parameters and the initial concentrations of PTP, while the initial concentrations
of the EPOR-JAK2 complex and STAT5 were fixed to the measured values (S1 Table). As
expected, by increasing the regularization weight the number of cell type-specific parameters
was gradually decreased (Fig 6A). In analogy to the example (Fig 3), the parsimonious model
was determined using the likelihood ratio test (blue line in Fig 6B). The statistical threshold
corresponding to a significance level α = 0.05 is shown by the red dashed line. At the crossing
point of these two lines, the parsimonious model with relevant cell type-specific parameters
is defined and depicted by the dashed black vertical line in all panels of Fig 6. The parsimoni-
ous model with the minimal number of cell type-specific parameters (red line, Fig 5) resulted
in trajectories describing the data and showed similar performance as the model with only
cell type-specific parameters (dashed green line, Fig 5). On the contrary, the model with only
cell type-independent parameters (dashed blue line, Fig 5) was not capable of representing
the dynamics of the data as evidenced e.g. by the difference of the model trajectory and the
experimental data of SOCS3mRNA. The parsimonious model simultaneously described all
experimental data measured in CFU-E (S8 Fig), H838-HA-hEPOR (S9A and S9B Fig) and
H838 (S9B and S9C Fig).

Seven relevant cell type-specific parameters are highlighted with an asterisk in the regular-
ization path of the 26 parameters in Fig 6C and in an alternative representation in S10A Fig.
We ensured significance by calculating the confidence intervals of these parameter differ-
ences (S10B Fig). Table 1 provides a description of the 26 parameters and the model-pre-
dicted differences between CFU-E cells and H838 & H838-HA-hEPOR cells. The cell type-
specific parameters predicted to have higher values in CFU-E cells (depicted in red, Fig 6C)
were the CISHmRNA turnover rate (CISHRNAturn), the activation rate of the EPOR by
JAK2 (EPORactJAK2) and the activation rate of JAK2 by EPO (JAK2actEPO). In contrast,
the parameters that were predicted to have higher values in the H838 & H838-HA-hEPOR
cells (depicted in blue, Fig 6C) were the parameter inversely defining the delay in SOCS3
mRNA production (SOCS3RNAdelay), the SOCS3 promoter activity (SOCS3prom) the
import rate of pSTAT5 into the nucleus (STAT5imp) and the deactivation rate of STAT5 in
the nucleus (nSTAT5deact).

The parameter that showed strongest evidence for a difference between both cell types was
the parameter regulating npSTAT5-induced SOCS3 promoter activity (SOCS3prom) (Fig 6C).
The model predicted a linear correlation of the SOCS3mRNA production rate and the concen-
tration of npSTAT5 for CFU-E cells (S11A Fig). In contrast, the same prediction analysis for
H838 & H838-HA-hEPOR cells indicated a threshold behavior of the SOCS3mRNA produc-
tion rate with respect to npSTAT5. The analysis showed that in these cells a certain amount of
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Fig 6. Identification of cell type-specific differences. (A) The number of cell type-specific parameters in dependency of the regularization weight λ
is shown. (B) The likelihood ratio test statistics was calculated for each regularization weight λ, resulting in a nested sub-model with a number of cell
type-specific parameters that is smaller compared to the full model. If the test statistics (blue) is larger than the statistical threshold (red dashed), the
model reduction step was rejected. The crossing of the blue and the dashed red line corresponds to the parsimonious model (dashed black line). (C)
The regularization path of the 26 parameters is shown. The regularization-dependent parameter differences are indicated with shades of red (higher in
CFU-E) to blue (higher in H838 & H838-HA-hEPOR). The asterisks depict the identified parameter differences.

doi:10.1371/journal.pcbi.1005049.g006
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activated STAT5 has to be present in the nucleus to induce SOCS3mRNA synthesis (S11B
Fig). To test whether this difference between cell types can be explained by differences in pro-
moter binding elements or epigenetic modifications, the human and murine SOCS3 promoter
was analyzed for STAT5 binding sites. Indeed, the murine promoter contains four STAT5
binding sites, whereas the human harbors only two (S11C Fig). Additionally, we performed
methylation analyses and demonstrated that the SOCS3 promoter is accessible in both CFU-E
and H838 cells (S11C Fig).

Taken together, the selected parsimonious model could simultaneously describe the data
sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven relevant cell type-specific parameters
were identified and three of these parameters had higher values in CFU-E cells and four had
higher values in H838 & H838-HA-hEPOR cells.

Validation of the predicted cell type-specific models
The parsimonious model predicted several cell type-specific parameters comprising mRNA
processing: the turnover rate of the CISHmRNA, the SOCS3 promoter activity and the SOCS
mRNA delay parameter. Therefore, we selected mRNA processing as a biological process that
can be measured experimentally and is connected to parameters identified by the model as cell
type-specific for experimental validation of the parsimonious model. We hypothesized that by

Table 1. Parameters and identified cell type-specific differences.

Name Description > in H838 & H838-HA-hEPOR > in CFU-E Factor

CISHRNAbasal Basal production rate of CISHmRNA

CISHRNAdelay Delay parameter for CISHmRNA production

CISHRNAeqm CISHmRNA equilibrium concentration

CISHRNAturn CISHmRNA turnover rate * 2.4 ± 0.5

CISeqm CIS equilibrium concentration

CISinh Inhibition strength imposed by CIS

CISturn CIS turnover rate

EPORactJAK2 Activation rate of EPOR by pJAK2 * 12 ± 4

JAK2EPORdeactPTP Deactivation rate of JAK2 and EPOR by PTP

JAK2actEPO Activation rate of JAK2 by EPO * 16 ± 3

PTPactEPOR Activation rate of PTP by EPOR

PTPdeact Deactivation rate of PTP

SOCS3RNAbasal Basal production rate of SOCS3mRNA

SOCS3RNAdelay Delay parameter for SOCS3mRNA production * � 6.5

SOCS3RNAeqm SOCS3mRNA equilibrium concentration

SOCS3RNAturn SOCS3mRNA turnover rate

SOCS3eqm SOCS3 equilibrium concentration

SOCS3inh Inhibition strength imposed by SOCS3

SOCS3prom SOCS3 promoter activity * 3.7 ± 0.5

SOCS3turn SOCS3 protein turnover rate

STAT5actEPOR Activation rate of STAT5 by pEPOR

STAT5actJAK2 Activation rate of STAT5 by pJAK2

STAT5exp Export rate of STAT5 from nucleus

STAT5imp Import rate of STAT5 to nucleus * 4.9 ± 0.7

[PTP]t = 0 Initial PTP concentration

nSTAT5deact Deactivation rate of npSTAT5 in nucleus * 12 ± 4

doi:10.1371/journal.pcbi.1005049.t001
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the application of the transcriptional inhibitor actinomycin D the dynamics of CISHmRNA
and SOCS3mRNA would be altered in a cell type-specific manner.

First, the dynamics of CISHmRNA and SOCS3mRNA were predicted for CFU-E and
H838-HA-hEPOR cells for 300 min upon treatment with EPO (black) or EPO in combination
with actinomycin D (blue) (Fig 7). We proposed by experimental design that the transcrip-
tional inhibitor should be applied at the predicted peak of mRNA expression upon EPO stimu-
lation, which was after 60 min for CFU-E cells treated with 5 U/ml EPO alfa and after 30 min
for H838-HA-hEPOR stimulated with 10 U/ml EPO beta (blue arrows in Fig 7). To assess the
uncertainty of the model dynamics, the prediction profile likelihood [38, 39] was utilized. The
shading with dotted lines indicates the 1σ confidence interval. The EPO-induced dynamic of
CISHmRNA and SOCS3mRNA was predicted to show a transient peak followed by a new
steady state in both cell types. Addition of actinomycin D was predicted to result in a more dra-
matic decrease after the treatment and a steady state that is lower compared to EPO treatment
alone. The SOCS3mRNA in H838-HA-hEPOR cells was predicted to even decrease below the
starting level after around two hours.

To experimentally validate these predictions, H838-HA-hEPOR and CFU-E cells were
treated either with 10 U/ml EPO beta or 5 U/ml EPO alfa alone (black dots) or in combination
with 1 μg/ml actinomycin D (blue dots) at the predicted time points of either 60 min (CFU-E)
or 30 min (H838-HA-hEPOR). The dynamics of CISHmRNA and SOCS3mRNA were mea-
sured by qRT-PCR. Unknown experiment-specific offset and scaling parameters were

Fig 7. Experimental validation of the cell type-specificCISH and SOCS3mRNA parameters. The parsimonious model was employed to
predict the dynamics of CISHmRNA and SOCS3mRNA upon treatment with a transcriptional inhibitor. The mRNA dynamics in CFU-E stimulated
with 5 U/ml EPO alfa alone (black) or with transcriptional inhibition after 60 min (blue) was predicted. Additionally, the mRNA dynamics in H838-HA-
hEPOR stimulated with 10 U/ml EPO beta alone (black) or with transcriptional inhibition after 30 min (blue) was predicted. Shadings surrounded by
dotted lines depict uncertainty of the prediction. CFU-E cells were stimulated with 5 U/ml EPO alfa and either additionally treated with 1 μg/ml
actinomycin D, to inhibit transcription, at 60 min (blue arrows) or left untreated. The H838-HA-hEPOR cells were either stimulated with 10 U/ml EPO
beta alone (black) or additionally with 1 μg/ml actinomycin D at 30 min (blue arrows). The mRNAwas extracted at the indicated time and the
SOCS3 andCISHmRNA levels were measured with qRT-PCR. Experimental data are depicted as closed circles. The experiment was performed
in triplicates and one representative example is shown.

doi:10.1371/journal.pcbi.1005049.g007
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estimated from this validation data. As shown in Fig 7, the experimentally measured CISH
mRNA and SOCS3mRNA (dots) were in line with the model predictions (lines with shadings).

In summary, the model predicted cell type-specific differences in the dynamics of the
SOCS3 and CISHmRNA could be experimentally validated. Therefore, the parsimonious
model and the uncovered cell type-specific differences were used to recommend strategies to
specifically target JAK2/STAT5 signaling in H838 cells.

Mathematical model predicts cell type-specific drug targets
To identify potential targets in the EPO-induced JAK2/STAT5 signaling pathway, a sensitivity
analysis was performed for CFU-E and H838 cells. The area-under-curve of npSTAT5 at 60
min was taken as read out (Κ), because we previously could correlate this to survival of CFU-E
cells [19]. A control coefficient

SKpi ¼ pi
K
� @K
@pi

was calculated for each model parameter (pi) in both cell types [23]. The larger the absolute
value of the control coefficient, the larger is the influence of a parameter to the simulated bio-
logical readout. If a control coefficient is positive, a decrease of the parameter induces a
decrease in the area-under-curve of npSTAT5. Interestingly, we observed not only that several
parameters exerted major control over npSTAT5, but also that the control coefficients of these
parameters differed between CFU-E and H838 cells (S12 Fig). We identified six parameters
that had a larger control coefficient for JAK2/STAT5 signaling in H838 cells than on CFU-E
cells and thus could represent suitable therapeutic targets (indicated with asterisks in S12 Fig):
The activation rate of STAT5 by pEPOR, the activation rate of JAK2 by EPO, the activation
rate of STAT5 by pJAK2, the activation rate of the EPOR by pJAK2, the SOCS3mRNA turn-
over rate and the deactivation rate of PTP. The inhibition of these parameters would diminish
the npSTAT5 level and thus the STAT5-mediated survival in the H838 cells more than in
CFU-E cells.

The cell type-specific parameters and the predicted therapeutic targets are summarized by a
color code in the process diagram of the JAK2/STAT5 pathway (Fig 8). Cell type-specific differ-
ences in the parameter values are depicted in the upper part of each reaction square: Red indi-
cates that the parameter had higher values in CFU-E cells, purple that the parameter value was
higher in H838 and H838-HA-hEPOR cells and colorless that there is no difference between
cell types. The predicted therapeutic targets are marked in blue in the lower part of each reac-
tion square. Most of the differences were related to the receptor-kinase complex and the shut-
tling of STAT5. Interestingly, the potential drug targets identified by the sensitivity analysis did
not entirely overlap with cell type-specific differences in parameter values. Parameters with a
higher control coefficient in H838 cells than in CFU-E cells were either related to the activation
of the JAK2-EPOR complex and its control of STAT5 phosphorylation or SOCS3mRNA deg-
radation. The shuttling of STAT5 was in fact cell type-specific, but the control coefficient had a
higher value in CFU-E cells (S12 Fig), meaning that CFU-E cells would be particularly sensitive
for inhibitors and npSTAT5 levels would decrease in the erythroid progenitor cells and not, as
intended, in the lung cancer cells.

Based on these results, the model suggests inhibitors for the receptor complex, e.g. a JAK2
inhibitor, as optimal drugs to diminish the EPO-induced JAK2/STAT5 signaling specifically in
H838 cells while the CFU-E cells would continue to benefit from EPO treatment.
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Fig 8. Sensitivity and differences. The process diagram of the EPO-induced JAK2/STAT5 signaling pathway model is shown according to Systems
Biology Graphical Notation. Identified parameter fold-changes between CFU-E and H838 cells are shown in red (higher in CFU-E: JAK2actEPO,
EPORactJAK2, CISHRNAturn) or purple (higher in H838: STAT5imp, nSTAT5deact, SOCS3prom, SOCS3RNAdelay). Parameters with a more effective
inhibition in H838 cells are shown in light blue (JAK2actEPO, EPORactJAK2, STAT5actJAK2, STAT5actEPOR, STAT5imp, STAT5exp, SOCS3RNAturn).
The area-under-curve of npSTAT5 at 60 min after stimulation was used as read-out to calculate the sensitivities.

doi:10.1371/journal.pcbi.1005049.g008
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In sum, we demonstrate that the approach of ODE-based mathematical modeling in combi-
nation with L1 regularization is an appropriate method to identify cell type-specific differences
and suitable therapeutic targets.

Discussion
In this study, we present an approach that combines ODE-based mathematical modeling with
L1 regularization to identify differences in the EPO-induced JAK2/STAT5 signaling pathway
between the NSCLC cell line H838 and CFU-E cells. Based on these differences, targeted inhib-
itor treatments are predicted to reduce EPO-induced survival signaling in the lung cancer cells
with only marginally affecting EPO-induced signaling in healthy erythroid progenitor cells.

We demonstrated that the EPOR is expressed in the NSCLC cell line H838, is phosphory-
lated upon EPO stimulation and activates JAK2/STAT5 signaling associated with cell survival.
We verified that EPO inhibits cisplatin-induced apoptosis in H838 cells. This indicates that
EPO might not only have an effect on erythroid progenitor cells, but also could induce EPO-
mediated survival signaling in other cells expressing the EPOR, including tumor cells. This
effect has been previously observed in other cancer entities: It was shown that EPOR signaling
affected survival of EPOR expressing melanoma cells in vitro and in xenograft mice [14] and
that EPO activates survival pathways in breast cancer stem-like cells and increases the resis-
tance to chemotherapeutic agents [40]. Having demonstrated that EPO potentially targets not
only CFU-E cells but also lung cancer cells, it remained to be addressed if the signaling upon
EPO stimulation is identical between the different cell types or if there is a therapeutic window
to specifically target lung cancer cells.

We quantitatively analyzed EPO-induced JAK2/STAT5 signaling in CFU-E, H838 and
H838-HA-hEPOR cells and identified cell type-specific differences in the activation dynamics
of the EPOR and STAT5 as well as the induction of CISHmRNA and SOCS3mRNA. For
CFU-E cells, we previously showed by mathematical modeling of the JAK2/STAT5 signaling
pathway that CISHmRNA attenuates STAT5 activation primarily at low EPO levels, while
SOCS3mRNA reduces STAT5 phosphorylation at high EPO concentrations. Importantly, with
this approach we quantitatively linked STAT5 phosphorylation to survival of CFU-E cells [41].

Previously, differences between cell types have been identified based on either differential
gene expression or genomic mutations. The advantage of the mainly array- or sequencing-
based methods is the simultaneous analysis of multiple genomic alterations. For example, a sta-
tistical deconvolution approach to derive the relative mRNA abundance for each cell type and
infer the relative cell type frequencies from microarray data of mixed tissue samples has been
reported [42]. A pioneering sequencing study analyzing samples of 17 NSCLC patients has
revealed copy number alterations in the EPOR gene (one patient), mutations in the EPOR gene
(two patients) and mutations in the JAK2 gene (two patients) [43]. These snapshot data yield
static information on cellular differences, while our time- and dose-resolved measurements
additionally provide insights into cell type-specific dynamic properties of the signaling path-
ways. Furthermore, it is unclear how mutations and copy number alterations translate into
dynamic properties such as signaling behavior and cell fate decisions. An important difference
affecting the dynamics of signaling pathways in individual cell types is the cellular concentra-
tions of the involved proteins. Recently, by a mass spectrometric approach based on the proteo-
mic ruler, protein abundances in primary human hepatocytes and the human hepatoma cell
line HepG2 were compared, revealing that uptake transporters and phase I enzymes were
either absent or expressed in very low amounts in HepG2 cells [44]. Also by mass spectrome-
try, differences in the protein amounts between primary mouse hepatocytes and the murine
hepatoma cell line Hepa1-6 were identified [45]. Such results can be readily combined with our
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L1 approach. We have estimated the initial concentrations of the EPOR-JAK2 complex and
STAT5 based on our quantitative immunoblotting results, while differences in the initial con-
centration of PTP were tested by L1 regularization. Our results revealed that the concentration
of PTP was not decisive for the differences between CFU-E cells and H838 cells.

In this study, we particularly considered the signaling components of the EPO-induced sig-
naling pathway that are essential to describe the dynamics of the JAK2/STAT5 pathway by
ODEs and identified parameters that are cell type-specific for either H838 or CFU-E cells by
using L1-regularized optimization. After the cell type-specific parameters were identified, a
non-regularized optimization was performed to calculate unbiased final parameter values. This
procedure estimates parameter differences in analogy to classical backward elimination, which
constitutes a major difference to lasso where regularization is used for parameter selection as
well as to reduce variance by introducing bias (shrinkage) [25]. In such a statistical application,
the main goal is typically to minimize prediction error, while the parameter values are not
important per se. In our case, we were additionally interested in the relative differences of these
parameter values. Here, we for example inferred that the import rate of STAT5 is five times
larger in CFU-E cells than in H838 cells. Therefore, we used L1 regularization only to suggest a
set of parameters that were cell type-specific and then calculated the final parameter estimates
with a non-regularized optimization.

The seven predicted cell type-specific parameters comprised the CISHmRNA turnover rate,
the activation rate of the EPOR by JAK2, the activation rate of JAK2 by EPO, the delay in
SOCS3mRNA production, the SOCS3 promotor activity, the import rate of pSTAT5 into the
nucleus, and the deactivation rate of nuclear pSTAT5. We identified faster activation rates of
JAK2 by EPO and of the EPOR by pJAK2 in CFU-E than in H838 and H838-HA-hEPOR cells.
This might be due to differences in the affinity of the human-derived EPO to the murine EPOR
in CFU-E cells. Additionally, JAK2 is highly expressed in CFU-E cells, while the JAK2 concen-
tration is limiting in H838 cells (S1 Table). It was proposed that JAK2 acts as a chaperone that
binds to the EPOR in the endoplasmic reticulum and thereby enhances cell surface expression
of the receptor [46]. The import rate of pSTAT5 to the nucleus and the deactivation rate of
npSTAT5 were predicted to be higher in H838 and H838-HA-hEPOR cells. It was previously
suggested that a cell with a smaller nucleus imports cargo faster [47]. While H838 and
H838-HA-hEPOR have a larger nucleus than CFU-E cells, the nucleus to cell volumetric ratio
is 0.17 in these cells compared to a ratio of 0.69 in CFU-E cells. The deactivation rate of nuclear
pSTAT5 is controlled by nuclear phosphatases. The small dual-specificity phosphatase VHR
has been identified to dephosphorylate IFNβ-induced pSTAT5 in the nucleus [48]. It remains
to be shown if the same phosphatase dephosphorylates EPO-induced pSTAT5 and whether
this phosphatase is differentially expressed in a cell type-specific manner. The model further
identified that the parameter for the SOCS3 promoter activity had a higher value in H838 and
H838-HA-hEPOR cells. This parameter resulted in a linear dependency between pSTAT5 con-
centration and SOCS3mRNA expression in CFU-E cells. On the other hand, in H838 and
H838-HA-hEPOR cells SOCS3mRNA was only expressed if the pSTAT5 concentration in the
nucleus exceeded a certain threshold. To analyze the underlying mechanism, we compared the
structure of the human and murine SOCS3 promoters, revealing the presence of additional
STAT5 binding sites in the murine promoter, which potentially strengthen the link between
transcription factor concentration and mRNA expression. Previously, hypermethylation in
CpG islands of the SOCS3 promoter in H838 correlating with transcriptional silencing was
reported [49]. However, our analyses in CFU-E and H838 cells demonstrated low promoter
methylation levels in both cell types, indicating that the SOCS3 promoter should be accessible
for the transcriptional machinery in both cell types. The remaining two differential parameters
concern mRNA processing: The CISHmRNA turnover rate has higher values in CFU-E and
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the delay parameter for SOCS3mRNA production has higher values in H838 and H838-HA-
hEPOR cells. Turnover rates of mRNAs can be controlled by the decay rates influenced by
both mRNA sequence elements and cellular factors, as reviewed previously [50]. The delay
parameter for SOCS3mRNA production summarizes transcription, pre-mRNA processing
and export to the cytoplasm. In line with our results, it was shown by global run-on sequencing
that transcription rates not only vary between different genes, but that they can vary between
identical genes in different cell types [51]. Of the seven identified cell type-specific differences,
three were associated with mRNA induction and processing. We were able to predict the dis-
tinct cell type-specific dynamics of EPO-induced CISHmRNA and SOCS3mRNA production
and mRNA degradation in response to actinomycin D inhibition. Our experimental results
confirmed these model predictions.

To predict potential drug targets that primarily affect one cell type, we performed a sensitiv-
ity analysis. Since we aimed to diminish the EPO-induced STAT5-mediated survival signal in
the lung cancer cells, we focused on potential targets for more effective inhibition in H838
cells. Interestingly, we identified that parameter differences and differential sensitivities do not
entirely coincide. On the one hand, the activation rates of JAK2 by EPO and of the EPOR by
pJAK2 are faster in CFU-E cells but can be targeted more efficiently in H838 cells. On the other
hand, the activation rates of STAT5 by the EPOR-pJAK2 and by the pEPOR-pJAK2 complexes,
while associated with the same parameter values in CFU-E and H838 cells, largely affect the
pSTAT5 output in H838 cells and have only minor control in CFU-E cells. Other examples for
cell type-independent rates but higher control coefficients in H838 cells include the SOCS3
mRNA turnover rate and the PTP deactivation rate. We previously performed mathematical
modeling of the EPO-induced JAK2/STAT5 signaling in BaF3-mEPOR cells, a hematopoietic
cell line that is a frequently used model system to study EPOR signaling, and we showed that
the parameters of nuclear shuttling are most sensitive to perturbation [36]. Here, we identified
STAT5 shuttling parameters to be cell type-specific. Additionally, the control coefficients of
the pSTAT5 import and pSTAT5 export parameters have higher values in CFU-E cells than in
H838 cells, indicating that the sensitivity of nuclear STAT5 shuttling seems to be restricted to
cells with a larger nuclear to cytoplasmic ratio such as CFU-E cells. The observed incongruity
of parameter differences and differential sensitivity has previously been predicted by theoretical
approaches. It was proposed that kinases that are mutated tend to lose part of their control on
signaling, while some of the non-mutated genes may become more important [52]. Conclud-
ing, it is not only important to identify which parameters are different, but also a mathematical
model is necessary to understand how these differences affect cell type-specific intervention
points.

We identified possibilities for cell type-specific targets. Since we compared murine CFU-E
cells to human H838 cells, we cannot entirely exclude that some of the predicted differences
are species-related. Therefore, validation of the predicted drug targets in human CFU-E cells
would be advantageous. Of the six predicted targets for more effective inhibition in H838 cells,
the JAK2-mediated reactions are most promising. The model suggested that JAK2 inhibition
in combination with EPO treatment affects lung cancer cells to a much higher extent than ery-
throid progenitor cells. Several JAK2 inhibitors have been developed, including Fedratinib
and Ruxolitinib. Preclinically, it was observed by injection of MMTV-Wnt-1 tumor cells into
mammary fat pads of mice that inhibition of EPO-induced JAK2 activation by Fedratinib was
synergistic with chemotherapy for breast tumor-initiating cells [53]. Clinically, therapy of mye-
lofibrosis with Fedratinib showed beneficial efficacy. However, severe toxic effects in some
patients were observed and clinical development of Fedratinib was therefore discontinued [54].
On the other hand, the JAK2 inhibitor Ruxolitinib has been approved for the treatment of mye-
lofibrosis in the United States and in the European Union [55]. Also for solid tumors, the

How to Identify Parameter Differences between Cell Types

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005049 August 5, 2016 22 / 34



benefit of several JAK inhibitors is currently investigated in clinical studies, including a phase
II study with Ruxolitinib in combination with pemetrexed/cisplatin in NSCLC [56].

Concluding, we anticipate that both basic and translational research will benefit from the
proposed strategies to identify cell type-specific differences and to predict drug targets that
affect cancer cells without impairing healthy cells.

Materials and Methods

NSCLC cell line and its derivative and cell culture conditions
Human lung adenocarcinoma cell line H838 was purchased from ATCC (CRL-5844) and culti-
vated in Dulbecco's modified Eagle's Medium (DMEM, Lonza) supplemented with 10% fetal
calf serum (Gibco), 100 μg/ml streptomycin (Gibco) and 100 U/ml penicillin (Gibco). The
Phoenix ampho packaging cell line [57] was cultured in DMEM (Gibco) supplemented with
10% fetal calf serum, 100 μg/ml streptomycin (Gibco) and 100 U/ml penicillin (Gibco). For the
EPOR overexpressing cell line (H838-HA-hEPOR) 1.5 μg/ml puromycin (Sigma) was added.
As growth factor depletion medium DMEM without phenol-red (Lonza) supplemented with 1
mg/ml BSA (Sigma), 100 μg/ml streptomycin (Gibco), 100 U/ml penicillin (Gibco) and 2 mM
L-glutamine (Gibco) was used. All cells were cultivated at 37°C, 5% CO2 and 95% relative
humidity.

Generation of stably transduced H838 cells
Generation of the retroviral expression vectors pMOWS-GFP [58] and pMOWS-HA-hEPOR
[59] have previously been described. To generate pMOWS-Casper3-GR, the Casper3-GR cas-
sette of the vector pCasper3-GR (evrogen, #FP971) was cut out with the restriction enzymes
BamHI and NotI and subcloned into the retroviral expression vector pMOWS [58], in which
the puromycin resistance cassette was replaced with a neomycin resistance cassette.

Transfection of Phoenix ampho cells was performed by calcium phosphate precipitation.
Transducing supernatants were generated 24 hours after transfection by passing through a
0.45 μm filter and supplemented with 8 μg/ml polybrene (Sigma). Stably transduced H838 cells
were selected in the presence of 1.5 μg/ml puromycin (Sigma) 48 hours after transduction for
H838-GFP and H838-HA-hEPOR and for the H838-HA-hEPOR-Casper3-GR cell line in the
presence of additional 400 μg/ml G418 (Sigma).

Surface expression of the EPOR in H838-HA-hEPOR cells was verified by flow cytometry.
H838-HA-hEPOR cells were detached with Cell Dissociation Solution (Sigma) according to
the manufacturer’s instructions and stained with anti-HA antibody (Roche) diluted 1:40 in
0.3% PBS/BSA for 20 min at 4°C. Cells were washed with 0.3% PBS/BSA and incubated with
secondary Cy5-labeled antibody against rat (Jackson Immuno Research), diluted 1:100 in 0.3%
PBS/BSA, for 20 min at 4°C in the dark. After washing samples with 0.3% PBS/BSA, propidium
iodide (BD Biosciences) was added to exclude dead cells. Canto II (BD Bioscience) was used
for sample analysis. The expression of the Casper3-GR sensor and GFP was verified by life cell
imaging.

Isolation of TER119− erythroid progenitor cells at the CFU-E stage from
murine fetal livers
All animal experiments were approved by the governmental review committee on animal care
of the state Baden-Württemberg, Germany (reference number DKFZ215). At E13.5 Balb/c
mouse embryos were dissected from the uteri of female mice euthanized by CO2 inhalation.
Fetal livers were resuspended in PBS/0.3% BSA and passed through a 40-μm cell strainer (BD
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Biosciences). Fetal liver cells (FLCs) were treated with 9 ml Red Blood Cell Lysis Buffer (Sigma-
Aldrich) to remove erythrocytes. For sorting TER119− erythroid progenitors, FLCs were incu-
bated with rat antibodies against the following surface markers: GR1, CD41, CD11b, CD14,
CD45R/B220, CD4, CD8 and Ter119 (BD Pharmingen), and 42.2.2 for 30 min at 4°C. After
washing, cells were incubated for 30 min at 4°C with anti-rat antibody-coupled magnetic beads
and negatively sorted with MACS columns according to the manufacturer's instructions (Mil-
tenyi Biotech). Sorted CFU-E cells were cultivated for 12–14 hours in Panserin 401 (PAN-
biotech) supplemented with 50 μM β-mercaptoethanol and 0.5 U/ml EPO alfa. Before the
experiments, cells were growth factor-depleted for 60 min.

RNA extraction, cDNA synthesis and quantitative Real-Time-PCR
Total RNA was extracted using the miRNeasy Mini Kit (QIAGEN) according to the manufac-
turer’s instructions. cDNA was generated from 1 μg of total RNA using High Capacity cDNA
Reverse Transcription Kit (Applied Biosystems) according to the manufacturer’s instructions.
cDNA templates were analyzed by quantitative Real-Time-PCR (qRT-PCR) on a LightCycler
480 (Roche Applied Science) cycler using the LightCycler 480 Probes Master with final 0.4 μM
primer and 0.2 μM FAM-labeled hydrolysis probes (Universal Probe Library, Roche Applied
Science). Crossing point values were calculated using the second-derivative-maximummethod
of the LightCycler 480 Basic Software (Roche Applied Science). Quantitative RT-PCR effi-
ciency correction was performed for each setup individually. Concentrations were normalized
using the geometric mean of β-glucuronidase (GUSB) and esterase D (ESD) for the NSCLC cell
line and its derivative and hypoxanthine-guanine phosphoribosyltransferase (HPRT) for the
CFU-E cells. Primers were designed using the UniversalProbe Library Assay Design Center
(Roche Applied Science).

UPL Probes and primer sequences for murine samples were CISH_for 50-gacatggtcctttgcg-
taca-30 CISH_rev 50-atgccccagtgggtaagg-30 probe#1, SOCS3_for 50- gctggtactgagccgacct-30

SOCS3_rev 50-aacttgctgtgggtgaccat-30 probe#83, and HPRT_for 50-tcctcctcagaccgctttt-30

HPRT_rev 50-cctggttcatcatcgctaatc-30 probe#95. UPL Probes and primer sequences for human
samples were CISH_for 50-agccaagaccttctcctacctt-30 CISH_rev 50-tggcatcttctgcaggtgt-30

probe#20, SOCS3_for 50-agacttcgattcgggacca-30 SOCS3_rev 50-aacttgctgtgggtgacca-30

probe#36, ESD_for 50-ttagatggacagttactccctgataa-30 ESD_rev 50-ggttgcaatgaagtagtagctatgat-30

probe#27 and GUSB_for 50-cgccctgcctatctgtattc-30 GUSB_rev 50-tccccacagggagtgtgtag-30

probe#57.

CellTiter-Blue viability assay
H838 and H838-HA-hEPOR cells were seeded in a 96-well plate at a density of 10 000 cells/
well for three days. Before the experiment, cells were growth factor-depleted for 14–16 hours.
To measure the viability of cells, CellTiter-Blue Viability Assay (Promega) was applied accord-
ing to the manufacturer’s instructions. Incubation with the dye for 60 min was followed by
measurement of the fluorescence with the infinite F200 pro Reader (TECAN). A blank well
containing culture medium but no cells was measured as background.

Caspase-3 apoptosis assay
For the caspase-3 activity assay, H838 cells overexpressing HA-hEPOR and additionally
expressing the FRET-based Casper3-GR sensor (H838-HA-hEPOR-Casper3-GR) were seeded
in 8-well plates at a density of 20 000 cells/well. 24 hours after seeding, cells were growth fac-
tor-depleted for 16 hours and then treated with 5 mg/l cisplatin (Teva) or left untreated. Cells
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were imaged on an environment-controlled microscope (Zeiss LSM 710) and GFP and RFP
intensity was determined. Images were acquired every 20 min for 64 hours.

Determination of cellular and nuclear volumes
H838-GFP cells were amplified to a density of 80% and growth factor-depleted for 14–16
hours. The cells were trypsinized with 0.025% Trypsin/EDTA/PBS (Invitrogen) for 5 min and
resuspended in DMEM (Lonza) and Hoechst (H33342) (final concentration 1 μg/ml) was
added. The cells were imaged on an environment-controlled microscope (Zeiss LSM 710) and
the data was analyzed with Fiji software [60].

Quantitative immunoblotting
For the detection of the EPOR, JAK2 and STAT5, 800 000 H838 and H838-HA-hEPOR cells,
respectively, were seeded three days in advance in a 10-cm plate and washed three times with
DMEMwithout additives and then kept for 3 hours in DMEM with 1% penicillin/streptomycin,
2 mM L-glutamine (Gibco) and 1 mg/ml BSA. The cells were stimulated with 10 U/ml EPO
beta (Roche) and lysed with 500 μL 1.25x NP-40 lysis buffer (1.25% NP-40, 187.5 mMNaCl, 25
mM Tris pH 7.4, 12.5 mMNaF, 1.25 mM EDTA pH 8.0, 1.25 mM ZnCl2 pH 4.0, 1.25 mM
MgCl2, 1.25 mMNa3VO4, 12.5% glycerol) supplemented with aprotinin and AEBSF (Sigma).
The cell debris was removed by centrifugation and the supernatant was used for determination
of protein concentration (BCA Protein Assays, Thermo Fisher). Immunoprecipitations (IP)
were performed consecutively with first antibodies against hEPOR (MAB 307, R&D) and JAK2
(06–255, Merck Millipore) and then with antibodies against STAT5A/B (C-17, Santa Cruz)
using protein A sepharose beads. The immunoprecipitates were loaded to a 10% polyacrylamide
gel and transferred to a nitrocellulose membrane (Schleicher & Schuell). The membranes were
blocked with 5% BSA for 1 hour and successively incubated with a phosphotyrosine antibody
(4G10, Merck Millipore). To remove antibodies, membranes were treated with β-mercaptoetha-
nol and SDS and subsequently incubated with an anti-hEPOR antibody (C-20, Santa Cruz), an
anti-JAK2 antibody (06–255, Merck Millipore) or an anti-STAT5 antibody (C-17, Santa Cruz).
Secondary horseradish peroxidase-coupled antibodies were obtained from GE Healthcare or
Dianova. Detection was performed using ECL substrate (GE Healthcare) and acquired with the
CCD camera-based ImageQuant LAS 4000 (GE Healthcare). For quantification, the Image-
Quant TL version 7.0 software (GE Healthcare) was used.

For the detection of mEPOR in mCFU-E cells, the cells were growth factor-depleted for 3
hours and 1×107 cells shaking in 250 μl were stimulated for 10 min with 5 U/ml EPO alfa (Jans-
sen-Cilag). The cells were lysed by addition of 250 μL 2x NP40 lysis buffer. IP was performed
using an anti-mEPOR antibody (M-20, Santa Cruz) and protein A sepharose. For phosphory-
lated mEPOR, the phosphotyrosine antibody (4G10, Merck Millipore) was used. For total
mEPOR anti-mEPOR antibody (M-20, Santa Cruz) was applied.

Determination of protein abundances
For determination of protein abundances different recombinant fusion proteins were synthe-
sized using a pGEX-2T vector (GE Healthcare). GSTΔhEPOR and GSTΔmEPOR consist of
the complete cytoplasmic part of the respective receptor fused N-terminally to a GST tag lead-
ing to proteins of 52 214 Da mass for hEPOR and 52 309 Da for mEPOR. GSTΔJAK2 and
GSTΔSTAT5 were constructed as described previously [61]. Briefly, in GSTΔJAK2 the tag is
fused N-terminally to the kinase domain of murine JAK2 starting from L549 leading to a 94
572 Da fusion protein with 95% consensus to human JAK2. GSTΔSTAT5 consist of the N-
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terminal end of murine STAT5B starting from F332 which leads to a fusion protein of 78 432
Da with 97% consensus to hSTAT5B.

The concentrations of the recombinant proteins were determined using a BSA standard
curve on a Coomassie-stained SDS-PAGE gel (SimplyBlue SafeStain, Invitrogen). Different
amounts of the respective calibrators were added to the cell lysate. IP and immunoblotting was
performed with the indicated total antibodies. The linear calibration curve based on the inten-
sities of the recombinant protein was estimated with SigmaPlot (V12.5) and the endogenous
signal was interpolated to calculate the corresponding number of molecules. The cell number
was counted in parallel with a Neubauer improved counting chamber.

Mass spectrometry
For mass spectrometry experiments, at least 1.5×107 H838 or H838-HA-hEPOR cells were
used per time point. Treatment, lysis and IP conditions are described above. IPs were separated
by 10% SDS-PAGE and gels were stained with SimplyBlue SafeStain (Invitrogen). STAT5A
(90.6 kDa) and STAT5B (89.9 kDa) containing bands were excised between around 75 and 100
kDa (according to Precision Plus Protein marker, Bio-Rad) then destained, reduced (DTT,
Sigma), alkylated (IAA, Sigma) and digested with trypsin gold (Promega). To ensure robust
and accurate degree of phosphorylation analysis of Tyr694 (STAT5A) and Tyr699 (STAT5B)
we applied an internal standard peptide mixture (One-source peptide-/phosphopeptide ratio
standard) with defined ratio of labelled peptide and its phosphorylated counterpart. Starting
from the in-house synthesized stable isotope labelled phosphopeptide A-[V+6Da]-D-G-
pY-V-K-P-Q-I-K (identical for STAT5A and STAT5B) the standard mixture was generated by
(i) dividing peptide dilution into two aliquots (ii) quantitative dephosphorylation of one of the
aliquots (iii) remixing of dephosphorylated and untreated aliquot (described in detail [62]).
The standard was spiked into the samples during tryptic digestion. All mass spectrometry sam-
ple preparation steps from lysis to standard addition have been previously described in more
detail [63]. Following peptide extraction and concentration of eluates, samples were desalted
and purified using C18 ZipTips (Merck Millipore). Samples were measured by nanoUPLC
(nanoAcquity, Waters) coupled to an LTQ-Orbitrap XL mass spectrometer (Thermo Fisher).
LC separations were performed on a 75 μm × 150 mm C18 column with 1.3 μm particle size
(Waters) using a water/acetonitrile based gradient up to 40% acetonitrile within 60 min. Inten-
sities of native and labelled STAT5 peptide and phosphopeptide pairs were analyzed manually
using Xcalibur 3.0.63 (Thermo Fisher).

Analysis of the SOCS3 promoter and DNAmethylation measurement
Genomatix Genome Analyzer was used for promoter analysis (www.genomatix.de). Promoter
retrieval was performed by Genomatix Gene2Promoter (ElDorado 12–2013) and the transcrip-
tion factor binding site analysis was performed using the Genomatix Overrepresented TFBS
pipeline combining Genomatix MatBase and MatInspector based on Matrix Family Library
Version 9.1. Sequence alignment was performed using the Genomatix Multiple Alignment
pipeline based on DiAlign professional TF Release 3.1.5 (June 2011).

H838 and CFU-E cells were cultivated as described above. Genomic DNA was extracted
with the DNeasy Tissue Kit (Qiagen) according to the manufacturer's instructions and bisulfite
converted using the EZ DNAMethylation kit (Zymo Research). Amplicons spanning the entire
SOCS3 promoter region were designed and used to amplify this region from bisulfite-treated
DNA (S2 Table). For MassARRAY EpiTYPER assay (Agena Bioscience), the PCR products
were transcribed in vitro, cleaved by RNase A and subjected to matrix-assisted laser desorption
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ionization time-of-flight mass spectrometry to quantitatively assess methylation levels of CpG
dinucleotides [64].

Model simulation and parameter estimation
The ODE system consisted of 23 states, with 20 initial values that were implicitly dependent on
kinetic parameters through steady-state assumptions, two initial values with prior knowledge
available, and one initial value with prior knowledge only available for CFU-E, which was esti-
mated for H838 & H838-HA-hEPOR. To obtain a numerical solution of the ODE system the
solver CVODES was applied [65]. For CFU-E cells, 23 model variants representing experimen-
tal conditions were implemented, and 36 for H838 & H838-HA-hEPOR cells, respectively. For
numerical efficiency, the ODE system and solver were compiled as C-executables, supplying
calculation of states as well as sensitivities, and solved in a parallelized manner for all condi-
tions. Data2Dynamics [31] was utilized to facilitate the automatic derivation of conditions and
sensitivity equations. The ODE system was re-parameterized to disentangle internal concentra-
tions from relative measurements and to decouple modules of the signaling network with dif-
ferent scales. Relative and absolute tolerances of the ODE solver were set to 10−6.

For parameter estimation, all three cell types CFU-E, H838 and H838-HA-hEPOR were ini-
tially implemented separately. To achieve global optimization, a multi-start deterministic opti-
mization strategy was used [37] with 1000 initial parameter vectors for each cell type. Each
single optimization was performed using the MATLAB implementation of the trust-region
method (lsqnonlin) [66]. The algorithm was set to terminate an optimization run if the pro-
posed step size is smaller than 10−6. To account for flat regions in the parameter space, the ter-
mination criterion based on change of the objective function was omitted. A noise parameter
was assumed for each experimental technique, observable and cell type. For intensity-based
measurements, a log-normal error model was used, where σ is relative to the observation [67].
For degree of phosphorylation data obtained by mass spectrometry, a constant error model
was assumed. Kinetic parameters, initial concentrations, observation parameters and error
model parameters were estimated simultaneously based on the data [37]. Parameters were esti-
mated in log-space and values between 10−5 and 103 were initially allowed. If an estimate was
located at the boundary of the parameter space, the respective boundaries were enlarged. Effi-
ciencies of inhibitors were limited to a maximum of one (100% efficiency), and the accuracy of
degree of phosphorylation data obtained by mass spectrometry was restricted to a maximum of
5%.

For CFU-E cells, 516 data points were used to estimate a total of 109 parameters. 1000
parameter estimation runs were started from random points of the parameter space. The global
optimum was found in 9.0% of parameter estimation runs. Likewise for H838, 204 data points
were used to estimate 54 parameters. Here, the global optimum was found in 5.2%. For
H838-HA-hEPOR, 407 data points were used to estimate 75 parameters with the global opti-
mum reached in 0.7% of all optimization runs. These results suggested that the global optimum
was discovered for all cell types.

L1 regularization and uncertainty analysis
The comprehensive model taking all cell types into account had a total of 216 parameters that
were estimated based on 1141 data points. The parameters were estimated independently for
CFU-E and H838 & H838-HA-hEPOR cells, and the corresponding fold-change was L1-regu-
larized. Residuals and sensitivities were passed to the optimizer. To account for discontinuities
of the L1 regularization gradient, optimization steps were truncated in the derivatives by pre-
venting to cross zero at each step. To facilitate convergence, derivatives of the L1 regularization
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residuals were set to zero if their contribution was smaller than the respective gradient of the
log-likelihood. The re-parameterization to decouple modules of the signaling network was
performed with CFU-E as reference point for H838 & H838-HA-hEPOR. For generating the
regularization path, the regularization strength was scanned in log-space from 10−4 to 104.
Regularization was only used for selection of parameter differences, while for model selection
the un-regularization solution was used for unbiased parameter estimates. The threshold for
model selection was calculated using likelihood ratio test statistics (α = 0.05), i.e. by the inverse
cumulative density function of the χ2-distribution with the difference of number of parameters
between full and reduced model as degrees of freedom.

The profile likelihood was calculated to assess the standard deviation of the parameter ratios
[35]. To conservatively estimate the standard deviation based on asymmetric confidence inter-
vals, the maximum of the log10 difference between maximum likelihood estimate and lower/
upper limit of the confidence interval was used to approximate σ.

Modeling framework, examples and data are open source and publicly available at www.
data2dynamics.org.

Supporting Information
S1 Table. Cell volume and protein abundance of H838, H838-HA-hEPOR and CFU-E cells.
For H838 cells, the cytoplasmic and nuclear volumes were derived as shown in S3 Fig. The
amount of total EPOR per H838-HA-hEPOR cell and per CFU-E cell was quantified as shown
in S1D Fig. The number of EPOR molecules per H838 cell was calculated by taking the relative
EPOR ratio of those cells shown in S1B Fig into account. The number of JAK2 molecules per
H838 cell was calculated as shown in S2C Fig and number of STAT5 molecules per H838 cell
was calculated as shown in S2D Fig. For the mathematical model, the amounts of the EPOR-
JAK2 complex and of STAT5 were converted to molar concentrations. � CFU-E data that was
previously published [19]. �� A percentage of 20% as previously suggested for CFU-E cells [19]
was assumed for the calculation of the amount of EPOR on the cell surface in H838 cells. ��� It
was shown that the amount of pEPOR on the cell surface of H838-HA-hEPOR cells is approxi-
mately 12 fold higher compared to H838 cells (S1D Fig). This number was used to extrapolate
the amount of EPOR on the cell surface of H838-HA-hEPOR cells.
(DOCX)

S2 Table. Primers utilized to amplify the SOCS3 promoter region in CFU-E and H838 cells
for DNAmethylation measurement. Primer pairs to obtain SOCS3 promoter amplicons are
indicated (F: forward, R: reverse). Bases indicated with upper case letters denote DNA binding
sequences. Lower case letters indicate tag sequences used for MassARRAY EpiTYPER assay
(T7 promoter sequences and random sequences, respectively).
(DOCX)

S1 Fig. Quantification of the EPOR in the NSCLC cell line H838 and its derivative
H838-HA-EPOR and mouse CFU-E cells. (A) The immunoblot of total EPOR from Fig 1A is
shown with different exposure times to display both, low and high EPOR signals. The relative
amounts of EPOR were quantified for H838 and H838-HA-hEPOR cells. (B) The amount of
the total EPOR protein of H838-HA-hEPOR cells is shown relative to the amount of EPOR in
H838 cells. (C) The abundance of phosphorylated EPOR protein of EPO-stimulated H838-
HA-hEPOR cells is shown relative to the abundance of EPO-stimulated pEPOR of H838 cells.
(D) For absolute quantification of the EPOR, H838-HA-hEPOR and CFU-E cells were lysed.
The lysate of 8 280 000 CFU-E cells was added to the 100 ng sample of a murine EPOR calibra-
tor (GST-ΔmEPOR) dilution series and the lysate of 228 000 H838-HA-hEPOR cells was
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added to the 3 ng sample of a human EPOR calibrator (GST-ΔhEPOR) dilution series. EPOR
was subjected to immunoprecipitation (IP) and quantitative immunoblotting (IB). One repre-
sentative immunoblot out of a biological triplicate is shown. The amount of EPOR per cell was
calculated with a cell-specific calibration curve based on all replicates.
(PDF)

S2 Fig. Comparison of EPO alfa and EPO beta in H838-HA-hEPOR cells and quantifica-
tion of JAK2 and STAT5 in H838 cells. (A) H838-HA-hEPOR cells were either stimulated
with 10 U/ml EPO alfa (black) or 10 U/ml EPO beta (red). The cells were lysed after 10 min
and hEPOR and JAK2 proteins were subjected to immunoprecipitation (IP) and phosphory-
lated EPOR and JAK2 were detected by quantitative immunoblotting (IB). The experiment was
performed in two independent replicates. (B) The measured data in (A) is depicted as black
(EPO alfa) or red (EPO beta) closed circles and estimated by a phenomenological mathematical
model (black and red lines). Shading represents estimated experimental error. (C) The lysate of
5×106 H838 cells each was added to a dilution series of JAK2 calibrator (GST-ΔJAK2). JAK2
was subjected to IP and IB. One representative immunoblot out of biological triplicates is
shown. The amount of JAK2 was calculated with a calibration curve based on all replicates. (D)
The lysate of 5×106 H838 cells each was added to a dilution series of STAT5 calibrator (GST-
ΔSTAT5). STAT5 was subjected to IP and IB. One representative immunoblot out of biological
triplicates is shown. The amount of STAT5 was calculated with a calibration curve based on all
replicates.
(PDF)

S3 Fig. Determination of the cellular and nuclear diameters of H838 cells. (A) H838 cells
expressing GFP (green) were trypsinized and nuclei were stained with Hoechst (blue). Confocal
images were acquired and the diameters of the nuclei (Dnucleus) and the cell (Dcell) were deter-
mined. The results are summarized in S1 Table. One exemplary image is shown. Scale bar:
20 μm. (B) Distribution of the cellular and nuclear diameters of H838 cells is shown (n = 206).
(PDF)

S4 Fig. Increased viability of cisplatin-treated H838 and H838-HA-hEPOR cells upon co-
treatment with EPO beta.H838 (A) cells or H838-HA-hEPOR cells (B) were treated for three
days with 5 mg/l cisplatin or left untreated. Additionally, cells were treated with or without 10
U/ml EPO beta and the cell viability was measured with CellTiter-Blue assay. The error bars
represent standard deviation of biological replicates (n� 5). The assay was performed in two
independent experiments (first replicate is shown in Fig 1D).
(PDF)

S5 Fig. Reduced apoptosis of cisplatin-treated H838-HA-hEPOR cells upon co-treatment
with EPO beta.H838-HA-hEPOR cells expressing the Casper3-GR FRET-based sensor
(H838-HA-hEPOR-Casper3-GR) were treated with 5 mg/l cisplatin, 10 U/ml EPO beta, a com-
bination of both or left untreated. Casper3-GR FRET signal was measured by life-cell imaging
for 65 hours. Caspase-3 activity was determined based on the green-to-red ratio and normal-
ized to the untreated control (n = 2, first replicate is shown in Fig 1E).
(PDF)

S6 Fig. Regularization path and parameter differences of the two-step phosphorylation
reaction example. (A) The regularization path of parameter differences for the model and the
simulated data depicted in Fig 2 is shown. At the regularization weight corresponding to the
parsimonious model (λ� 60), k3 and [Protein]t = 0 were identified as cell type-specific parame-
ters (indicated with asterisks). (B) The profile likelihood approach was used to determine the

How to Identify Parameter Differences between Cell Types

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005049 August 5, 2016 29 / 34

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005049.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005049.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005049.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005049.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005049.s008


confidence interval of the parameter differences identified in (A). The parameter differences
(log10 fold-changes) are not compatible with zero, validating the result of the algorithm.
(PDF)

S7 Fig. Quantitative data measured in CFU-E, H838 and H838-HA-hEPOR cells. (A) Quan-
titative measurement of mRNAs by quantitative qRT-PCR in CFU-E cells. (B) Quantitative
measurement of mRNAs and proteins by quantitative qRT-PCR, quantitative immunoblotting
and mass spectrometry in H838-HA-hEPOR cells. (C) Quantitative measurement of the EPO
dose-dependency of pEPOR and pJAK2 by quantitative immunoblotting in H838 and H838-
HA-hEPOR cells. (D) Quantitative measurement of mRNAs and proteins by quantitative qRT-
PCR, quantitative immunoblotting and mass spectrometry in H838 cells.
(PDF)

S8 Fig. Trajectories of parsimonious model based on CFU-E data. Experimental CFU-E data
are shown with open and closed circles, trajectories of the parsimonious model are depicted
with solid lines. Shading represents estimated experimental error.
(PDF)

S9 Fig. Trajectories of parsimonious model based on H838 and H838-HA-hEPOR data.
(A) Experimental H838-HA-hEPOR data are shown with closed circles, trajectories of the par-
simonious model are depicted with solid lines. Shading represents estimated experimental
error. (B) Experimental H838 and H838-HA-hEPOR data are shown with closed circles, trajec-
tories of the parsimonious model are depicted with solid lines. Shading represents estimated
experimental error. (C) Experimental H838 data are shown with closed circles, trajectories of
the parsimonious model are depicted with solid lines. Shading represents estimated experimen-
tal error.
(PDF)

S10 Fig. Regularization path and parameter differences of the generalized mathematical
model structure of the EPO-induced JAK2/STAT5 signaling pathway. (A) The regulariza-
tion path of parameter differences is shown for the generalized model structure as displayed in
Fig 4, and the experimental data in CFU-E, H838 and H838-HA-hEPOR cells as displayed in
S7 Fig. The regularization paths are not necessarily monotonously drifting towards zero with
increasing regularization weight λ. The asterisks depict the identified parameter differences.
(B) The profile likelihood approach was used to determine the confidence interval of the
parameter differences identified in (A). All identified parameter differences (log10 fold-
changes) are not compatible with zero, validating the result of the algorithm.
(PDF)

S11 Fig. Differential behavior of the SOCS3 promotor in CFU-E and H838 cells. (A)
pSTAT5 data and SOCS3mRNA data are shown with the parsimonious model trajectories in
CFU-E cells. Shading represents estimated experimental error. The SOCS3 promoter activity in
the relevant range of npSTAT5 was calculated. (B) pSTAT5 data and SOCS3mRNA data are
shown with the parsimonious model trajectory in H838 & H838-HA-hEPOR cells. Shading
represents estimated experimental error. SOCS3 promoter activity in the relevant range of
npSTAT5 was calculated. (C) The SOCS3 promoter was compared betweenMus musculus and
Homo sapiens. TSS: transcription start site of SOCS3. Strand direction is indicated relative to
the SOCS3 coding sequence. Asterisks indicate conserved bases between mouse and human.
The transcription factor binding site matches are displayed as green boxes within the align-
ment. Bases in capital letters denote the core sequence used and red bases indicate that the
matrix exhibits a high conservation at this position. Methylation of CpG islands measured by
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MassARRAY in CFU-E and H838 cells is indicated.
(PDF)

S12 Fig. Sensitivity analysis of the parsimonious model for CFU-E and H838 cells. Control
coefficients determined for the 25 kinetic parameters in CFU-E and H838 cells are shown. The
area-under-curve of npSTAT5 at 60 min after stimulation was used as read-out to calculate the
sensitivities. Asterisks indicate parameters exerting more control in H838 compared to CFU-E
cells.
(PDF)

Acknowledgments
We thank Susen Lattermann for technical assistance.

Author Contributions
Conceived and designed the experiments: RM BS JT MSchi UK. Performed the experiments:
RM FS SDMWMEB OM. Analyzed the data: BS AR NI MSche HH DBL CPWDL CK. Wrote
the paper: RM BS JT MSchi UK.

References
1. Bender E. Epidemiology: The dominant malignancy. Nature. 2014; 513(7517):S2–3. doi: 10.1038/

513S2a PMID: 25208070.

2. Ji P, Diederichs S, WangW, Boing S, Metzger R, Schneider PM, et al. MALAT-1, a novel noncoding
RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer.
Oncogene. 2003; 22(39):8031–41. doi: 10.1038/sj.onc.1206928 PMID: 12970751.

3. Wood PA, Hrushesky WJ. Cisplatin-associated anemia: an erythropoietin deficiency syndrome. J Clin
Invest. 1995; 95(4):1650–9. doi: 10.1172/JCI117840 PMID: 7706473; PubMed Central PMCID:
PMC295669.

4. Oberhoff C, Neri B, Amadori D, Petry KU, Gamucci T, Rebmann U, et al. Recombinant human erythro-
poietin in the treatment of chemotherapy-induced anemia and prevention of transfusion requirement
associated with solid tumors: a randomized, controlled study. Ann Oncol. 1998; 9(3):255–60. PMID:
9602258.

5. Zhu H, Jackson T, Bunn HF. Detecting and responding to hypoxia. Nephrol Dial Transplant. 2002; 17
Suppl 1:3–7. PMID: 11812905; PubMed Central PMCID: PMCPMC3044474.

6. Wright JR, Ung YC, Julian JA, Pritchard KI, Whelan TJ, Smith C, et al. Randomized, double-blind, pla-
cebo-controlled trial of erythropoietin in non-small-cell lung cancer with disease-related anemia. J Clin
Oncol. 2007; 25(9):1027–32. doi: 10.1200/JCO.2006.07.1514 PMID: 17312332.

7. Acs G, Acs P, Beckwith SM, Pitts RL, Clements E, Wong K, et al. Erythropoietin and erythropoietin
receptor expression in human cancer. Cancer Res. 2001; 61(9):3561–5. PMID: 11325818.

8. Dagnon K, Pacary E, Commo F, Antoine M, Bernaudin M, Bernaudin JF, et al. Expression of erythropoi-
etin and erythropoietin receptor in non-small cell lung carcinomas. Clin Cancer Res. 2005; 11(3):993–
9. PMID: 15709164.

9. Dunlop EA, Percy MJ, Boland MP, Maxwell AP, Lappin TR. Induction of signalling in non-erythroid cells
by pharmacological levels of erythropoietin. Neurodegener Dis. 2006; 3(1–2):94–100. doi: 10.1159/
000092099 PMID: 16909043.

10. Doleschel D, Mundigl O, Wessner A, Gremse F, Bachmann J, Rodriguez A, et al. Targeted near-infra-
red imaging of the erythropoietin receptor in human lung cancer xenografts. J Nucl Med. 2012; 53
(2):304–11. doi: 10.2967/jnumed.111.091124 PMID: 22228796.

11. Saintigny P, Besse B, Callard P, Vergnaud AC, Czernichow S, Colombat M, et al. Erythropoietin and
erythropoietin receptor coexpression is associated with poor survival in stage I non-small cell lung can-
cer. Clin Cancer Res. 2007; 13(16):4825–31. doi: 10.1158/1078-0432.Ccr-06-3061.
WOS:000248837900024. PMID: 17699861

12. BrownWM, Maxwell P, Graham AN, Yakkundi A, Dunlop EA, Shi Z, et al. Erythropoietin receptor
expression in non-small cell lung carcinoma: a question of antibody specificity. Stem Cells. 2007; 25
(3):718–22. Epub 2006 Nov 16. doi: 10.1634/stemcells.2006-0687 PMID: 17110616.

How to Identify Parameter Differences between Cell Types

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005049 August 5, 2016 31 / 34

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005049.s014
http://dx.doi.org/10.1038/513S2a
http://dx.doi.org/10.1038/513S2a
http://www.ncbi.nlm.nih.gov/pubmed/25208070
http://dx.doi.org/10.1038/sj.onc.1206928
http://www.ncbi.nlm.nih.gov/pubmed/12970751
http://dx.doi.org/10.1172/JCI117840
http://www.ncbi.nlm.nih.gov/pubmed/7706473
http://www.ncbi.nlm.nih.gov/pubmed/9602258
http://www.ncbi.nlm.nih.gov/pubmed/11812905
http://dx.doi.org/10.1200/JCO.2006.07.1514
http://www.ncbi.nlm.nih.gov/pubmed/17312332
http://www.ncbi.nlm.nih.gov/pubmed/11325818
http://www.ncbi.nlm.nih.gov/pubmed/15709164
http://dx.doi.org/10.1159/000092099
http://dx.doi.org/10.1159/000092099
http://www.ncbi.nlm.nih.gov/pubmed/16909043
http://dx.doi.org/10.2967/jnumed.111.091124
http://www.ncbi.nlm.nih.gov/pubmed/22228796
http://dx.doi.org/10.1158/1078-0432.Ccr-06-3061
http://www.ncbi.nlm.nih.gov/pubmed/17699861
http://dx.doi.org/10.1634/stemcells.2006-0687
http://www.ncbi.nlm.nih.gov/pubmed/17110616


13. Sinclair AM, Todd MD, Forsythe K, Knox SJ, Elliott S, Begley CG. Expression and function of erythro-
poietin receptors in tumors—Implications for the use of erythropoiesis-stimulating agents in cancer
patients. Cancer. 2007; 110(3):477–88. doi: 10.1002/cncr.22832. WOS:000248206700002. PMID:
17582631

14. Kumar SM, Zhang G, Bastian BC, Arcasoy MO, Karande P, Pushparajan A, et al. Erythropoietin recep-
tor contributes to melanoma cell survival in vivo. Oncogene. 2012; 31(13):1649–60. doi: 10.1038/onc.
2011.366 PMID: 21860424; PubMed Central PMCID: PMC3441831.

15. Becker V, Sengupta D, Ketteler R, Ullmann GM, Smith JC, Klingmuller U. Packing density of the eryth-
ropoietin receptor transmembrane domain correlates with amplification of biological responses. Bio-
chemistry. 2008; 47(45):11771–82. doi: 10.1021/bi801425e PMID: 18855427.

16. Remy I, Wilson IA, Michnick SW. Erythropoietin receptor activation by a ligand-induced conformation
change. Science. 1999; 283(5404):990–3. PMID: 9974393.

17. Hebenstreit D, Horejs-Hoeck J, Duschl A. JAK/STAT-dependent gene regulation by cytokines. Drug
News Perspect. 2005; 18(4):243–9. doi: 10.1358/dnp.2005.18.4.908658 PMID: 16034480.

18. Yasukawa H, Sasaki A, Yoshimura A. Negative regulation of cytokine signaling pathways. Annu Rev
Immunol. 2000; 18:143–64. doi: 10.1146/annurev.immunol.18.1.143 PMID: 10837055.

19. Bachmann J, Raue A, Schilling M, BohmME, Kreutz C, Kaschek D, et al. Division of labor by dual feed-
back regulators controls JAK2/STAT5 signaling over broad ligand range. Mol Syst Biol. 2011; 7:516.
doi: 10.1038/msb.2011.50 PMID: 21772264; PubMed Central PMCID: PMCPMC3159971.

20. Sasaki A, Yasukawa H, Shouda T, Kitamura T, Dikic I, Yoshimura A. CIS3/SOCS-3 suppresses eryth-
ropoietin (EPO) signaling by binding the EPO receptor and JAK2. J Biol Chem. 2000; 275(38):29338–
47. doi: 10.1074/jbc.M003456200 PMID: 10882725.

21. Hilton DJ. Negative regulators of cytokine signal transduction. Cell Mol Life Sci. 1999; 55(12):1568–77.
PMID: 10526574.

22. Klingmüller U, Lorenz U, Cantley LC, Neel BG, Lodish HF. Specific recruitment of SH-PTP1 to the
erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell. 1995;
80(5):729–38. PMID: 7889566.

23. Schilling M, Maiwald T, Hengl S, Winter D, Kreutz C, KolchW, et al. Theoretical and experimental anal-
ysis links isoform-specific ERK signalling to cell fate decisions. Mol Syst Biol. 2009; 5:334. doi: 10.
1038/msb.2009.91 PMID: 20029368; PubMed Central PMCID: PMC2824492.

24. Huo X, Ni X. When do stepwise algorithms meet subset selection criteria? Ann Statist. 2007; 35:870–
87.

25. Tibshirani R. Regression shrinkage and selection via the Lasso. J Roy Stat Soc B Met. 1996; 58
(1):267–88. WOS:A1996TU31400017.

26. Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Series B. 2005;
67:301–20.

27. Guyon I. An Introduction to Variable and Feature Selection. J Mach Learn Res. 2003; 3:1157–82.

28. Mao KZ. Orthogonal forward selection and backward elimination algorithms for feature subset selec-
tion. IEEE Trans Syst Man Cybern B Cybern. 2004; 34(1):629–34. PMID: 15369099.

29. Ng AY. Feature selection, L1 vs. L2 regularization, and rotational invariance. Proceedings of the
twenty-first international conference on Machine learning; Banff, Alberta, Canada. 1015435: ACM;
2004. p. 78.

30. Hastie TJ, Tibshirani RJ, Friedman JH. The Elements of Statistical Learning: Data Mining, Inference
and Prediction: Springer; 2001.

31. Raue A, Steiert B, Schelker M, Kreutz C, Maiwald T, Hass H, et al. Data2Dynamics: a modeling envi-
ronment tailored to parameter estimation in dynamical systems. Bioinformatics. 2015. doi: 10.1093/
bioinformatics/btv405 PMID: 26142188.

32. Schmidt M, Fung G, Rosales R. Optimization methods for L1-regularization. University of British Colum-
bia, Technical Report TR-2009. 2009;19.

33. Elliott S, Swift S, Busse L, Scully S, Van G, Rossi J, et al. Epo receptors are not detectable in primary
human tumor tissue samples. PLoS One. 2013; 8(7):e68083. doi: 10.1371/journal.pone.0068083
PMID: 23861852; PubMed Central PMCID: PMC3701640.

34. Schilling M, Maiwald T, Bohl S, KollmannM, Kreutz C, Timmer J, et al. Computational processing and
error reduction strategies for standardized quantitative data in biological networks. FEBS J. 2005; 272
(24):6400–11. doi: 10.1111/j.1742-4658.2005.05037.x PMID: 16336276.

35. Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmuller U, et al. Structural and practical
identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioin-
formatics. 2009; 25(15):1923–9. doi: 10.1093/bioinformatics/btp358 PMID: 19505944.

How to Identify Parameter Differences between Cell Types

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005049 August 5, 2016 32 / 34

http://dx.doi.org/10.1002/cncr.22832
http://www.ncbi.nlm.nih.gov/pubmed/17582631
http://dx.doi.org/10.1038/onc.2011.366
http://dx.doi.org/10.1038/onc.2011.366
http://www.ncbi.nlm.nih.gov/pubmed/21860424
http://dx.doi.org/10.1021/bi801425e
http://www.ncbi.nlm.nih.gov/pubmed/18855427
http://www.ncbi.nlm.nih.gov/pubmed/9974393
http://dx.doi.org/10.1358/dnp.2005.18.4.908658
http://www.ncbi.nlm.nih.gov/pubmed/16034480
http://dx.doi.org/10.1146/annurev.immunol.18.1.143
http://www.ncbi.nlm.nih.gov/pubmed/10837055
http://dx.doi.org/10.1038/msb.2011.50
http://www.ncbi.nlm.nih.gov/pubmed/21772264
http://dx.doi.org/10.1074/jbc.M003456200
http://www.ncbi.nlm.nih.gov/pubmed/10882725
http://www.ncbi.nlm.nih.gov/pubmed/10526574
http://www.ncbi.nlm.nih.gov/pubmed/7889566
http://dx.doi.org/10.1038/msb.2009.91
http://dx.doi.org/10.1038/msb.2009.91
http://www.ncbi.nlm.nih.gov/pubmed/20029368
http://www.ncbi.nlm.nih.gov/pubmed/15369099
http://dx.doi.org/10.1093/bioinformatics/btv405
http://dx.doi.org/10.1093/bioinformatics/btv405
http://www.ncbi.nlm.nih.gov/pubmed/26142188
http://dx.doi.org/10.1371/journal.pone.0068083
http://www.ncbi.nlm.nih.gov/pubmed/23861852
http://dx.doi.org/10.1111/j.1742-4658.2005.05037.x
http://www.ncbi.nlm.nih.gov/pubmed/16336276
http://dx.doi.org/10.1093/bioinformatics/btp358
http://www.ncbi.nlm.nih.gov/pubmed/19505944


36. Swameye I, Muller TG, Timmer J, Sandra O, Klingmuller U. Identification of nucleocytoplasmic cycling
as a remote sensor in cellular signaling by databased modeling. Proc Natl Acad Sci U S A. 2003; 100
(3):1028–33. doi: 10.1073/pnas.0237333100 PMID: 12552139; PubMed Central PMCID: PMC298720.

37. Raue A, Schilling M, Bachmann J, Matteson A, Schelker M, Kaschek D, et al. Lessons learned from
quantitative dynamical modeling in systems biology. PLoS One. 2013; 8(9):e74335. doi: 10.1371/
journal.pone.0074335 PMID: 24098642; PubMed Central PMCID: PMC3787051.

38. Hass H, Kreutz C, Timmer J, Kaschek D. Fast integration-based prediction bands for ordinary differen-
tial equation models. Bioinformatics. 2015. doi: 10.1093/bioinformatics/btv743 PMID: 26685309.

39. Kreutz C, Raue A, Timmer J. Likelihood based observability analysis and confidence intervals for pre-
dictions of dynamic models. BMC Syst Biol. 2012; 6:120. doi: 10.1186/1752-0509-6-120 PMID:
22947028; PubMed Central PMCID: PMCPMC3490710.

40. Todaro M, Turdo A, Bartucci M, Iovino F, Dattilo R, Biffoni M, et al. Erythropoietin activates cell survival
pathways in breast cancer stem-like cells to protect them from chemotherapy. Cancer Res. 2013; 73
(21):6393–400. doi: 10.1158/0008-5472.CAN-13-0248 PMID: 24008319.

41. Hattangadi SM, Wong P, Zhang L, Flygare J, Lodish HF. From stem cell to red cell: regulation of eryth-
ropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood. 2011; 118
(24):6258–68. doi: 10.1182/blood-2011-07-356006 PMID: 21998215; PubMed Central PMCID:
PMC3236116.

42. Shen-Orr SS, Tibshirani R, Khatri P, Bodian DL, Staedtler F, Perry NM, et al. Cell type-specific gene
expression differences in complex tissues. Nat Methods. 2010; 7(4):287–9. doi: 10.1038/nmeth.1439
PMID: 20208531; PubMed Central PMCID: PMCPMC3699332.

43. Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, et al. Genomic landscape of non-
small cell lung cancer in smokers and never-smokers. Cell. 2012; 150(6):1121–34. doi: 10.1016/j.cell.
2012.08.024 PMID: 22980976; PubMed Central PMCID: PMCPMC3656590.

44. Wisniewski JR, Vildhede A, Noren A, Artursson P. In-depth quantitative analysis and comparison of the
human hepatocyte and hepatoma cell line HepG2 proteomes. J Proteomics. 2016; 136:234–47. doi:
10.1016/j.jprot.2016.01.016 PMID: 26825538.

45. Pan C, Kumar C, Bohl S, Klingmueller U, Mann M. Comparative proteomic phenotyping of cell lines and
primary cells to assess preservation of cell type-specific functions. Mol Cell Proteomics. 2009; 8
(3):443–50. doi: 10.1074/mcp.M800258-MCP200 PMID: 18952599; PubMed Central PMCID:
PMCPMC2649808.

46. Huang LJ, Constantinescu SN, Lodish HF. The N-terminal domain of Janus kinase 2 is required for
Golgi processing and cell surface expression of erythropoietin receptor. Mol Cell. 2001; 8(6):1327–38.
PMID: 11779507.

47. Timney BL, Tetenbaum-Novatt J, Agate DS, Williams R, ZhangW, Chait BT, et al. Simple kinetic rela-
tionships and nonspecific competition govern nuclear import rates in vivo. J Cell Biol. 2006; 175
(4):579–93. doi: 10.1083/jcb.200608141 PMID: 17116750; PubMed Central PMCID:
PMCPMC2064595.

48. Hoyt R, ZhuW, Cerignoli F, Alonso A, Mustelin T, David M. Cutting edge: selective tyrosine dephos-
phorylation of interferon-activated nuclear STAT5 by the VHR phosphatase. J Immunol. 2007; 179
(6):3402–6. PMID: 17785772; PubMed Central PMCID: PMCPMC2770724.

49. He B, You L, Uematsu K, Zang KL, Xu ZD, Lee AY, et al. SOCS-3 is frequently silenced by hypermethy-
lation and suppresses cell growth in human lung cancer. P Natl Acad Sci USA. 2003; 100(24):14133–8.
doi: 10.1073/pnas.2232790100. WOS:000186803800070.

50. Wilusz CJ, Wormington M, Peltz SW. The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol.
2001; 2(4):237–46. doi: 10.1038/35067025 PMID: 11283721.

51. Danko CG, Hah N, Luo X, Martins AL, Core L, Lis JT, et al. Signaling pathways differentially affect RNA
polymerase II initiation, pausing, and elongation rate in cells. Mol Cell. 2013; 50(2):212–22. doi: 10.
1016/j.molcel.2013.02.015 PMID: 23523369; PubMed Central PMCID: PMCPMC3640649.

52. Hornberg JJ, Westerhoff HV. Oncogenes are to lose control on signaling following mutation: should we
aim off target? Mol Biotechnol. 2006; 34(2):109–16. doi: 10.1385/MB:34:2:109 PMID: 17172656.

53. Zhou B, Damrauer JS, Bailey ST, Hadzic T, Jeong Y, Clark K, et al. Erythropoietin promotes breast
tumorigenesis through tumor-initiating cell self-renewal. J Clin Invest. 2014; 124(2):553–63. doi: 10.
1172/JCI69804 PMID: 24435044; PubMed Central PMCID: PMC3904607.

54. Pardanani A, Harrison C, Cortes JE, Cervantes F, Mesa RA, Milligan D, et al. Safety and Efficacy of
Fedratinib in Patients With Primary or Secondary Myelofibrosis: A Randomized Clinical Trial. JAMA
Oncol. 2015; 1(5):643–51. doi: 10.1001/jamaoncol.2015.1590 PMID: 26181658.

55. Geyer HL, Mesa RA. Therapy for myeloproliferative neoplasms: when, which agent, and how? Blood.
2014; 124(24):3529–37. doi: 10.1182/blood-2014-05-577635 PMID: 25472969.

How to Identify Parameter Differences between Cell Types

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005049 August 5, 2016 33 / 34

http://dx.doi.org/10.1073/pnas.0237333100
http://www.ncbi.nlm.nih.gov/pubmed/12552139
http://dx.doi.org/10.1371/journal.pone.0074335
http://dx.doi.org/10.1371/journal.pone.0074335
http://www.ncbi.nlm.nih.gov/pubmed/24098642
http://dx.doi.org/10.1093/bioinformatics/btv743
http://www.ncbi.nlm.nih.gov/pubmed/26685309
http://dx.doi.org/10.1186/1752-0509-6-120
http://www.ncbi.nlm.nih.gov/pubmed/22947028
http://dx.doi.org/10.1158/0008-5472.CAN-13-0248
http://www.ncbi.nlm.nih.gov/pubmed/24008319
http://dx.doi.org/10.1182/blood-2011-07-356006
http://www.ncbi.nlm.nih.gov/pubmed/21998215
http://dx.doi.org/10.1038/nmeth.1439
http://www.ncbi.nlm.nih.gov/pubmed/20208531
http://dx.doi.org/10.1016/j.cell.2012.08.024
http://dx.doi.org/10.1016/j.cell.2012.08.024
http://www.ncbi.nlm.nih.gov/pubmed/22980976
http://dx.doi.org/10.1016/j.jprot.2016.01.016
http://www.ncbi.nlm.nih.gov/pubmed/26825538
http://dx.doi.org/10.1074/mcp.M800258-MCP200
http://www.ncbi.nlm.nih.gov/pubmed/18952599
http://www.ncbi.nlm.nih.gov/pubmed/11779507
http://dx.doi.org/10.1083/jcb.200608141
http://www.ncbi.nlm.nih.gov/pubmed/17116750
http://www.ncbi.nlm.nih.gov/pubmed/17785772
http://dx.doi.org/10.1073/pnas.2232790100
http://dx.doi.org/10.1038/35067025
http://www.ncbi.nlm.nih.gov/pubmed/11283721
http://dx.doi.org/10.1016/j.molcel.2013.02.015
http://dx.doi.org/10.1016/j.molcel.2013.02.015
http://www.ncbi.nlm.nih.gov/pubmed/23523369
http://dx.doi.org/10.1385/MB:34:2:109
http://www.ncbi.nlm.nih.gov/pubmed/17172656
http://dx.doi.org/10.1172/JCI69804
http://dx.doi.org/10.1172/JCI69804
http://www.ncbi.nlm.nih.gov/pubmed/24435044
http://dx.doi.org/10.1001/jamaoncol.2015.1590
http://www.ncbi.nlm.nih.gov/pubmed/26181658
http://dx.doi.org/10.1182/blood-2014-05-577635
http://www.ncbi.nlm.nih.gov/pubmed/25472969


56. Buchert M, Burns CJ, Ernst M. Targeting JAK kinase in solid tumors: emerging opportunities and chal-
lenges. Oncogene. 2016; 35(8):939–51. doi: 10.1038/onc.2015.150 PMID: 25982279.

57. Kinsella TM, Nolan GP. Episomal vectors rapidly and stably produce high-titer recombinant retrovirus.
Hum Gene Ther. 1996; 7(12):1405–13. doi: 10.1089/hum.1996.7.12-1405 PMID: 8844199.

58. Ketteler R, Glaser S, Sandra O, Martens UM, Klingmuller U. Enhanced transgene expression in primi-
tive hematopoietic progenitor cells and embryonic stem cells efficiently transduced by optimized retrovi-
ral hybrid vectors. Gene Ther. 2002; 9(8):477–87. doi: 10.1038/sj.gt.3301653 PMID: 11948372.

59. Becker V, Schilling M, Bachmann J, Baumann U, Raue A, Maiwald T, et al. Covering a broad dynamic
range: information processing at the erythropoietin receptor. Science. 2010; 328(5984):1404–8. doi:
10.1126/science.1184913 PMID: 20488988.

60. Schneider CA, RasbandWS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Meth-
ods. 2012; 9(7):671–5. PMID: 22930834.

61. Raia V, Schilling M, BohmM, Hahn B, Kowarsch A, Raue A, et al. Dynamic mathematical modeling of
IL13-induced signaling in Hodgkin and primary mediastinal B-cell lymphoma allows prediction of thera-
peutic targets. Cancer Res. 2011; 71(3):693–704. doi: 10.1158/0008-5472.CAN-10-2987 PMID:
21127196.

62. BoehmME, Hahn B, LehmannWD. One-source peptide/phosphopeptide ratio standards for accurate
and site-specific determination of the degree of phosphorylation. Methods Mol Biol. 2014; 1156:367–
78. doi: 10.1007/978-1-4939-0685-7_24 PMID: 24792001.

63. BoehmME, Adlung L, Schilling M, Roth S, Klingmuller U, LehmannWD. Identification of isoform-spe-
cific dynamics in phosphorylation-dependent STAT5 dimerization by quantitative mass spectrometry
and mathematical modeling. J Proteome Res. 2014; 13(12):5685–94. doi: 10.1021/pr5006923 PMID:
25333863.

64. Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T, Xinarianos G, et al. Quantitative high-
throughput analysis of DNAmethylation patterns by base-specific cleavage and mass spectrometry.
Proc Natl Acad Sci U S A. 2005; 102(44):15785–90. doi: 10.1073/pnas.0507816102 PMID: 16243968;
PubMed Central PMCID: PMCPMC1276092.

65. Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE, et al. SUNDIALS: Suite of non-
linear and differential/algebraic equation solvers. ACM Trans Math Softw. 2005; 31(3):363–96. doi: 10.
1145/1089014.1089020

66. Coleman TF, Li Y. An interior trust region approach for nonlinear minimization subject to bounds. SIAM
J Optim. 1996; 6(2):418–45.

67. Kreutz C, Bartolome Rodriguez MM, Maiwald T, Seidl M, Blum HE, Mohr L, et al. An error model for pro-
tein quantification. Bioinformatics. 2007; 23(20):2747–53. doi: 10.1093/bioinformatics/btm397 PMID:
17768165.

How to Identify Parameter Differences between Cell Types

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005049 August 5, 2016 34 / 34

http://dx.doi.org/10.1038/onc.2015.150
http://www.ncbi.nlm.nih.gov/pubmed/25982279
http://dx.doi.org/10.1089/hum.1996.7.12-1405
http://www.ncbi.nlm.nih.gov/pubmed/8844199
http://dx.doi.org/10.1038/sj.gt.3301653
http://www.ncbi.nlm.nih.gov/pubmed/11948372
http://dx.doi.org/10.1126/science.1184913
http://www.ncbi.nlm.nih.gov/pubmed/20488988
http://www.ncbi.nlm.nih.gov/pubmed/22930834
http://dx.doi.org/10.1158/0008-5472.CAN-10-2987
http://www.ncbi.nlm.nih.gov/pubmed/21127196
http://dx.doi.org/10.1007/978-1-4939-0685-7_24
http://www.ncbi.nlm.nih.gov/pubmed/24792001
http://dx.doi.org/10.1021/pr5006923
http://www.ncbi.nlm.nih.gov/pubmed/25333863
http://dx.doi.org/10.1073/pnas.0507816102
http://www.ncbi.nlm.nih.gov/pubmed/16243968
http://dx.doi.org/10.1145/1089014.1089020
http://dx.doi.org/10.1145/1089014.1089020
http://dx.doi.org/10.1093/bioinformatics/btm397
http://www.ncbi.nlm.nih.gov/pubmed/17768165

